
UNIT 3

Support Vector Machines



132Unit 3: Support Vector Machines

INTRODUCTION

Putting it simply, Support Vector Machines (SVMs) are based
on the idea of finding a linear classification border that maxi-
mizes the margin between positive and negative samples.
It will turn out that margin maximization is related to simultane-
ous minimization of model complexity.
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OVERVIEW/AGENDA

1. We will start with the linear case and consider margin maxi-
mization, its computational formulation, and issues related to
complexity in depth.

2. Then the generalization to the non-linear case is rather straight-
forward.

3. Then we can highlight different variants including support vec-
tor regression.
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LINEAR SEPARABILITY: DEFINITION

Assume we are given a data set Z consisting of labeled samples
(xi, yi)i=1,...,l, where xi ∈ X = Rd and yi ∈ {−1, 1} and further
assume that positive and negative samples are linearly separable,
i.e. there exist a vector w ∈ Rd and a constant b ∈ R such that, for
all i = 1, . . . , l,

sign(w · xi + b) = yi.

Obviously, the hyperplane separating positive and negative sam-
ples is given as w · x + b = 0.

Lemma. Two sets of points are linearly separable if and only if their
convex hulls are disjoint.
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LINEAR SEPARABILITY: CANONICAL

FORM

Lemma. Given a linearly separable data set (in the sense of above)
and a separating hyperplane w · x + b = 0, there exists another
separating hyperplane w′ · x + b′ = 0 such that

min
i=1,...,l

|w′ · xi + b′| = 1.

Definition. If a separating hyperplane w · x + b = 0 already fulfills

min
i=1,...,l

|w · xi + b| = 1,

we say that w · x + b = 0 is in canonical form (with respect to Z).
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LINEAR SEPARABILITY: CANONICAL

FORM (cont'd)

Lemma. A separating hyperplane in canonical form fulfills the fol-
lowing set of inequalities:

w · xi + b ≥ +1 for yi = +1

w · xi + b ≤ −1 for yi = −1

These inequalities are equivalent to the following set of inequalities
(for all i = 1, . . . , l):

yi(w · xi + b)− 1 ≥ 0
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SEPARATING HYPERPLANES WITH

BOUNDED MINIMAL DISTANCE

It follows easily (cf. Hesse normal form) that the closest distance of
a point x to the separating hyperplane is

|w · x + b|
‖w‖

.

Hence, if w · x + b is in canonical form, the distance of the sepa-
rating hyperplane to the closest data point is 1

‖w‖ . So if we want
to restrict to those separating hyperplanes (in canonical form) that
have a distance of at least γ to all data points, we have to introduce
the constraint ‖w‖ ≤ 1

γ .
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SEPARATING HYPERPLANES WITH

BOUNDED MINIMAL DIST. (cont'd)

γ

γ γ
γ

γ
γ

γ
γ

Rationale: the farther a separating hyperplane is away from the data, the
less likely it is to produce a misclassification.
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SHATTERING COEFFICIENT

Let us assume from here on, that we are dealing with binary classification,
i.e. g(.; .) ∈ {−1,+1}. For convenience, we will sometimes identify the
model class g(.; .) with the set of functions it contains, i.e. g = {g(.;w) | w}.

Definition. Given a model class g(.; .) and a family of l sample inputs
(x1, . . . ,xl), the shattering coefficient of g for (x1, . . . ,xl) is defined as

Ng(x1, . . . ,xl) =
∣∣{(g(x1;w), . . . , g(xl;w)) | w

}∣∣,
i.e. the number of possible labelings of {x1, . . . ,xl} that the model class
g(.; .) is able to realize (for any parameter setting w).
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SHATTERING COEFFICIENT (cont'd)

Obviously, if Ng(x1, . . . ,xl) = 2l, g(.; .) can model any labeling of the
inputs {x1, . . . ,xl}. In this case, we say that g(.; .) shatters {x1, . . . ,xl}.

Example: Consider X = R2 and

glin((x1, x2); (w1, w2, b)) =

1 if w1x1 + w2x2 ≥ b,

−1 otherwise,

i.e. linear separation. Then, for any three points x1,x2,x3 that are not
collinear, we have Nglin (x1,x2,x3) = 8. For four points x1, . . . ,x4 arranged
as a general tetragon, we obtain Nglin (x1, . . . ,x4) = 14.
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SHATTERING COEFFICIENT

EXAMPLE #1
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SHATTERING COEFFICIENT

EXAMPLE #2
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THE VAPNIK-CHERVONENKIS (VC)

DIMENSION

Definition. The Vapnik-Chervonenkis dimension (VC dimension) of
a model class g(.; .) is defined as

dvc(g) = sup{l ∈ N | ∃(x1, . . . ,xl) Ng(x1, . . . ,xl) = 2l},

i.e. the VC dimension is the largest number l for which a configu-
ration of l samples can be found that can be shattered by a model
from the model class g. If this works for all l, the VC dimension is∞.
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VC DIMENSION: EXAMPLES

For X = R2, we have dVC(glin) = 3.
For X = Rd, we have dVC(glin) = d+ 1 (where glin is generalized to the
p-dimensional case in the obvious way).
For X = R and any model class that contains only non-decreasing
functions, we have dVC(g) = 1, regardless of how many parameters
are necessary to parametrize g.
For X = R and gsin(x,w) = sign(sin(wx)), we obtain dVC(gsin) = ∞,
although gsin only depends on one parameter.

We conclude that there is not necessarily a dependency between the VC

dimension and the number of parameters which describe a model class.
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BOUNDED MINIMAL DISTANCE:

A BOUND ON COMPLEXITY

Theorem. Consider input data from a sphere with radius R. The
maximal number of points that linear hyperplanes can shatter with-
out getting closer to any data point than γ is bounded above by

min
(⌊R2

γ2

⌋
, d
)

+ 1.
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BOUNDED MINIMAL DISTANCE:

A BOUND ON THE ERROR RATE

Theorem. Consider a training set with l elements from a sphere with ra-
dius R again (drawn according to some distribution) and a linear separating
hyperplane that has a distance of at least γ from each training sample. For
a given ρ > 0, we define ν as the proportion of samples for which

y(w · x + b) ≤ ρ

holds (i.e. margin error of at least ρ
‖w‖ ). Then, with probability 1 − δ, the

probability to misclassify a new sample is bounded above by

ν +

√
c

l

( R2

ρ2γ2
(ln l)2 + ln(1/δ)

)
,

where c > 0 is a constant.
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THE BIGGER γ, THE BETTER

The previous two theorems indicate that we should look for the
largest γ such that there still exists a separating hyperplane that
has a distance of at least γ to all training samples (bounding
complexity, minimizing the test error à la SRM).

Hence, we are looking for that separating hyperplane whose min-
imal distance to all training samples is maximal. Assuming that
the separating hyperplane is in canonical form, this is equivalent
to maximizing the distance 1

‖w‖ .
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THE BIGGER γ, THE BETTER (cont'd)

R

γ



149Unit 3: Support Vector Machines

MARGIN MAXIMIZATION

Obviously, for such an optimal hyperplane, the smallest distance to the
closest negative sample d− and the smallest distance to the closest
positive sample d+ are the same, and the distance of positive and negative
samples perpendicular to w is d+ + d− = 2

‖w‖ . This distance is commonly
called margin. Hence, maximizing the minimal distance to all data points
(by maximizing 1

‖w‖ ) is nothing else but margin maximization.

Lemma. The separating hyperplane that maximizes the margin between
positive and negative samples is uniquely given as the hyperplane that or-
thogonally bisects the shortest distance between the convex hulls of posi-
tive and negative samples.
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MARGIN MAXIMIZATION (cont'd)

margin

margin
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MARGIN MAXIMIZATION:

OPTIMIZATION PROBLEM

Original Problem: For a given linearly separable data set Z, maximize
2
‖w‖ with respect to w ∈ Rd and b ∈ R subject to the following constraints
(i = 1, . . . , l):

yi(w · xi + b)− 1 ≥ 0 (1)

This is equivalent to the following optimization problem:

Primal Problem: For a given linearly separable data set Z, minimize
1
2
‖w‖2 = 1

2

∑d
i=1 w

2
i with respect to w ∈ Rd and b ∈ R subject to the

constraints (1).

Obviously, the latter is a convex quadratic optimization problem with linear
constraints.
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EXCURSION: CONVEX OPTIMIZATION

(1/3)

Suppose that the functions f and gi (i = 1, . . . , n) are all convex. A
function h is convex if h(λx + (1 − λ)y) ≤ λh(x) + (1 − λ)h(y) for
all x,y and all λ ∈ [0, 1]. For convenience, assume that f and all
gi are continuously differentiable. Further assume that the Slater
condition holds, i.e. there exists an x′ such that gi(x′) < 0 for all
i = 1, . . . , n.

Primal Problem: minimize f(x) with respect to x subject to the
constraints gi(x) ≤ 0, where i = 1, . . . , n (note that, for simplicity,
we do not deal with equality constraints here).
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EXCURSION: CONVEX OPTIMIZATION

(2/3)

Lagrange function:

L(x;α1, . . . , αn) = f(x) +
n∑
i=1

αigi(x)

The auxiliary variables α1, . . . , αl are called Lagrange multipliers.

Dual Problem: maximize

L(α1, . . . , αn) = inf
x
L(x;α1, . . . , αn)

subject to the constraints αi ≥ 0 (i = 1, . . . , n).
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EXCURSION: CONVEX OPTIMIZATION

(3/3)

From the Karush-Kuhn-Tucker Theorem, we can infer the following:
under the assumptions made above, for a solution x∗ of the primal
problem, there exist non-negative Lagrange multipliers such that

L(α1, . . . , αn) = L(x∗;α1, . . . , αn)

and such that αigi(x∗) = 0 holds for all i = 1, . . . , n. These condi-
tions are not only necessary, but also sufficient for x∗ to be a solu-
tion of the primal problem.
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LAGRANGE FUNCTION OF MARGIN

MAXIMIZATION

We introduce l Lagrange multipliers α1, . . . , αl. Then the Lagrange
function is given as

L(w, b;α1, . . . , αl) =
1

2
‖w‖2 −

l∑
i=1

αi
(
yi(w · xi + b)− 1

)
=

1

2
‖w‖2 −w ·

l∑
i=1

αiy
ixi − b

l∑
i=1

αiy
i +

l∑
i=1

αi
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MARGIN MAXIMIZATION: DUAL

FORMULATION (1/4)

Solving the dual problem includes minimizing L with respect to w

and b (for fixed Lagrange multipliers). This enforces the conditions

∂L
∂w (w, b;α1, . . . , αl) = 0 ∂L

∂b (w, b;α1, . . . , αl) = 0,

which imply the following:

w =
l∑
i=1

αiy
ixi

l∑
i=1

αiy
i = 0
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MARGIN MAXIMIZATION: DUAL

FORMULATION (2/4)

By using the previous two equalities, we obtain

L(α1, . . . , αl) =

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjy
iyjxi · xj .

The final solution can be found by maximizing L with respect to
the Lagrange multipliers αi subject to the constraints αi ≥ 0 (for all
i = 1, . . . , l) and

∑l
i=1 αiy

i = 0.
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MARGIN MAXIMIZATION: DUAL

FORMULATION (3/4)

With the notations

0 = (

l times︷ ︸︸ ︷
0, . . . , 0)T , α = (α1, . . . , αl)

T ,

1 = (1, . . . , 1︸ ︷︷ ︸
l times

)T , Q =
(
yiyjxi · xj

)j=1,...,l

i=1,...,l
,

we can write the dual problem as follows:

Minimize
1

2
αTQα− 1Tα

with respect to α subject to the constraints α ≥ 0 and αTy = 0.
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MARGIN MAXIMIZATION: DUAL

FORMULATION (4/4)

Note that K = (xi · xj)j=1,...,l
i=1,...,l is positive semi-definite, since K = XXT

holds.a From this fact, we can easily infer that Q is positive semi-definite.

Hence, not surprisingly, the dual problem, like the equivalent ones de-
scribed above, is a convex quadratic optimization problem with linear con-
straints. For such problems, no local minima exist. The set of global minima
(consisting of equally good solutions) is convex. If Q is positive definite, the
minimum is even unique. For such problems, a host of solving algorithms
are available.

aIt is easy to prove that Gram matrices of scalar products are in general
positive semi-definite.
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SUPPORT VECTORS

Once we have solved the dual optimization problem, we have La-
grange multipliers α1, . . . , αl which, by the Karush-Kuhn-Tucker the-
orem, also solve the primal problem. By the Karush-Kuhn-Tucker
conditions, we have

αi
(
yi(w · xi + b)− 1

)
= 0 (2)

for all i = 1, . . . , l. This means, for all i = 1, . . . , l, we either have
αi = 0 or yi(w · xi + b)− 1 = 0 (or both). Samples for which αi > 0

holds (thus implying yi(w·xi+b)−1 = 0) are called support vectors.
It is intuitively clear anyway, that the maximal margin only depends
on those samples for which the constraints are tight.



161Unit 3: Support Vector Machines

CONSTRUCTING THE FINAL

CLASSIFIER

Given Lagrange multipliers α1, . . . , αl solving the primal problem,
we can construct w as noted above already:

w =
l∑
i=1

αiy
ixi

Hence, the final classification function ( the linear Support Vector
Machine (SVM)) is given as

g(x) = sign(w · x + b) = sign
( l∑

i=1

αiy
ixi · x + b︸ ︷︷ ︸

discriminant function ḡ(x)

)
.
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CONSTRUCTING THE FINAL

CLASSIFIER (cont'd)

For an arbitrary support vector xj (then αj > 0), the Karush-Kuhn-Tucker
condition (2) implies yj(w · xj + b) = 1, and we can compute b as follows:

b = yj −w · xj = yj −
l∑
i=1

αiy
ixi · xj

It is recommended, however, not to base the computation of b on only one
support vector (for reasons of numerical precision), but to compute a b

value for each support vector and to use the average finally.

Under specific conditions (e.g. asymmetric misclassification costs), it may
be useful to adjust b according to some other quality measure after training.
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THE NON-SEPARABLE CASE:

MOTIVATION

If positive and negative samples are not linearly separable, the con-
straints contradict each other; thus the method described above
cannot be applied. This problem can be solved by introducing non-
negative slack variables ξi (i = 1, . . . , l) that correspond to the ex-
tent to which the i-th sample violates its constraint:

yi(w · xi + b) ≥ 1− ξi

Of course, we have to require the slack variables to be as small as
possible. This is achieved by adding the sum of the slack variables
to the objective function, scaled with a cost factor C. We refer to
this idea as the linear C-SVM in the following.
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LINEAR C-SVM: THE PRIMAL

PROBLEM

For a given data set Z, minimize

1

2
‖w‖2 + C

l∑
i=1

ξi

with respect to w ∈ Rd, b ∈ R, and (ξ1, . . . , ξl) ∈ Rl subject to the
following constraints:

yi(w · xi + b)− 1 + ξi ≥ 0

ξi ≥ 0

 for all i = 1, . . . , l
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LINEAR C-SVM: LAGRANGE

FUNCTION

We introduce Lagrange multipliers α1, . . . , αl and λ1, . . . , λl. Then the La-
grange function is given as

L(w, b, ξ1, . . . , ξl;α1, . . . , αl, λ1, . . . , λl)

=
1

2
‖w‖2 + C

l∑
i=1

ξi −
l∑
i=1

αi
(
yi(w · xi + b)− 1 + ξi

)
−

l∑
i=1

λiξi

=
1

2
‖w‖2 −w ·

l∑
i=1

αiy
ixi − b

l∑
i=1

αiy
i +

l∑
i=1

αi +

l∑
i=1

(C − αi − λi)ξi
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LINEAR C-SVM: DUAL FORMULATION

(1/3)

Solving the dual problem includes minimizing L with respect to w, b and
ξ1, . . . , ξl (for fixed Lagrange multipliers). This enforces the conditions

∂L
∂w

(w, b, ξ1, . . . , ξl;α1, . . . , αl, λ1, . . . , λl) = 0,

∂L
∂b

(w, b, ξ1, . . . , ξl;α1, . . . , αl, λ1, . . . , λl) = 0,

∂L
∂ξj

(w, b, ξ1, . . . , ξl;α1, . . . , αl, λ1, . . . , λl) = 0, for all j = 1, . . . , l

which again imply

w =
l∑
i=1

αiy
ixi

l∑
i=1

αiy
i = 0

and, additionally, C − αj − λj = 0 for all j = 1, . . . , l.
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LINEAR C-SVM: DUAL FORMULATION

(2/3)

The equalities C − αj − λj = 0 imply that we may substitute λj = C − αj .
The constraints λj ≥ 0 further imply that we must ensure C − αj ≥ 0,
hence αj ≤ C for all j = 1, . . . , l.

Finally, we obtain the same objective function

L(α1, . . . , αl) =

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjy
iyjxi · xj .

The final solution can be found by maximizing L with respect to the La-
grange multipliers αi subject to the constraints αi ≥ 0 (for all i = 1, . . . , l),∑l
i=1 αiy

i = 0, and the additional constraints αi ≤ C (for all i = 1, . . . , l).
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LINEAR C-SVM: DUAL FORMULATION

(3/3)

With the same conventions as above, we can write the dual
problem as follows:

Minimize
1

2
αTQα− 1Tα

with respect to α subject to the constraints 0 ≤ α ≤ C1 and
αTy = 0.

Again, this is a convex quadratic optimization problem with linear
constraints, so we can efficiently determine a global minimum.
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LINEAR C-SVM: CONSTRUCTING THE

FINAL CLASSIFIER

Analogously to above, the final classification function is given as

g(x) = sign(w · x + b) = sign
( l∑
i=1

αiy
ixi · x + b

)
.

The computation of b, however, requires a bit more caution. In the
non-separable case, the Karush-Kuhn-Tucker conditions tell us that

αi
(
yi(w · xi + b)− 1 + ξi

)
= 0

holds for all i = 1, . . . , l. So, if we choose an i such that αi > 0, we
would need the value ξi to determine b.
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LINEAR C-SVM: CONSTRUCTING THE

FINAL CLASSIFIER (cont'd)

However, note that the Karush-Kuhn-Tucker conditions also imply
(for the other set of constraints ξi ≥ 0) that

λiξi = (C − αi)ξi = 0

holds for all i = 1, . . . , l. So if we manage to find a j such that
0 < αj < C holds, we can infer ξj = 0 and, thus, yj(w·xj+b)−1 = 0,
i.e. we can use the same method as described above:

b = yj −w · xj = yj −
∑l
i=1 αiy

ixi · xj

It may only happen in degenerate cases that no αj exists such that
0 < αj < C holds (see literature).
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LINEAR C-SVM: INTERPRETING THE

SOLUTION

ξ = 0, α = 0

ξ > 0, α = C

0 < α < C
ξ = 0

ξ = 0, α = 0

w · x+ b = −1

w · x+ b = +1
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THE NON-SEPARABLE CASE: AN

ALTERNATIVE APPROACH

In a linear C-SVM, the parameterC does not have a very intuitive inter-
pretation (beside the obvious fact that its choice is a trade-off between
minimizing the training error and maximizing the margin)
Obviously, ξi > 0 holds if and only if

yi(w · xi + b) < 1,

i.e. (xi, y
i) is a margin error with ρ = 1 (and, in this case, we have

αi = C).
An alternative linear SVM method is based on explicitly introducing a
varying threshold ρ and optimizing it simultaneously. The influence of
ρ on the objective function is then controlled by a factor ν. We will refer
to this idea as linear ν-SVM in the following.
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LINEAR ν-SVM: THE PRIMAL

PROBLEM

For a given data set Z, minimize

1

2
‖w‖2 − νρ+

1

l

l∑
i=1

ξi

with respect to w ∈ Rd, b ∈ R, ρ ∈ R, and (ξ1, . . . , ξl) ∈ Rl subject
to the following constraints:

ρ ≥ 0

yi(w · xi + b)− ρ+ ξi ≥ 0

ξi ≥ 0

}
for all i = 1, . . . , l
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LINEAR ν-SVM: LAGRANGE

FUNCTION

We introduce Lagrange multipliers α1, . . . , αl, λ1, . . . , λl, and δ. Then the
Lagrange function is given as

L(w, b, ρ, ξ1, . . . , ξl;α1, . . . , αl, δ, λ1, . . . , λl)

=
1

2
‖w‖2 − νρ+

1

l

l∑
i=1

ξi − δρ−
l∑
i=1

αi
(
yi(w · xi + b)− ρ+ ξi

)
−

l∑
i=1

λiξi

=
1

2
‖w‖2 −w ·

l∑
i=1

αiy
ixi − b

l∑
i=1

αiy
i

+ ρ(

l∑
i=1

αi − ν − δ) +

l∑
i=1

(
1

l
− αi − λi)ξi
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LINEAR ν-SVM: DUAL FORMULATION

(1/3)

Solving the dual problem includes minimizing L with respect to w, b, ρ and ξ1, . . . , ξl
(for fixed Lagrange multipliers). This enforces the conditions

∂L
∂w

(w, b, ρ, ξ1, . . . , ξl;α1, . . . , αl, δ, λ1, . . . , λl) = 0,

∂L
∂b

(w, b, ρ, ξ1, . . . , ξl;α1, . . . , αl, δ, λ1, . . . , λl) = 0,

∂L
∂ρ

(w, b, ρ, ξ1, . . . , ξl;α1, . . . , αl, δ, λ1, . . . , λl) = 0,

∂L
∂ξi

(w, b, ρ, ξ1, . . . , ξl;α1, . . . , αl, δ, λ1, . . . , λl) = 0, for all i = 1, . . . , l

which imply

w =
l∑
i=1

αiy
ixi,

l∑
i=1

αiy
i = 0,

1
l
− αi − λi = 0 (for all i = 1, . . . , l), and

∑l
i=1 αi − ν − δ = 0.
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176Unit 3: Support Vector Machines

LINEAR ν-SVM: DUAL FORMULATION

(2/3)

The equalities 1
l
−αi−λi = 0 imply λi = 1

l
−αi for all i = 1, . . . , l. Together

with λi ≥ 0, we obtain the constraint αi ≤ 1
l

(for all i = 1, . . . , l).
The equality

∑l
i=1 αi − ν − δ = 0 implies δ =

∑l
i=1 αi − ν, thus, by δ ≥ 0,

we obtain the constraint
∑l
i=1 αi ≥ ν.

Finally, we obtain the objective function

L(α1, . . . , αl) = −1

2

l∑
i=1

l∑
j=1

αiαjy
iyjxi · xj .

The final solution can be found by maximizing L with respect to the La-
grange multipliers αi subject to the constraints 0 ≤ αi ≤ 1

l
(for all

i = 1, . . . , l),
∑l
i=1 αiy

i = 0, and
∑l
i=1 αi ≥ ν.
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LINEAR ν-SVM: DUAL FORMULATION

(3/3)

With the same conventions as above, we can write the dual
problem as follows:

Minimize
αTQα

with respect to α subject to the constraints 0 ≤ α ≤ 1
l 1, αTy = 0,

and 1Tα ≥ ν.

This is again a convex quadratic optimization problem with linear
constraints, so we can efficiently determine a global minimum.
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LINEAR ν-SVM: CONSTRUCTING THE

FINAL CLASSIFIER

Analogously to above, the final classification function is given as

g(x) = sign(w · x + b) = sign
( l∑
i=1

αiy
ixi · x + b

)
.

The computation of b is even more tricky. The Karush-Kuhn-Tucker
conditions tell us that

αi
(
yi(w · xi + b)− ρ+ ξi

)
= 0

holds for all i = 1, . . . , l. So, if we choose an i such that αi > 0, we
would need the values ξi and ρ to determine b.
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LINEAR ν-SVM: CONSTRUCTING THE

FINAL CLASSIFIER (cont'd)

Hence, we need to take two support vectors xr and xq such that 0 < αr <
1
l
, 0 < αq <

1
l
, yr = +1, and yq = −1 and solve two linear equations in

two variables, b and ρ. The solutions are given as follows:

ρ =
1

2
w · (xr − xq) =

1

2
(xr − xq) ·

l∑
i=1

αiy
ixi

b = −1

2
w · (xr + xq) = −1

2
(xr + xq) ·

l∑
i=1

αiy
ixi

It is again possible (for the sake of numerical precision) to compute the
solution by averaging over two equally large sets of positive and negative
support vectors all fulfilling 0 < αi <

1
l
.
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LINEAR ν-SVM: INTERPRETING THE

PARAMETER ν

Theorem. Assume that we are given a ν-SVM solution according to
some data set Zl of l i.i.d. samples (according to a given distribution
p(x, y)) such that ρ > 0 holds. Then the following holds:

1. ν is an upper bound for the proportion of margin errors.
2. ν is a lower bound for the proportion of support vectors.
3. Provided that p(x | y = +1) and p(x | y = −1) do not have

any discrete components, the proportions of margin errors and
support vectors converge to ν with probability 1 (as l goes to
infinity).
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181Unit 3: Support Vector Machines

CONNECTION C-SVM � ν-SVM

Theorem. Assume that we are given a ν-SVM solution according to
some data set Zl such that ρ > 0 holds. Then exactly the same deci-
sion function (note: not necessarily the same discriminant function)
would have been obtained if we had trained a C-SVM with C = 1

ρl .
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182Unit 3: Support Vector Machines

SOME NOTES ON THE CHOICE OF ν

It is clear that the constraint
∑l
i=1 αi = ν (whereas 0 ≤ αi ≤ 1

l )
enforces 0 ≤ ν ≤ 1.
Moreover, assuming that we have p positive training sam-
ples and n = l − p negative training samples, the constraints∑l
i=1 αi = ν and

∑l
i=1 αiy

i = 0 can only be fulfilled simultane-
ously if the following holds:

ν ≤ 2

l
min(p, l − p)

This means that our choice of ν is strongly limited if we have a
highly unbalanced data set!
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NONLINEAR SUPPORT VECTOR

MACHINES: INTRODUCTION

Clearly, linear separability is a very restrictive assumption. The
higher the dimensionality, however, the easier we can achieve
linear separability for a given number of samples l.
Nonlinear support vector machines are based on the idea of
transforming the data into a higher-dimensional space in a way
that the given problem hopefully becomes (almost) linearly sep-
arable in this space, i.e. we choose a Hilbert space H and a
(nonlinear) mapping Φ : X → H.
Then, hypothetically, we could apply the linear method pre-
sented previously in the space H.
The obvious problem is how to specify H and Φ.
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NONLINEAR SVMs: INTRODUCTION

(cont'd)

Φ(x1) · Φ(x2)

Φ−1

Φ(x)

X

H
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NONLINEAR SVMs: THE BASIC IDEA

In solving the dual problem and computing the final classification
function, we have only scalar products of pairs of samples appear.
Therefore, it is not necessary to explicitly know H and Φ.

For solving the dual problem, it is sufficient to know Φ(xi)·Φ(xj)

for all pairs of training samples xi,xj (i, j = 1, . . . , l).
For computing the classification of a new sample x, it is suffi-
cient to know Φ(x) · Φ(xi) for all i = 1, . . . , l.

So suppose we are given a mapping k : X ×X → R (the so-called
kernel) for which we know that there exists a Hilbert space H and
a mapping Φ : X → H such that k(x,y) = Φ(x) · Φ(y) holds for all
x,y ∈ X.
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NONLINEAR SVMs: THE KERNEL

TRICK

Normally, one would assume that the kernel k should be cho-
sen specifically suited to the given learning task. However, this
is often too hard to do.
Instead, it is usual to make an a priori choice of the kernel k
using common sense and, if available, prior knowledge about
the problem.
To replace scalar products by an a priori choice of a kernel in
order to “non-linearize” a given algorithm is often termed “ker-
nel trick”. It can be applied to any algorithm that uses only
scalar products—including, among a lot of others, support vec-
tor machines.
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C-SVM: DUAL PROBLEM (1/3)

Applying the kernel trick to the linear C-SVM, we obtain the following
optimization problem:a

Maximize

L(α1, . . . , αl) =

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjy
iyjk(xi,xj).

with respect to the Lagrange multipliers αi subject to the constraints 0 ≤
αi ≤ C (for all i = 1, . . . , l) and

∑l
i=1 αiy

i = 0.

aNote that we do not bother about considering the separable case here.
Most often, we cannot check/guarantee linear separability in the (un-
known) Hilbert space H anyway.
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C-SVM: DUAL PROBLEM (2/3)

Let the vectors 0,1,α be defined as above. With the definition

Q =
(
yiyjk(xi,xj)

)j=1,...,l

i=1,...,l
,

we can write the dual problem as follows:

Minimize
1

2
αTQα− 1Tα

w.r.t. α subject to the constraints 0 ≤ α ≤ C1 and αTy = 0.
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C-SVM: DUAL PROBLEM (3/3)

If we can be sure that k(x,y) = Φ(x) · Φ(y) holds for some choice
of H and Φ, we know that K = (k(xi,xj))j=1...,l

i=1,...,l is a positive semi-
definite Gram matrix. Hence, Q is also positive semi-definite and
the optimization problem above is again convex and quadratic with
linear constraints. Regardless of the possibly non-linear kernel, we
can apply the same methods for solving it.
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C-SVM: CONSTRUCTING THE FINAL

CLASSIFIER

Analogously to above, the final classification function is given as

g(x) = sign
( l∑
i=1

αiy
ik(xi,x) + b

)
.

The threshold b can be computed as

b = yj −
l∑
i=1

αiy
ik(xi,xj)

for a given support vector xj fulfilling 0 < αj < C (or as an average
of this value for several support vectors fulfilling this condition).
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191Unit 3: Support Vector Machines

ν-SVM: DUAL PROBLEM

Applying the kernel trick to the linear ν-SVM, we obtain the following
optimization problem:

Maximize

L(α1, . . . , αl) = −1

2

l∑
i=1

l∑
j=1

αiαjy
iyjk(xi,xj).

with respect to the Lagrange multipliers αi subject to the constraints
0 ≤ αi ≤ 1

l (for all i = 1, . . . , l),
∑l
i=1 αiy

i = 0, and
∑l
i=1 αi ≥ ν.



A
D
V
A
N
C
E
D
B
A
C
K
G
R
O
U
N
D
I
N
F
O
R
M
A
T
I
O
N

192Unit 3: Support Vector Machines

ν-SVM: DUAL PROBLEM (cont'd)

With the same conventions as above, we can write the dual
problem as follows:

Minimize
αTQα

with respect to α subject to the constraints 0 ≤ α ≤ 1
l 1, αTy = 0,

and 1Tα ≥ ν.

This is again a convex quadratic optimization problem with linear
constraints, so we can efficiently determine a global minimum.
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193Unit 3: Support Vector Machines

ν-SVM: CONSTRUCTING THE FINAL

CLASSIFIER

Analogously to above, the final classification function is given as

g(x) = sign
( l∑
i=1

αiy
ik(xi,x) + b

)
.

Now choose two support vectors xr and xq such that 0 < αr <
1
l
, 0 <

αq <
1
l
, yr = +1, and yq = −1. Then ρ and b can be computed as follows:

ρ =
1

2

( l∑
i=1

αiy
ik(xi,xr)−

l∑
i=1

αiy
ik(xi,xq)

)

b = −1

2

( l∑
i=1

αiy
ik(xi,xr) +

l∑
i=1

αiy
ik(xi,xq)

)
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194Unit 3: Support Vector Machines

ν-SVM: SOME NOTES

Analogously to the linear case, ρ and b can be computed using
more than just a pair of support vectors.
The theorem concerning the interpretation of ν also holds for
the general ν-SVM, with only minor modifications. 1. and 2.
hold in the same way. For 3., we have to assume that the kernel
is not constant and analytic.
The theorem establishing the connection C-SVM – ν-SVM
holds without any modification.
The notes concerning the choice of ν apply in the same way.
As a consequence, the limitations of the ν-SVM for highly un-
balanced data sets persist.
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WHICH MAPPINGS k(., .) ARE

APPROPRIATE?

It is clear that we cannot choose k(., .) completely arbitrarily. Mer-
cer’s theorem provides us with a necessary and sufficient condition
under which a mapping k can be considered a meaningful kernel.

Theorem. A continuous two-place mapping k : X2 → R can be
represented by k(x,y) = Φ(x) · Φ(y) for some choice of a Hilbert
space H and an X → H mapping Φ if any only if∫

X2

k(x,y)f(x)f(y)dxdy ≥ 0 (3)

holds for all square-integrable functions f ∈ L2(X).
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WHICH MAPPINGS k(., .) ARE

APPROPRIATE? (cont'd)

Mercer’s condition (3) can be understood as the positive semi-
definiteness of k. If it is fulfilled, we can be sure that the Gram ma-
trix K = (k(xi,xj))j=1...,l

i=1,...,l is positive semi-definite for any choice of
training data x1, . . . ,xl; thus, the dual problem is a convex quadratic
optimization problem. Moreover, we can be sure that generalized
derivatives exist such that solving the dual problem is equivalent to
solving a (hypothetical) primal problem.
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STANDARD KERNELS

The following kernels are often used in practice:

Linear: k(x,y) = x · y
Polynomial: k(x,y) = (x · y + β)α

Gaussian/RBF:a k(x,y) = exp
(
− 1

2σ2 ‖x− y‖2
)

Sigmoid: k(x,y) = tanh(αx · y + β)

aRBF = Radial Basis Function
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STANDARD KERNELS: SOME NOTES

The sigmoid kernel is not a very popular choice; moreover, it is
not positive semi-definite for all choices of α and β.
The RBF kernel is the most popular choice.
As the RBF kernel can only take values from [0, 1], it maps into
a hyper-sphere of radius 1.
The VC dimension of SVMs with RBF kernel is infinite.
The Hilbert space corresponding to the RBF kernel is infinitely
dimensional.
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CUSTOM KERNELS

It is not as difficult to define new kernels as it may seem at first
glance:

If we can define the Hilbert space H (most often Rk) and the
mapping Φ explicitly, we are safe (e.g. spectrum and mismatch
kernel in bioinformatics).
Products, weighted sums (and a lot more operations) applied
to positive semi-definite kernels give semi-definite kernels.
Suppose that we have a mapping Ψ : X → Y , where Y is
some feature space, and a semi-definite kernel k : Y 2 → R.
Then k′ : X2 → R, defined as k′(x,y) = k(Ψ(x),Ψ(y)) is also
a positive semi-definite kernel.
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ENSURING POSITIVE SEMI-DEFINITE

GRAM MATRICEs

It is easy to see that adding a constant e to the diagonal of
a symmetric matrix shifts all eigenvalues by e; hence, we can
make an indefinite symmetric matrix positive semi-definite by
subtracting the smallest eigenvalue (or a lower bound for it).
We can apply this trick to SVMs: if we have a “Gram matrix”
K which is not positive semi-definite, we can make it positive
semi-definite by adding a sufficiently large constant to the diag-
onal.
This heuristic lacks mathematical foundation, but often works
well in practice (e.g. Smith-Waterman “kernel” for sequence
analysis).
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SOME NOTES ON COMPLEXITY OF

SVMS

Although SVMs are motivated by simultaneously minimizing complexity,
there are issues related to complexity left.

If the RBF kernel is used, the choice of σ is crucial (note: infinite VC
dimension if we admit any choice of σ): too large σ→ underfitting; too
small σ → overfitting.
If the polynomial kernel is used, the degree α is crucial; the VC dimen-
sion grows polynomially with α.
The choices of C or ν also influence complexity. The higher C and ν,
the more we punish misclassifications, hence, the higher the tendency
of the SVM to produce a more complex model.

It is often unavoidable to use cross validation to find good choices for hy-
perparameters.
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C-SVM EXAMPLE #1:

C = 1, LINEAR KERNEL
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C-SVM EXAMPLE #1:

C = 1000, LINEAR KERNEL
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C-SVM EXAMPLE #2:

C = 1, RBF KERNEL, 1
2σ2 = 1
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C-SVM EXAMPLE #2:

C = 10, RBF KERNEL, 1
2σ2 = 10
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C-SVM EXAMPLE #2:

C = 1000, RBF KERNEL, 1
2σ2 = 100
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C-SVM EXAMPLE #3:

C-SVM, C = 10, RBF KERNEL, 1
2σ2 = 10



208Unit 3: Support Vector Machines

KERNELS FOR BIOLOGICAL

SEQUENCES

The following family of kernels is quite common for biological se-
quences:

k(x, y) =
∑
m∈M

N(m,x) ·N(m, y),

where M is a set of patterns and N(m,x) denotes the number of
occurrences/matches of patternm in string x. Obviously, the explicit
representation of the mapping ϕ is given as follows:

ϕ(x) = (N(m,x))m∈M.
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COMMON SEQUENCE KERNELS

Spectrum kernel: M is the set of all K-length strings (exact
matches)

Mismatch kernel: M is the set of all K-length strings (matches
with up to M mismatches)

Motif kernel: M is a predefined set of problem-specific patterns
(possibly including wildcards, maybe even general RegExp’s)

Gappy pair kernel: M is the set of pairs of symbols with at most
M positions in between
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EXAMPLES OF SEQUENCE KERNELS

(FEATURES)

Spectrum kernel (K = 3): Gappy pair kernel (M = 3):

MKQLEDKVEELLSKTYHLENEVARL
MKQ
 KQL
  QLE
   LED
    EDK
     DKV
      KVE
       VEE
        EEL
         ELL
          LLS
           LSK
            SKT
             KTY
              TYH
               YHL
                HLE
                 LEN
                  ENE
                   NEV
                    EVA
                     VAR
                      ARL

MKQLEDKVEELLSKTYHLENEVARL
MK
M.Q
M..L
M...E
 KQ
 K.L
 K..E
 K...D
  QL
  Q.E
  Q..D
  Q...K
   LE
   L.D
   L..K
   L...V
    ED
    E.K
    E..V
    E...E
     DK
     D.V
     D..E [...]
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EASY WEIGHT EXTRACTION

f(x) = b+

l∑
i=1

αi · yi · k(x, xi)

= b+

l∑
i=1

αi · yi ·
∑
m∈M

N(m,x) ·N(m,xi)

= b+
∑
m∈M

N(m,x) ·
l∑
i=1

αi · yi ·N(m,xi)︸ ︷︷ ︸
=w(m)

For each pattern m, the absolute value of w(m) provides information about
the importance of pattern and the sign of w(m) tells for which class an
occurrence of m is indicative.
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OTHER SEQUENCE KERNELS

Position-dependent kernels: the above kernels can be gener-
alized to take positions of patterns into account (includes
weighted degree kernel and shifted weighted degree kernels
as special cases)

Pairwise kernel: the vector of scores of pairwise alignments to a
given reference/training set is used as input features

Smith-Waterman “kernel”: the score of the optimal local align-
ment is used; note: not generally positive semi-definite!

Local alignment kernel: based on Smith-Waterman-like local
alignments, but guaranteed to be positive semi-definite

. . .
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KERNELS FOR SIGNAL AND IMAGE

PROCESSING

One possible approach is to extract features (frequency spectrum,
wavelets, filters, etc.) and to use regular SVMs on feature vectors
If the signals/images are not excessively large, also standard kernels
like the linear kernel or the RBF kernel can be used on the data di-
rectly; note that this usually requires many training samples to obtain
decent models
Another quite common approach (at least in image processing) is to
use small patches of images and to use standard kernels (linear, RBF,
correlation, etc.) on these patches; this approach is particularly useful
for detection of relatively small objects in images (geometric shapes,
faces, letters, digits)
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EXAMPLE: FACE DETECTION
(Osuna et al., 1997)
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SVM-BASED APPROACHES TO

MULTI-CLASS PROBLEMS

Support vector machines are intrinsically based on the idea
of separating two classes by maximizing the margin between
them. So there is no obvious way to extend them to multi-class
problems.
All approaches introduced so far are based on breaking down
the multi-class problem into several binary classification prob-
lems.
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MULTI-CLASS SVM APPROACHES:

ONE VERSUS THE REST

Given a training set Zl = (xi, yi)i=1,...,l, where yi ∈ {1, . . . ,M}, M
SVM classifiers are trained to separate one class from the remain-
ingM−1 ones, i.e. we trainM binary SVM classifiers (j = 1, . . . ,M )

ḡj(x) =
l∑
i=1

αijy
i
jk(xi,x) + bj ,

where

yij =

+1 if yi = j,

−1 otherwise.
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MULTI-CLASS SVM APPROACHES:

ONE VERSUS THE REST (cont'd)

Then the final classification for a given sample x is defined as

arg max
j=1,...,M

ḡj(x),

which is basically a “winner-takes-it-all” approach.

Disadvantages:

Most likely, all M sub-problems are unbalanced, even if the
classes are evenly distributed.
There is no way to guarantee that the discriminant functions gj
are on comparable scales.
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MULTI-CLASS SVM APPROACHES:

MULTI-CLASS OBJECTIVE (1/3)

Consider a training set as above. Then the primal multi-class problem is
given as follows (we restrict to the linear case first):

Minimize
1

2

M∑
j=1

‖wj‖2 + C

l∑
i=1

∑
j 6=yi

ξij

with respect to wj ∈ Rd, bj ∈ R, and (ξij)
j=1,...,M
i=1,...,l (where j = 1, . . . ,M )

subject to the constraints

wyi · x
i + byi ≥ wj · xi + bj + 2− ξij ξij ≥ 0

(for all i = 1, . . . , l and all j = 1, . . . ,M such that j 6= yi).



A
D
V
A
N
C
E
D
B
A
C
K
G
R
O
U
N
D
I
N
F
O
R
M
A
T
I
O
N

219Unit 3: Support Vector Machines

MULTI-CLASS SVM APPROACHES:

MULTI-CLASS OBJECTIVE (2/3)

Once the optimization problem has been solved, the final clas-
sification of a new sample x is computed as

arg max
j=1,...,M

wj · x + bj ,

i.e. this corresponds to a one-versus-the-rest approach with the
difference that all M classifiers are simultaneously trained by
solving one joint optimization problem.
The generalization to the non-linear case is straightforward if
the dual problem is considered.
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MULTI-CLASS SVM APPROACHES:

MULTI-CLASS OBJECTIVE (2/3)

The problem of different scalings of discriminant function does
not occur here, as they are jointly optimized with “coupled”
slack variables. That is why this is considered a very elegant
approach.
However, the results do not generally outperform the one-
against-all approach and the computational effort for solving
the multi-objective problem is significantly higher (see litera-
ture).
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MULTI-CLASS SVM APPROACHES:

PAIRWISE CLASSIFICATION

Consider a training set as above. For every pair of indices
j, k ∈ {1, . . . ,M} (without loss of generality, assume j < k), we
select those samples from the training set for which yi is j or k; let
us denote these training sets with Zjk. Similar to above, we assign
labels +1 to the samples that originally belonged to class j and −1

to the samples that originally belonged to class k and train a binary
SVM classifier on this binary problem. So, in total M(M−1)

2 SVMs
are trained.

Once this is done, a new sample x is assigned to that class that has
obtained the most “votes” from the pairwise classifiers.
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MULTI-CLASS SVM APPROACHES:

PAIRWISE CLASSIFICATION (cont'd)

The computational effort for training M(M−1)
2 pairwise classi-

fiers is, in average, not higher than for the one-versus-the-rest
classifiers, as the sizes of the training sets are smaller. Taking
into account that the effort for training an SVM grows super-
linearly with the number of samples, the asymptotic complexity
of pairwise classification is even lower than for one-versus-the-
rest classification.
The classification of new samples, however, may be slower, yet
some improvements are possible (see literature).
Presently, pairwise classification is the most common ap-
proach.
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SUPPORT VECTOR REGRESSION

(SVR): INTRODUCTION

So far, we have mainly been interested in the sign of the discriminant
function of a support vector machine. The constraints in the resulting
optimization problems were designed to maintain equal signs of the
training labels and the discriminant function, but the magnitude of the
discriminant function was neglected (except inside the margin).
The SVMs considered so far are, therefore, useless for regression
tasks.
However, if we managed to reformulate the constraints such that the
value of the discriminant function at a certain training input is pushed
to the actual label value, we could generalize the SVM idea to regres-
sion.
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ε-INSENSITIVE LOSS AND ε-TUBES

The ε-insensitive loss function Lε is defined as

Lε(y, g(x)) = max(0, |y − g(x)| − ε)

Obviously, Lε(y, g(x)) = 0 if and only if |y − g(x)| ≤ ε. Hence, the
ε-insensitive loss defines an ε-tube around the regression function
g and checks for a given sample whether it is inside this ε-tube.
If not, the loss of the sample is defined as the distance to the ε-tube.

The basic idea behind support vector regression is to adjust the
regression function such that the data points are within the/an ε-
tube.
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LINEAR ε-SVR: THE PRIMAL

PROBLEM

For a given data set Z, minimize

1

2
‖w‖2 + C

l∑
i=1

(ξ+
i + ξ−i )

with respect to w ∈ Rd, b ∈ R, (ξ+
1 , . . . , ξ

+
l ) ∈ Rl, and (ξ−1 , . . . , ξ

−
l ) ∈

Rl subject to the following constraints:

yi − (w · xi + b) ≤ ε+ ξ+
i

(w · xi + b)− yi ≤ ε+ ξ−i

ξ+
i ≥ 0

ξ−i ≥ 0


for all i = 1, . . . , l
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LINEAR ε-SVR: INTERPRETATION

(1/3)

We still try to minimize 1
2‖w‖

2 which is nothing else but the
steepness of the regression function. Of course, this has noth-
ing to do with margin maximization anymore, but it can still be
understood as a measure of complexity.
Obviously, the slack variables ξ+

i measure to which extent yi

is above the ε-tube around the regression function; the values
ξ−i measure to which extent yi is below this ε-tube. The sum
of slack variables is added to the objective function to ensure
simultaneous minimization of the slack values.
The parameter C controls the trade-off between accuracy (low
slack values) and complexity (flat regression function).
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LINEAR ε-SVR: INTERPRETATION

(2/3)

In the case ε = 0, we can reformulate the optimization problem as
follows:

Minimize
1

2
‖w‖2 + C

l∑
i=1

|w · xi + b− yi|

with respect to w ∈ Rd and b ∈ R (without any constraints).

Hence, for very large C, we can interpret the ε-SVR with ε = 0 as
simple data fitting according to the absolute value (norm/loss). For
smaller C, the importance of the term 1

2‖w‖
2 increases.
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LINEAR ε-SVR: INTERPRETATION

(3/3)

Finally, we can state that the ε-SVR is a kind of ε-insensitive min-
imization of the training error according to the absolute value loss
(corresponding to the sum of slack values). The term 1

2‖w‖
2 is

rather a regularization/capacity term than the primary objective.
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LINEAR ε-SVR: LAGRANGE

FUNCTION
For brevity, denote

ξ+ = (ξ+1 , . . . , ξ
+
l )T , ξ− = (ξ−1 , . . . , ξ

−
l )T ,

α+ = (α+
1 , . . . , α

+
l )
T , α− = (α−1 , . . . , α

−
l )T ,

λ+ = (λ+1 , . . . , λ
+
l )
T , λ− = (λ−1 , . . . , λ

−
l )T .

Then the Lagrange function is given as follows:

L(w, b,ξ+, ξ−;α+,α−,λ+,λ−)

=
1

2
‖w‖2 + C

l∑
i=1

(ξ+i + ξ−i )−
l∑
i=1

α+
i (ε+ ξ+i − y

i +w · xi + b)

−
l∑
i=1

α−i (ε+ ξ−i + yi −w · xi − b)−
l∑
i=1

λ+i ξ
+
i −

l∑
i=1

λ−i ξ
−
i
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LINEAR ε-SVR: LAGRANGE

FUNCTION (cont'd)

We can rewrite the Lagrange function as follows:

L(w, b,ξ+, ξ−;α+,α−,λ+,λ−)

=
1

2
‖w‖2 −w ·

l∑
i=1

(α+
i − α

−
i )xi − b

l∑
i=1

(α+
i − α

−
i )

+

l∑
i=1

(C − α+
i − λ

+
i )ξ+i +

l∑
i=1

(C − α−i − λ
−
i )ξ−i

− ε
l∑
i=1

(α+
i + α−i ) +

l∑
i=1

yi(α+
i − α

−
i )
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LINEAR ε-SVR: THE DUAL PROBLEM

(1/3)

Minimizing the Lagrange function with respect to w, b, ξ+ and ξ− enforces the
following:

∂L
∂w

(w, b,ξ+, ξ−;α+,α−,λ+,λ−) = w −
l∑
i=1

(α+
i − α

−
i )xi = 0

∂L
∂b

(w, b,ξ+, ξ−;α+,α−,λ+,λ−) = −
l∑
i=1

(α+
i − α

−
i ) = 0

∂L

∂ξ+i
(w, b,ξ+, ξ−;α+,α−,λ+,λ−) = −(C − α+

i − λ
+
i ) = 0

∂L

∂ξ−i
(w, b,ξ+, ξ−;α+,α−,λ+,λ−) = −(C − α−i − λ

−
i ) = 0

Hence, we obtain w =
∑l
i=1(α

+
i −α

−
i )xi and the constraint

∑l
i=1(α

+
i −α

−
i ) = 0.
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LINEAR ε-SVR: THE DUAL PROBLEM

(2/3)

Moreover, analogously to the C-SVM, we can eliminate the Lagrange mul-
tipliers λ+

i and λ−i by simply adding the constraints α+
i ≤ C and α−i ≤ C.

Thus, we obtain the following dual problem:
Maximize

L(α+,α−) = −1

2

l∑
i=1

l∑
j=1

(α+
i − α

−
i )(α+

j − α
−
j )xi · xj

− ε
l∑
i=1

(α+
i + α−i ) +

l∑
i=1

yi(α+
i − α

−
i )

with respect to α+ and α− subject to the constraints 0 ≤ α+
i ≤ C, 0 ≤

α−i ≤ C (i = 1, . . . , l), and
∑l
i=1(α+

i − α
−
i ) = 0.
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LINEAR ε-SVR: THE DUAL PROBLEM

(3/3)

With the above notations and the convention K = XXT , we can rewrite
the dual problem as follows:

Minimize

1

2
(α+ −α−)TK(α+ −α−) + ε1T (α+ + α−)− yT (α+ −α−)

with respect to α+ and α− subject to the constraints 0 ≤ α+ ≤ C1,
0 ≤ α+ ≤ C1, and 1T (α+ −α−) = 0.

This is again a convex quadratic optimization problem with linear con-
straints.
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LINEAR ε-SVR: THE FINAL

REGRESSION FUNCTION

Once the dual problem has been solved, the final regression function is
given as

g(x) = w · x + b =

l∑
i=1

(α+
i − α

−
i )xi · x + b.

To compute b, we have to consider the Karush-Kuhn-Tucker conditions
again which, in this case, enforce the following (for all i = 1, . . . , l):

α+
i (ε+ ξ+i − y

i + w · xi + b) = 0

α−i (ε+ ξ−i + yi −w · xi − b) = 0

(C − α+
i )ξ+i = 0

(C − α−i )ξ−i = 0
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LINEAR ε-SVR: THE FINAL

REGRESSION FUNCTION (cont'd)

So, for any α+
j such that 0 < α+

j < C, we can infer ξ+j = 0 and compute b
as

b = yj −wxj − ε = yj −
l∑
i=1

(α+
i − α

−
i )xi · xj − ε.

This can be done in the same way for any α−j such that 0 < α−j < C. It is
again numerically safer to consider all Lagrange multipliers from ]0, C[ and
to compute the average b value.

We further note that 0 < α+
i < C means that ξ+i = 0 and yi−w ·xi− b = ε

hold simultaneously, i.e. the sample (xi, yi) is on the upper border of the
ε-tube around the regression function. Analogously, 0 < α−i < C means
that (xi, yi) is on the lower border of this ε-tube.
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LINEAR ε-SVR: SUPPORT VECTORS

We can also infer the following from the Karush-Kuhn-Tucker condi-
tions:

For ε > 0, α+
i α
−
i = 0 holds, i.e. only one of the two Lagrange

multipliers of a sample can be non-zero.
If α+

i and α−i are both zero, this means that ξ+
i = 0 and ξ−i = 0,

i.e. the i-th sample is inside the ε-tube which, in the case of the
ε-SVR means that this sample does not contribute to the final
regression function.
If either α+

i > 0 or α−i > 0 holds, the i-th sample contributes
to the regression function. In this case, we say that (xi, yi) is a
support vector.
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LINEAR ε-SVR: SUPPORT VECTORS

(cont'd)

0 < α+
i < C means that ξ+

i = 0 and yi − w · xi − b = ε hold
simultaneously, i.e. the sample (xi, yi) is on the upper border
of the ε-tube around the regression function. Analogously, 0 <

α−i < C means that (xi, yi) is on the lower border of the ε-tube.
If either α+

i = C or α−i = C holds, we know that (xi, yi) is
outside the ε-tube around the regression function, thus a “clas-
sification error”.
Unlike most other regression methods, accuracy is not the only
goal of support vector regression. Instead, it tries to find the
least complex (flattest) solution fitting into the ε-tube.
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LINEAR ν-SVR: MOTIVATION

For the ε-SVR, the choice of ε is crucial for obtaining good re-
sults.
In practice, however, ε must be chosen according to the noise
level, which is often unknown.
The idea of ν-SVR is the following: instead of specifying ε a pri-
ori, it is optimized simultaneously, where a large ε is penalized
and traded against smoothness and accuracy. The importance
of ε in the objective function is weighted with a factor ν.
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LINEAR ν-SVR: THE PRIMAL

PROBLEM

For a given data set Z, minimize

1

2
‖w‖2 + C

(
νε+

1

l

l∑
i=1

(ξ+
i + ξ−i )

)
with respect to w ∈ Rd, b ∈ R, ε ∈ R, (ξ+

1 , . . . , ξ
+
l ) ∈ Rl, and

(ξ−1 , . . . , ξ
−
l ) ∈ Rl subject to the constraints ε ≥ 0 and

yi − (w · xi + b) ≤ ε+ ξ+
i

(w · xi + b)− yi ≤ ε+ ξ−i

ξ+
i ≥ 0

ξ−i ≥ 0


for all i = 1, . . . , l.
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LINEAR ν-SVR: LAGRANGE

FUNCTION

L(w, b, ε,ξ+, ξ−;α+,α−, δ,λ+,λ−)

=
1

2
‖w‖2 + C

(
νε+

1

l

l∑
i=1

(ξ+i + ξ−i )
)
−

l∑
i=1

α+
i (ε+ ξ−i − y

i +w · xi + b)

−
l∑
i=1

α−i (ε+ ξ−i + yi −w · xi − b)− δε−
l∑
i=1

λ+i ξ
+
i −

l∑
i=1

λ−i ξ
−
i

=
1

2
‖w‖2 −w ·

l∑
i=1

(α+
i − α

−
i )xi − b

l∑
i=1

(α+
i − α

−
i )

+

l∑
i=1

(
C

l
− α+

i − λ
+
i )ξ

+
i +

l∑
i=1

(
C

l
− α−i − λ

−
i )ξ−i +

l∑
i=1

yi(α+
i − α

−
i )

+ ε
(
Cν −

l∑
i=1

(α+
i + α−i )− δ

)



A
D
V
A
N
C
E
D
B
A
C
K
G
R
O
U
N
D
I
N
F
O
R
M
A
T
I
O
N

241Unit 3: Support Vector Machines

LINEAR ν-SVR: THE DUAL PROBLEM

(1/4)

Minimizing the Lagrange function with respect to w, b, ε, ξ+ and ξ− enforces the
following:

∂L
∂w

(w, b,ξ+, ξ−;α+,α−,λ+,λ−) = w −
l∑
i=1

(α+
i − α

−
i )xi = 0

∂L
∂b

(w, b,ξ+, ξ−;α+,α−,λ+,λ−) = −
l∑
i=1

(α+
i − α

−
i ) = 0

∂L
∂ε

(w, b,ξ+, ξ−;α+,α−,λ+,λ−) = Cν −
l∑
i=1

(α+
i + α−i )− δ = 0

∂L

∂ξ+i
(w, b,ξ+, ξ−;α+,α−,λ+,λ−) = −(

C

l
− α+

i − λ
+
i ) = 0

∂L

∂ξ−i
(w, b,ξ+, ξ−;α+,α−,λ+,λ−) = −(

C

l
− α−i − λ

−
i ) = 0
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LINEAR ν-SVR: THE DUAL PROBLEM

(2/4)

Hence, we again obtain the following:

w =
l∑
i=1

(α+
i − α

−
i )xi

l∑
i=1

(α+
i − α

−
i ) = 0

Moreover, as before, we can eliminate the Lagrange multipliers λ+
i

and λ−i by simply adding the constraints α+
i ≤ C

l and α−i ≤ C
l .

The Lagrange multiplier δ can also be eliminated by the additional
constraint

l∑
i=1

(α+
i + α−i ) ≤ Cν.
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LINEAR ν-SVR: THE DUAL PROBLEM

(3/4)

Thus, we obtain the following dual problem:

Maximize

L(α+,α−) = −1

2

l∑
i=1

l∑
j=1

(α+
i − α

−
i )(α+

j − α
−
j )xi · xj +

l∑
i=1

yi(α+
i − α

−
i )

with respect to α+ and α− subject to the constraints 0 ≤ α+
i ≤ C

l ,
0 ≤ α−i ≤ C

l (i = 1, . . . , l),
∑l
i=1(α+

i − α
−
i ) = 0 and

∑l
i=1(α+

i +

α−i ) ≤ Cν.
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LINEAR ν-SVR: THE DUAL PROBLEM

(4/4)

With the notations from above, we can rewrite the dual problem as
follows:

Minimize

1

2
(α+ −α−)TK(α+ −α−)− yT (α+ −α−)

with respect to α+ and α− subject to the constraints 0 ≤ α+ ≤ C
l 1,

0 ≤ α+ ≤ C
l 1, 1T (α+ −α−) = 0, and 1T (α+ + α−) ≤ Cν.

This is again a convex quadratic optimization problem with linear
constraints.
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LINEAR ν-SVR: THE FINAL

REGRESSION FUNCTION

Once the dual problem has been solved, the final regression function is again given
as

g(x) = w · x+ b =

l∑
i=1

(α+
i − α

−
i )xi · x+ b.

To compute b, we have to consider the Karush-Kuhn-Tucker conditions (for all i =
1, . . . , l):

α+
i (ε+ ξ+i − y

i +w · xi + b) = 0 (
C

l
− α+

i )ξ
+
i = 0

α−i (ε+ ξ−i + yi −w · xi − b) = 0 (
C

l
− α−i )ξ−i = 0

and, additionally,

(Cν −
l∑
i=1

(α+
i + α−i ))ε = 0. (4)
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LINEAR ν-SVR: THE FINAL

REGRESSION FUNCTION (cont'd)

Suppose that there is an α+
p such that 0 < α+

p <
C
l

(hence ξ+p = 0) and an
α−q such that 0 < α−q < C

l
(hence ξ−q = 0). Then we can compute b and ε

by solving the following system of two linear equations:

ε− yp + w · xp + b = 0

ε+ yq −w · xq − b = 0

This gives the following solutions:

b =
1

2

(
(yp −w · xp) + (yq −w · xq)

)
ε =

1

2

(
(yp −w · xp)− (yq −w · xq)

)
Averaging over several such pairs is again possible, of course.
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LINEAR SVR EXAMPLE: AFFINE

LINEAR FUNCTION PLUS NOISE
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LINEAR SVR EXAMPLE:

ε-SVR, ε = 0.5, C = 1
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LINEAR SVR EXAMPLE:

ε-SVR, ε = 0.2, C = 1
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LINEAR SVR EXAMPLE:

ε-SVR, ε = 0.1, C = 1
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LINEAR SVR EXAMPLE:

ε-SVR, ε = 0.01, C = 1
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LINEAR SVR EXAMPLE:

ν-SVR, ν = 0.2, C = 100 → ε = 0.056633
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NONLINEAR SUPPORT VECTOR

REGRESSION: INTRODUCTION

It is clear that the usefulness of linear support vector regression
is rather limited.
Just like for classification, the generalization to a non-linear set-
ting is done by using a non-linear kernel and considering the
dual problem only.
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ε-SVR: THE DUAL PROBLEM

Maximize

L(α+,α−) = −1

2

l∑
i=1

l∑
j=1

(α+
i − α

−
i )(α+

j − α
−
j )k(xi,xj)

− ε
∑

(α+
i + α−i ) +

∑
yi(α+

i − α
−
i )

with respect to α+ and α− subject to the constraints 0 ≤ α+
i ≤ C,

0 ≤ α−i ≤ C (i = 1, . . . , l), and
∑l
i=1(α+

i − α
−
i ) = 0.
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ε-SVR: THE DUAL PROBLEM (cont'd)

With the above notations and the convention K =
(
k(xi,xj)

)j=1,...,l

i=1,...,l
, we

can rewrite the dual problem as follows:

Minimize

1

2
(α+ −α−)TK(α+ −α−) + ε1T (α+ + α−)− yT (α+ −α−)

with respect to α+ and α− subject to the constraints 0 ≤ α+ ≤ C1,
0 ≤ α+ ≤ C1, and 1T (α+ −α−) = 0.

This is again a convex quadratic optimization problem with linear con-
straints.
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ε-SVR: THE FINAL REGRESSION

FUNCTION

Once the dual problem has been solved, the final regression func-
tion is given as

g(x) =
l∑
i=1

(α+
i − α

−
i )k(xi,x) + b.

For any α+
j such that 0 < α+

j < C, we can infer ξ+
j = 0 from the

Karush-Kuhn-Tucker conditions and compute b as follows:

b = yj −
l∑
i=1

(α+
i − α

−
i )k(xi,xj)− ε.
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ε-SVR: SUPPORT VECTORS

Again we can infer the following from the Karush-Kuhn-Tucker con-
ditions:

For ε > 0, α+
i α
−
i = 0 holds.

If α+
i = 0 and α−i = 0, the i-th sample is inside the ε-tube and

does not contribute to g(x).
If α+

i > 0 or α−i > 0, the i-th sample is a support vector.
If 0 < α+

i < C, (xi, yi) is on the upper border of the ε-tube. If
0 < α−i < C, (xi, yi) is on the lower border of the ε-tube.
If α+

i = C or α−i = C holds, (xi, yi) is outside the ε-tube around
g(x).
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ν-SVR: THE DUAL PROBLEM

Maximize

L(α+,α−) = −1

2

l∑
i=1

l∑
j=1

(α+
i − α

−
i )(α+

j − α
−
j )k(xi,xj) +

∑
yi(α+

i − α
−
i )

with respect to α+ and α− subject to the constraints 0 ≤ α+
i ≤ C

l
, 0 ≤

α−i ≤ C
l

(i = 1, . . . , l),
∑l
i=1(α+

i − α
−
i ) = 0 and

∑l
i=1(α+

i + α−i ) ≤ Cν.



259Unit 3: Support Vector Machines

ν-SVR: THE DUAL PROBLEM (cont'd)

With the notations from above, we can rewrite the dual problem as
follows:

Minimize

1

2
(α+ −α−)TK(α+ −α−)− yT (α+ −α−)

with respect to α+ and α− subject to the constraints 0 ≤ α+ ≤ C
l 1,

0 ≤ α+ ≤ C
l 1, 1T (α+ −α−) = 0, and 1T (α+ + α−) ≤ Cν.

This is again a convex quadratic optimization problem with linear
constraints.
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ν-SVR: THE FINAL REGRESSION

FUNCTION
Once the dual problem has been solved, the final regression function is again given
as

g(x) =

l∑
i=1

(α+
i − α

−
i )k(xi,x) + b.

To compute b and ε, choose an α+
p such that 0 < α+

p < C
l

and an α−q such that
0 < α−q < C

l
. Then the solutions are given as follows:

b =
1

2

((
yp −

l∑
i=1

(α+
i − α

−
i )k(xi,xp)

)
+
(
yq −

l∑
i=1

(α+
i − α

−
i )k(xi,xq)

))

ε =
1

2

((
yp −

l∑
i=1

(α+
i − α

−
i )k(xi,xp)

)
−
(
yq −

l∑
i=1

(α+
i − α

−
i )k(xi,xq)

))
Averaging over several such pairs is again possible, of course.



261Unit 3: Support Vector Machines

ν-SVR: INTERPRETING THE

PARAMETER ν

Theorem. Assume that we are given a ν-SVR solution such that
ε > 0. Then the following holds:

1. ν is an upper bound for the proportion of errors (training sam-
ples outside the ε-tube).

2. ν is a lower bound for the proportion of support vectors.

Under some technical assumptions, it is possible to show that both
the proportion of errors and the proportion of support vectors tend
to ν as l goes to infinity.

Note that ε > 0 is only possible if ν ≤ 1. If ν > 1, ε = 0 follows.
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CONNECTION ε-SVR � ν-SVR

Theorem. Assume that we are given a ν-SVR solution according
to some data set Zl and a cost factor C such that ε > 0 holds. Then
exactly the same regression function would have been obtained if
we had trained an ε-SVR with the same ε and C ′ = C

l .

This result says that ν-SVR is basically nothing else but an ε-SVR
which automatically finds a good choice for the error threshold ε.
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SUPPORT VECTOR REGRESSION:

FURTHER NOTES

We can interpret support vector regression as a linear combination of
basis functions (plus a constant term b)

g(x) =

l∑
i=1

µigi(x) + b,

where gi(x) = k(xi,x) and µi = α+
i − α

−
i .

Traditional nonlinear regression is usually concerned with optimizing
the factors µi such that the regression functions fits the data best.
Support vector regression, instead, tries to adjust the factors µi such
that the data fit into the ε-tube around the regression function. The
parameter C controls how large the factors µi may get to achieve this
goal.
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SUPPORT VECTOR REGRESSION:

FURTHER NOTES (cont'd)
In case that we have an upper bound D for the norm of the derivative

∥∥ ∂k
∂x

(y,x)
∥∥,

we can directly infer that the magnitude of the Lagrange multipliers are con-
nected to the norm of the derivative of the regression function:

∥∥ ∂g
∂x

(x)
∥∥ ≤ l∑

i=1

|α+
i − α

−
i | ·

∥∥ ∂k
∂x

(y,x)
∥∥ ≤

ClD for ε-SVR

CD for ν-SVR

This means that the cost factor C directly limits the derivative of the final re-
gression function.
For the RBF kernel, for instance, we have such an upper bound: D = 1/(σ

√
e)
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SUPPORT VECTOR REGRESSION:

COMPLEXITY-RELATED ISSUES

Similar to support vector classification, the choices of the parame-
ters are crucial for the final outcome:

If the RBF kernel is used, the choice of σ is crucial. too large σ
→ underfitting; too small σ → overfitting (see previous slide!).
The choice of C also influences complexity. The higher C, the
more we punish errors, hence, the higher the tendency of the
SVR to produce a more complex regression function. Analo-
gously for ν.

It is often unavoidable to use cross validation to find good choices

for hyperparameters.
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266Unit 3: Support Vector Machines

SVR: COMPLEXITY-RELATED ISSUES

(cont'd)

We have not introduced a theoretical concept of complexity of
real-valued functions.
It seems intuitively reasonable that complexity relates both to
the number of support vectors and the magnitude of the La-
grange multipliers.
For the RBF kernel, this is obvious:

1. The more support vectors, the more local minima/maxima.
2. The larger the Lagrange multipliers, the steeper the regres-

sion function may be.
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NONLINEAR SVR EXAMPLE:

f(x) = 1 + 1
2

cos(5(x− π)) · exp(− 1
2
(x− π)2) PLUS NOISE
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NONLINEAR SVR EXAMPLE:

ε-SVR, ε = 0.2, C = 10, RBF KERNEL, 1
2σ2 = 1
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NONLINEAR SVR EXAMPLE:

ε-SVR, ε = 0.1, C = 10, RBF KERNEL, 1
2σ2 = 10
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NONLINEAR SVR EXAMPLE:

ε-SVR, ε = 0.01, C = 100, RBF KERNEL, 1
2σ2 = 100
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NONLINEAR SVR EXAMPLE:

ν-SVR, ν = 0.2, C = 1000, RBF KERNEL, 1
2σ2 = 1 → ε = 0.058992
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SOFTWARE: LIBSVM

Free software available from

http://www.csie.ntu.edu.tw/~cjlin/

libsvm/

as source code; Windows and Linux binaries are also available.
Has already become a kind of standard.
Basically consists of two command line tools, one for training
an SVM, the second for testing it on new data.
Implements all four SVMs discussed here plus the unsuper-
vised one-class SVM; multi-class classification is implemented
via pairwise classifiers.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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SOFTWARE: LIBSVM (cont'd)

Implements the four kernels discussed here; additionally, arbi-
trary kernels can be used by supplying the whole pre-computed
kernel matrix K.
Optimization (uses sequential minimal optimization) is ex-
tremely fast and robust.
Little drawback: discriminant values are not directly accessible;
to compute ROC curves (or anything similar), the source code
must be modified.
A lot of tools and interfaces are available (Matlab, Perl, Python,
R via the e1071 package).
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SOFTWARE: SVMlight

Software available from http://svmlight.joachims.org/ as
source code; Windows and Linux binaries are also available. Free
for academic users.
Works similarly to libSVM (two command line tools); also the input file
format is the same.
Implements the same kernels and allows to use pre-computed kernel
matrices.
Implements C-SVM, ε-SVR, and preference ranking. Does not sup-
port multi-class classification (a multi-class variant is available which,
however, only supports linear classification).
Model evaluation and optimization can be adjusted more flexibly than
for libSVM.

http://svmlight.joachims.org/
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SOFTWARE: R PACKAGE kernlab

R package available via CRAN
Implements many different SVMs and other kernel methods.
Implements many different kernels and allows for seamless in-
tegration of user-written custom kernels.
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276Unit 3: Support Vector Machines

FURTHER TOPICS THAT WOULD

HAVE BEEN WORTH A LOOK. . .

. . . if there had been more time:

One-class SVM: unsupervised SVM useful for novelty detec-
tion, data filtering, etc.
P-SVM: scale-invariant SVM that is able to work with dyadic
data and “kernel matrices” that are not positive semi-definite; it
is also useful for feature selection.
SVM optimization, in particular, Sequential Minimal Optimiza-
tion (SMO).
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CONCLUDING REMARKS

Support vector machines are easy-to-use machine learning
workhorses that have become part of the standard repertoire
of machine learning methods.
SVMs have won numerous machine learning competitions.
They are built on a solid theoretical foundation.
Both training and testing are deterministic and fast (further note
that solving the optimization problem gives a global solution
which is not true for most other machine learning algorithms).
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CONCLUDING REMARKS (cont'd)

SVMs can be used for any problem for which it is possible to de-
fine a positive semi-definite comparison measure (the kernel),
including, strings/sequences, signals, images, trees, etc.
Although SVMs are motivated by simultaneously minimizing
complexity, the choice of hyperparameters remains crucial; of-
ten cross validation remains the only remedy.
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