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Learning
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QUESTIONS WE NEED TO ADDRESS

Does learning help in the future, i.e. does experience from pre-
viously observed examples help us to solve a future task?
What is a good model? How do we assess the quality of a
model?
Will a given model be helpful in the future?
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BASIC SETUP: INPUTS

Assume we want to learn something about objects from a set/space
X. Most often, these objects are represented by vectors of feature
values, i.e.

x = (x1, . . . , xd) ∈ X1 × · · · ×Xd︸ ︷︷ ︸
=X

For simplicity, we will not distinguish between the objects and the
feature vector in the following.

If Xj is a finite set of labels, we speak of a categorical vari-
able/feature. IfXj = R, a real interval, etc., we speak of a numerical
variable/feature.
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BASIC SETUP: INPUTS (cont'd)

Assume we are given l objects x1, . . . ,xl that have been observed
in the past—the so-called training set. Each of these objects is
characterized by its feature vector:

xi = (xi1, . . . , x
i
d)

We can write this conveniently in matrix notation (called matrix of
feature vectors):

X =


x1

...

xl

 =


x11 . . . x1d
...

. . .
...

xl1 . . . xld


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BASIC SETUP: INPUTS VS. OUTPUTS

Further assume that we know a target value yi ∈ R for each training
sample xi. All these values constitute the target/label vector:

y = (y1, . . . , yl)T

The training data matrix is then defined as follows:

Z = (X | y) =


x1 y1

...
...

xl yl

 =


x11 . . . x1d y1

...
. . .

...
...

xl1 . . . xld yl


In the following, we denote Z = X × R.
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CLASSIFICATION VS. REGRESSION

Classification: the target/label values are categorical, i.e. from a
finite set of labels; we will often consider binary classification,
i.e. where we have two classes; in this case, unless indicated
otherwise, we will use the labels -1 (negative class) and +1
(positive class)

Regression: the target/label values are numerical



37Unit 2: Basics of Supervised Machine Learning

THE PROBABILISTIC FRAMEWORK

FOR SUPERVISED ML (1/3)

The quality of a model can only be judged on the basis of its per-
formance on future data. So assume that future data are generated
according to some joint distribution of inputs and outputs, the joint
density of which we denote as

p(z) = p(x, y)

If we have only finitely many possible data samples, p(z) = p(x, y)

is the probability to observe the datum z = (x, y).
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THE PROBABILISTIC FRAMEWORK

FOR SUPERVISED ML (2/3)

Marginal distributions: p(x) is the density/probability of observ-
ing input vector x (regardless of its target value); p(y) is the
density/probability of observing target value y

Conditional distributions: p(x | y) is the density of input values
for a given target value y; p(y | x) is the density/probability to
observe a target value y for a given input x
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THE PROBABILISTIC FRAMEWORK

FOR SUPERVISED ML (3/3)

In case of binary classification, we will use the following notations
to make things a bit clearer:

p(y = −1) probability to observe a negative sample

p(y = +1) probability to observe a positive sample

p(x | y = −1) distribution density of negative class

p(x | y = +1) distribution density of positive class

p(y = −1 | x) probability that x belongs to negative class

p(y = +1 | x) probability that x belongs to positive class
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SOME BASIC CORRESPONDENCES

Using definitions:

p(x, y) = p(x | y) · p(y) p(x, y) = p(y | x) · p(x)

Bayes’ Theorem:

p(y | x) =
p(x | y) · p(y)

p(x)
p(x | y) =

p(y | x) · p(x)

p(y)

Getting marginal densities by integrating out:

p(x) =

∫
R

p(x, y)dy =

∫
R

p(x | y) · p(y)dy

p(y) =

∫
X

p(x, y)dx =

∫
X

p(y | x) · p(x)dx
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SOME BASIC CORRESPONDENCES

(cont'd)

In the case of binary classification:

p(y = −1) + p(y = +1) = 1

p(y = −1 | x) + p(y = +1 | x) = 1 for all x

p(x) = p(x, y = −1) + p(x, y = +1)

= p(x | y = −1) · p(y = −1) + p(x | y = +1) · p(y = +1)
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LOSS FUNCTIONS

Assume that the mapping g corresponds to our model class (para-
metric model) in the sense that

g(x; w)

maps the input vector x to the predicted output value using the pa-
rameter vector w (i.e. w determines the model).
Then a loss function

L(y, g(x; w))

measures the loss/cost that incurs for a given data sample z = (x, y)

(i.e. with real output value y).
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EXAMPLES OF LOSS FUNCTIONS

Zero-one loss:

Lzo(y, g(x; w)) =

0 y = g(x; w)

1 y 6= g(x; w)

Quadratic loss:

Lq(y, g(x; w)) = (y − g(x; w))2

Clearly, the zero-one loss function makes little sense for regression.
For binary classification tasks, we have Lq = 4Lzo.
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GENERALIZATION ERROR/RISK

The generalization error (or risk) is the expected loss on future data for a
given model g(.;w):

R(g(.;w)) = Ez

(
L(y, g(x;w))

)
=

∫
Z

L(y, g(x;w)) · p(z)dz

=

∫
X

∫
R

L(y, g(x;w)) · p(x, y)dydx

=

∫
X

p(x)

∫
R

L(y, g(x;w)) · p(y | x)dy

︸ ︷︷ ︸
=R(g(x;w))=Ey|x(L(y,g(x;w)))

dx

Obviously, R(g(x;w)) denotes the expected loss for input x.

The risk for the quadratic loss is called mean squared error (MSE).



A
D
V
A
N
C
E
D
B
A
C
K
G
R
O
U
N
D
I
N
F
O
R
M
A
T
I
O
N

45Unit 2: Basics of Supervised Machine Learning

GENERALIZATION ERROR FOR A

NOISY FUNCTION

Assume that y is a function of x perturbed by some noise:

y = f(x) + ε

Assume further that ε is distributed according to some noise distri-
bution pn(ε). Then we can infer

p(y | x) = pn(y − f(x)),

which implies

p(z) = p(y | x) · p(x) = p(x) · pn(y − f(x)).
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GENERALIZATION ERROR FOR A

NOISY FUNCTION (cont'd)

Then we obtain

R(g(.; w)) =

∫
Z

L(y, g(x; w)) · p(z)dz

=

∫
X

p(x)

∫
R

L(y, g(x; w)) · pn(y − f(x))dydx.

In the noise-free case, we get

R(g(.; w)) =

∫
X

p(x) · L(f(x), g(x; w))dx,

which can be understood as “modeling error”.
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GENERALIZATION ERROR FOR

BINARY CLASSIFICATION (1/3)

For the zero-one loss, we obtain

R(g(.; w)) =

∫
X

∫
R

p(x, y 6= g(x; w))dydx,

i.e. the misclassification probability. With the notations

X−1 = {x ∈ X | g(x; w) < 0}, X+1 = {x ∈ X | g(x; w) > 0},

we can conclude further:

R(g(.; w)) =

∫
X−1

p(x, y = +1)dx +

∫
X+1

p(x, y = −1)dx
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GENERALIZATION ERROR FOR

BINARY CLASSIFICATION (2/3)
So, we get:

R(g(.;w)) =

∫
X−1

p(y = +1 | x) · p(x)dx +

∫
X+1

p(y = −1 | x) · p(x)dx

=

∫
X

 p(y = −1 | x) if g(x;w) = +1

p(y = +1 | x) if g(x;w) = −1

 · p(x)dx
Hence, we can infer an optimal classification function, the so-called Bayes-optimal
classifier:

g(x) =

+1 if p(y = +1 | x) > p(y = −1 | x)
−1 if p(y = −1 | x) > p(y = +1 | x)

= sign(p(y = +1 | x)− p(y = −1 | x)) (1)
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GENERALIZATION ERROR FOR

BINARY CLASSIFICATION (3/3)

The resulting minimal risk is

Rmin =

∫
X

min(p(x, y = −1), p(x, y = +1))dx

=

∫
X

min(p(y = −1 | x), p(y = +1 | x)) · p(x)dx

Obviously, for non-overlapping classes, i.e. min(p(y = −1 | x), p(y = +1 |
x)) = 0, the minimal risk is zero and the optimal classification function is

g(x) =

+1 if p(y = +1 | x) > 0,

−1 if p(y = −1 | x) > 0.
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MINIMIZING RISK FOR A GAUSSIAN

CLASSIFICATION TASK (1/4)

Assume that both negative and positive class are distributed ac-
cording to d-variate normal distributions, i.e., p(x | y = −1)

is N(µ−1,Σ−1)-distributed and p(x | y = +1) is N(µ+1,Σ+1)-
distributed.

Note that the distribution density of a d-variate N(µ,Σ)-distributed
random variable is given as

p(x) =
1

(2π)d/2 ·
√

det Σ
· exp

(
−1

2
· (x− µ)Σ−1(x− µ)T

)
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MINIMIZING RISK FOR A GAUSSIAN

CLASSIFICATION TASK (2/4)

Using (1), we can infer

g(x) = sign(ḡ(x)) = sign(ĝ(x))

where

ḡ(x) = p(y = +1 | x)− p(y = −1 | x)

=
1

p(x)
·
(
p(x | y = +1) · p(y = +1)

−p(x | y = −1) · p(y = −1)
)

ĝ(x) = ln p(x | y = +1)− ln p(x | y = −1) + ln p(y = +1)− ln p(y = −1)

ḡ and ĝ are called discriminant functions.
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MINIMIZING RISK FOR A GAUSSIAN

CLASSIFICATION TASK (3/4)

Determining an optimal discriminant function:

ĝ(x) = − 1
2
(x− µ+1)Σ

−1
+1(x− µ+1)

T − d
2
ln 2π − 1

2
ln detΣ+1 + ln p(y = +1)

+ 1
2
(x− µ−1)Σ

−1
−1(x− µ−1)

T + d
2
ln 2π + 1

2
ln detΣ−1 − ln p(y = −1)

= − 1
2
(x− µ+1)Σ

−1
+1(x− µ+1)

T − 1
2
ln detΣ+1 + ln p(y = +1)

+ 1
2
(x− µ−1)Σ

−1
−1(x− µ−1)

T + 1
2
ln detΣ−1 − ln p(y = −1)

= − 1
2
x

=A︷ ︸︸ ︷
(Σ−1

+1 −Σ−1
−1)xT +

=b︷ ︸︸ ︷
(µ+1Σ−1

+1 − µ−1Σ−1
−1)xT

− 1
2
µ+1Σ−1

+1µ
T
+1 + 1

2
µ−1Σ−1

−1µ
T
−1

− 1
2
ln detΣ+1 + 1

2
ln detΣ−1 + ln p(y = +1)− ln p(y = −1)

 = c

= −
1

2
xAxT + bxT + c
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MINIMIZING RISK FOR A GAUSSIAN

CLASSIFICATION TASK (4/4)

Thus, the optimal classification border ĝ(x) = 0 is a d-dimensional

hyper-quadric − 1
2xAxT + bxT + c = 0.

In the special case Σ−1 = Σ+1, we obtain A = 0, i.e. the optimal

classification border is a linear hyperplane (a separating line in the

case d = 2).
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GAUSSIAN CLASSIFICATION

EXAMPLE #1 (1/6)
The data shown on Slide 9 were created according to the following distributions:

p(x | y = +1) corresponds to a two-variate normal distribution with parameters

µ+1 = (0.3, 0.7) Σ+1 =

 0.011875 0.016238

0.016238 0.030625


p(x | y = −1) corresponds to a two-variate normal distribution with parameters

µ−1 = (0.5, 0.3) Σ−1 =

 0.011875 −0.016238
−0.016238 0.030625


p(y = +1) = 55

120
= 0.45833, p(y = −1) = 65

120
= 0.54167



55Unit 2: Basics of Supervised Machine Learning

GAUSSIAN CLASSIFICATION

EXAMPLE #1 (2/6)

p(x) = p(x | y = −1) · p(y = −1) + p(x | y = +1) · p(y = +1):
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GAUSSIAN CLASSIFICATION

EXAMPLE #1 (3/6)

g̃(x) = p(x | y = +1) · p(y = +1)− p(x | y = −1) · p(y = −1):
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GAUSSIAN CLASSIFICATION

EXAMPLE #1 (4/6)

Discriminant Function ḡ(x) = g̃(x)/p(x):
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GAUSSIAN CLASSIFICATION

EXAMPLE #1 (5/6)

Data + Optimal Decision Border:
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GAUSSIAN CLASSIFICATION

EXAMPLE #1 (6/6)

Data + Estimated Decision Border:
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GAUSSIAN CLASSIFICATION

EXAMPLE #2 (1/6)
Let us consider a data set created according to the following distributions:

p(x | y = +1) corresponds to a two-variate normal distribution with parameters

µ+1 = (0.4, 0.8) Σ+1 =

 0.09 0.0

0.0 0.0049


p(x | y = −1) corresponds to a two-variate normal distribution with parameters

µ−1 = (0.5, 0.3) Σ−1 =

 0.00398011 −0.00730159
−0.00730159 0.0385199


p(y = +1) = 55

120
= 0.45833, p(y = −1) = 65

120
= 0.54167
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GAUSSIAN CLASSIFICATION

EXAMPLE #2 (2/6)

p(x) = p(x | y = −1) · p(y = −1) + p(x | y = +1) · p(y = +1):
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GAUSSIAN CLASSIFICATION

EXAMPLE #2 (3/6)

g̃(x) = p(x | y = +1) · p(y = +1)− p(x | y = −1) · p(y = −1):
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GAUSSIAN CLASSIFICATION

EXAMPLE #2 (4/6)

Discriminant Function ḡ(x) = g̃(x)/p(x):
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GAUSSIAN CLASSIFICATION

EXAMPLE #2 (5/6)

Data + Optimal Decision Border:
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GAUSSIAN CLASSIFICATION

EXAMPLE #2 (6/6)

Data + Estimated Decision Border:
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GAUSSIAN CLASSIFICATION

EXAMPLE #3 (1/6)
Let us consider a data set created according to the following distributions:

p(x | y = +1) corresponds to a two-variate normal distribution with parameters

µ+1 = (0.3, 0.7) Σ+1 =

 0.0016 0.0

0.0 0.0016


p(x | y = −1) corresponds to a two-variate normal distribution with parameters

µ−1 = (0.6, 0.3) Σ−1 =

 0.09 0.0

0.0 0.09


p(y = +1) = 1

12
= 0.0833, p(y = −1) = 11

12
= 0.9167
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GAUSSIAN CLASSIFICATION

EXAMPLE #3 (2/6)

p(x) = p(x | y = −1) · p(y = −1) + p(x | y = +1) · p(y = +1):
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GAUSSIAN CLASSIFICATION

EXAMPLE #3 (3/6)

g̃(x) = p(x | y = +1) · p(y = +1)− p(x | y = −1) · p(y = −1):
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GAUSSIAN CLASSIFICATION

EXAMPLE #3 (4/6)

Discriminant Function ḡ(x) = g̃(x)/p(x):
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GAUSSIAN CLASSIFICATION

EXAMPLE #3 (5/6)

Data + Optimal Decision Border:
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GAUSSIAN CLASSIFICATION

EXAMPLE #3 (6/6)

Data + Estimated Decision Border:
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WHAT ABOUT PRACTICE?

In practice, we hardly have any knowledge about p(x, y)

If we had, we could infer optimal prediction functions directly
without using any machine learning method.

Therefore,

1. we have to estimate the prediction function with other methods;
2. we have to estimate the generalization error.
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A BASIC CLASSIFIER: k-NEAREST

NEIGHBOR

Suppose we have a labeled data set Z and a distance measure on the input
space. Then the k-nearest neighbor classifier is defined as follows:

gk-NN(x;Z) = class that occurs most often among the k samples

that are closest to x

For k = 1, we simply call this nearest neighbor classifier:

gNN(x;Z) = class of the sample that is closest to x

In case of ties, a special strategy has to be employed, e.g. random class
assignment or the class with the larger number of samples.
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k-NEAREST NEIGHBOR CLASSIFIER

EXAMPLE #1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0



74Unit 2: Basics of Supervised Machine Learning

k-NEAREST NEIGHBOR CLASSIFIER

EXAMPLE #1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

k = 1:
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k-NEAREST NEIGHBOR CLASSIFIER

EXAMPLE #1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

k = 1:k = 5:
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k-NEAREST NEIGHBOR CLASSIFIER

EXAMPLE #1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

k = 1:k = 5:k = 13:
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k-NEAREST NEIGHBOR CLASSIFIER

EXAMPLE #2
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k-NEAREST NEIGHBOR CLASSIFIER

EXAMPLE #2

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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k = 1:
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k-NEAREST NEIGHBOR CLASSIFIER

EXAMPLE #2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

k = 1:k = 5:
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k-NEAREST NEIGHBOR CLASSIFIER

EXAMPLE #2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

k = 1:k = 5:k = 13:
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k-NEAREST NEIGHBOR CLASSIFIER

EXAMPLE #2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

k = 1:k = 5:k = 13:k = 25:
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A BASIC NUMERICAL PREDICTOR:

1D LINEAR REGRESSION

Consider a data set Z = {(xi, yi) | i = 1, . . . , l} ⊆ R2 and a linear model

y = w0 + w1 · x = g
(
x; (w0, w1)︸ ︷︷ ︸

w

)
.

Suppose we want to find (w0, w1) such that the average quadratic loss,

Q(w0, w1) =
1

l

l∑
i=1

(
w0 + w1 · xi − yi

)2
=

1

l

l∑
i=1

(
g(xi;w)− yi

)2
,

is minimized. Then the unique global solution is given as follows:

w1 =
Cov(x,y)

Var(x)
w0 = ȳ − w1 · x̄



77Unit 2: Basics of Supervised Machine Learning

LINEAR REGRESSION EXAMPLE #1

1 2 3 4 5 6
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8
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LINEAR REGRESSION EXAMPLE #1

1 2 3 4 5 6
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LINEAR REGRESSION FOR MULTIPLE

VARIABLES

Consider a data set Z = {(xi, yi) | i = 1, . . . , l} and a linear model

y = w0 + w1 · x1 + · · ·+ wd · xd = (1 | x) ·w = g
(
x; (w0, w1, . . . , wd)︸ ︷︷ ︸

wT

)
.

Suppose we want to find w = (w0, w1, . . . , wd)T such that the average
quadratic loss is minimized. Then the unique global solution is given as

w =
(
X̃T · X̃

)−1 · X̃T︸ ︷︷ ︸
X̃+

·y,

where X̃ = (1 | X).
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LINEAR REGRESSION EXAMPLE #2
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LINEAR REGRESSION EXAMPLE #2

0.0

0.5

1.0

0.0

0.5

1.0

- 1

0

1



80Unit 2: Basics of Supervised Machine Learning

POLYNOMIAL REGRESSION

Consider a data set Z = {(xi, yi) | i = 1, . . . , l} and a polynomial model of
degree n

y = w0 + w1 · x+ w2 · x2 + · · ·+ wn · xn = g
(
x; (w0, w1, . . . , wn)︸ ︷︷ ︸

wT

)
.

Suppose we want to find w = (w0, w1, . . . , wn)T such that the average
quadratic loss is minimized. Then the unique global solution is given as
follows:

w =
(
X̃T · X̃

)−1 · X̃T︸ ︷︷ ︸
X̃+

·y with X̃ = (1 | x | x2 | · · · | xn)



81Unit 2: Basics of Supervised Machine Learning

POLYNOMIAL REGRESSION

EXAMPLE

1 2 3 4 5 6
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EMPIRICAL RISK MINIMIZATION

(ERM)

Linear and polynomial regression have been concerned with
minimizing the average loss on a given (training) data set. This
strategy is called empirical risk minimization:

Given a training set Zl, empirical risk minimization is concerned with
finding a parameter setting w such that the empirical risk

Remp(g(.; w),Zl) =
1

l
·

l∑
i=1

L(yi, g(xi; w))

is minimal (or at least as small as possible).
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ESTIMATING THE RISK: TEST SET

METHOD

Assume that we have m more data samples Zm = (zl+1, . . . , zl+m),
the so-called test set, that are independently and identically
distributed (i.i.d.) according to p(x, y) (and, therefore, so is
L(y, g(x,w))). Then

Remp(g(.; w),Zm) =
1

m

m∑
j=1

L(yl+j , g(xl+j ; w)) (2)

can be considered an estimate for R(g(.; w)). By the (strong) law of
large numbers, RE(g(.; w)) converges to R(g(.; w)) for m→∞.
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TEST SET METHOD: PRACTICAL

REALIZATION

The common way of applying the test set method in practice is the
following:

1. Split the set of labeled samples into a training set of l samples
and a test set of m samples.

2. Perform model selection, i.e. find a suitable model w, making
use only of the training set (hence, w = w(Z)), while withhold-
ing the test set.

3. Estimate the generalization error by (2) using the test set

This is also called hold-out method.
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TEST SET METHOD: A WORD OF

CAUTION

The model g(.; w) is geared to the training set. Therefore, for train-
ing and test samples, the random variables L(y, g(x,w)) are not
identically distributed. Hence, the estimate RE(g(.; w)) becomes
invalid as soon as a single training sample is being used for esti-
mating the risk; therefore:

Training samples may never be used for “testing”, i.e. es-
timating the generalization error!
Test samples may never be used for training!
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TEST SET METHOD: PRACTICAL

CAVEATS

To avoid the pitfall described above, take the following rules into
account:

1. Choose training/test samples randomly (unless you can be
completely sure that they are already in random order)! If the
probabilities for being selected as training or test samples are
not equal for all samples, the independence property cannot be
guaranteed.

2. Make sure that there is not the slightest influence that test sam-
ples have on the selection of the model! Also pre-processing
or feature selection steps that use all samples imply that the
estimate is biased.



87Unit 2: Basics of Supervised Machine Learning

CROSS VALIDATION: MOTIVATION

The following platitudes can be stated about the test set method:

The more training samples (and the less test samples), the bet-
ter the model, but the worse the risk estimate.
The more test samples (and the less training samples), the
coarser the model, but the better the risk estimate.

In particular, for small sample sets, the requirement that training and
test set must not overlap is painful.

Question: can we somehow improve the risk estimate without nec-
essarily sacrificing model accuracy?
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CROSS VALIDATION: BASIC IDEA

A simple idea would be to perform the splitting into training and set
several times and to average the estimates. This is incorrect, as the
test sets overlap and, therefore, are not independent anymore.
Cross validation somehow follows this line of thought, but splits the
sample set into n disjoint fractionsa (so-called folds):

1. Training is done n times, every time leaving out one fold (i.e. taking
the other n− 1 folds as training set)

2. The risk estimate is then computed as the average of the risk es-
timate of the n left-out test folds

The special case n = l is commonly called leave-one-out cross vali-
dation.

aFor simplicity, assume in the following that l is divisible by n.
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FIVE-FOLD CROSS VALIDATION

VISUALIZED

evaluation training

1.

evaluation

training

2.

5.

evaluationtraining

...



90Unit 2: Basics of Supervised Machine Learning

CROSS VALIDATION: DEFINITION

We denote a given arbitrary sample set with l elements as Zl in the fol-
lowing. The j-th fold inside Zl is denoted as Zj

l/n and the sample set

corresponding to the remaining n− 1 folds as Zl\Zj
l/n.

Then the risk estimate given by the j-th fold is given as

Rn−cv,j(Zl) =
n

l

∑
z∈Zj

l/n

L
(
y, g(x;wj

(
Zl\Zj

l/n)
))
.

The n-fold cross validation risk is defined as

Rn−cv(Zl) =
1

n

n∑
j=1

Rn−cv,j(Zl) =
1

l

n∑
j=1

∑
z∈Zj

l/n

L
(
y, g(x;wj

(
Zl\Zj

l/n)
))
.
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CROSS VALIDATION: JUSTIFICATION

Theorem (Luntz & Brailovsky). The cross-validation risk estimate
is an “almost unbiased estimator”:

EZl−l/n

(
R(g(.; w(Zl−l/n))

)
= EZl

(
Rn−cv(Zl)

)
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CROSS VALIDATION: MISCELLANEA

Obviously, n different models are computed during n-fold cross validation.
Questions:

1. Which of these models should we select finally?
2. Can we get a better model if we manage to average these n models?

Answers:

1. None, as the selection would be biased to a certain fold.
2. It depends on the model class whether this is possible and meaningful

(see later).

A good strategy is, once that we know about the generalization abilities of
our model, to finally train a model using all l samples.



93Unit 2: Basics of Supervised Machine Learning

CROSS VALIDATION: MISCELLANEA

(cont'd)

Cross validation is also commonly applied to finding good choices of hyper-
parameters, i.e. by selecting those hyperparameters for which the smallest
cross validation risk is obtained.

Note, however, that the obtained risk estimate is then biased to the whole
training set. If an unbiased estimate for the risk is desired, this can only be
done by a combination of the test set method and cross validation:

1. Split the sample set into training set and test set first.
2. Apply cross validation on the training set (completely withholding the

test set) to find the best hyperparameter choice.
3. Finally, compute the risk estimate using the test set.
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ERM IN PRACTICE

As said, ERM is concerned with minimizing the training error.
Our goal, however, is to minimize the generalization error
(which can be estimated by the test error).
In other words, ERM does not use the correct objective!

Question: What can go wrong because of using the wrong objec-
tive?
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UNDERFITTING AND OVERFITTING

Underfitting: our model is too coarse to fit the data (neither training
nor test data); this is usually the result of too restrictive model
assumptions (i.e. too low complexity of model).

Overfitting: our model works very well on training data, but gener-
alizes poorly to future/test data; this is usually the result of too
high model complexity.
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NOTORIOUS SITUATION IN

PRACTICE
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BIAS-VARIANCE DECOMPOSITION

FOR QUADRATIC LOSS (1/4)

We are interested in the expected prediction error for a given x0 ∈ X
(assuming that the size of the training set is fixed to l examples):

EPE(x0) = Ey|x0,Zl

(
Lq(y, g(x0; w(Zl)))

)
= Ey|x0,Zl

(
(y − g(x0; w(Zl)))

2
)

Since y | x0 and the selection of training samples are independent
(or at least this should be assumed to be the case), we can infer the
following:

EPE(x0) = Ey|x0

(
EZl

(
(y − g(x0; w(Zl)))

2
))
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BIAS-VARIANCE DECOMPOSITION

FOR QUADRATIC LOSS (2/4)

Using basic properties of expected values, we can infer the following
representation:

EPE(x0) =Var(y | x0)

+
(

E(y | x0)− EZl

(
g(x0; w(Zl))

))2
+ EZl

((
g(x0; w(Zl))− EZl

(g(x0; w(Zl)))
)2)
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BIAS-VARIANCE DECOMPOSITION

FOR QUADRATIC LOSS (3/4)

1. The first term, Var(y | x0) is nothing else but the average amount to
which the label y varies at x0. This is often termed unavoidable error.

2. The second term,

bias2 =
(

E(y | x0)− EZl

(
g(x0;w(Zl))

))2
measures how close the model in average approximates the average
target y at x0; thus, it is nothing else but the squared bias.

3. The third term,

variance = EZl

((
g(x0;w(Zl))− EZl(g(x0;w(Zl)))

)2)
is nothing else but the variance of models at x0, i.e.
VarZl(g(x0;w(Zl))).
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BIAS-VARIANCE DECOMPOSITION

FOR QUADRATIC LOSS (4/4)
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BIAS-VARIANCE DECOMPOSITION:

SIMPLIFICATIONS

Assume that y(x) = f(x)+ε holds, where f is a deterministic function
and ε is a random variable that has mean zero and variance σ2

ε and is
independent of x. Then we can infer the following:

Var(y | x0) = σ2
ε ,

E(y | x0) = f(x0),

bias2 =
(
f(x0)− EZl

(
g(x0;w(Zl))

))2
.

In the noise-free case (σε = 0), consequently, we get Var(y | x0) = 0,
i.e. the unavoidable error vanishes and the rest stays the same.
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BIAS-VARIANCE DECOMPOSITION

FOR BINARY CLASSIFICATION

Now assume that we are given a binary classification task, i.e. y ∈
{−1,+1} and g(x;w) ∈ {−1,+1}. Since Lzo = 1

4
Lq holds, we can in-

fer the following:

EPE(x0) = Ey|x0,Zl

(
Lzo(y, g(x0;w))

)
=

1

4
· Ey|x0

(
EZl

(
(y − g(x0;w(Zl)))

2))
=

1

4
·
(
Var(y | x0) + bias2 + variance

)
Note that, in these calculations, g is the final binary classification function
and not an arbitrary discriminant function. If the latter is the case, the above
representation is not valid! (see literature)
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BIAS-VARIANCE DECOMPOSITION

FOR BINARY CLASSIF. (cont'd)

With the notations pR = p(y = +1 | x0) and

pO = pZl(g(x0;w(Zl)) = +1),

we can infer further

Var(y | x0) = 4 · pR · (1− pR),

bias2 = 4 · (pR − pO)2,

variance = 4 · pO · (1− pO),

hence, we obtain

EPE(x0) = pR · (1− pR)︸ ︷︷ ︸
unavoidable error

+ (pR − pO)2︸ ︷︷ ︸
squared bias

+ pO · (1− pO)︸ ︷︷ ︸
variance

.
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THE BIAS-VARIANCE TRADE-OFF

It seems intuitively reasonable that the bias decreases with
model complexity.
Rationale: the more degrees of freedom we allow, the easier
we can fit the actual function/relationship.
It also seems intuitively clear that the variance increases with
model complexity.
Rationale: the more degrees of freedom we allow, the higher
the risk to fit to noise.

This is usually referred to as the bias-variance trade-off. sometimes
even bias-variance “dilemma”.
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THE BIAS-VARIANCE TRADE-OFF
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THE BIAS-VARIANCE TRADE-OFF

(cont'd)
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THE BIAS-VARIANCE TRADE-OFF

(cont'd)
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THE BIAS-VARIANCE TRADE-OFF

(cont'd)

er
ro

r

complexity

test error

training error

unavoidable error

HHH
HHH

HHHHj

bias

�underfitting

��
��

��
�
��
�*

variance

-overfitting



106Unit 2: Basics of Supervised Machine Learning

BIAS-VARIANCE DECOMPOSITION:

SUMMARY

We can state that minimizing the generalization error (learning)
is concerned with optimizing bias and variance simultaneously.
Underfitting = high bias = too simple model
Overfitting = high variance = too complex model
It is clear that empirical risk minimization itself does not in-
clude any mechanism to assess bias and variance indepen-
dently (how should it?); more specifically, if we do not care
about model complexity (in particular, if we allow highly or even
arbitrarily complex models), ERM has a high risk to produce
over-fitted models.
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HOW TO EVALUATE CLASSIFIERS?

So far, the only measure we have considered for assessing the per-
formance of a classifier was the generalization error based on the
zero-one loss.

What if the data set is unbalanced?
What if the misclassification cost depends on the sample’s
class?
Can we define a general performance measure independent
class distributions and misclassification costs?

In order to answer these questions, we need to introduce confusion
matrices first.
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CONFUSION MATRIX FOR BINARY

CLASSIFICATION

Let us introduce the following terminology (for a given sample (x, y)

and a classifier g(.)): (x, y) is a

true positive (TP) if y = +1 and g(x) = +1,
true negative (TN) if y = −1 and g(x) = −1,
false positive (FP) if y = −1 and g(x) = +1,
false negative (FN) if y = +1 and g(x) = −1.
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CONFUSION MATRIX FOR BINARY

CLASSIFICATION (cont'd)

Given a data set (z1, . . . , zm), the confusion matrix is defined as follows:

predicted value g(x;w)

+1 -1

+1 #TP #FN

ac
tu

al
va

lu
e
y

-1 #FP #TN

In this table, the entries #TP, #FP, #FN and #TN denote the numbers of true
positives, . . . , respectively, for the given data set.
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EVALUATION MEASURES DERIVED

FROM CONFUSION MATRIX
Accuracy: proportion of correctly classified

items, i.e.

ACC =
#TP + #TN

#TP + #FN + #FP + #TN
.

True Positive Rate (aka recall/sensitivity):
proportion of correctly identified posi-
tives, i.e.

TPR =
#TP

#TP + #FN
.

False Positive Rate: proportion of negative
examples that were incorrectly classi-
fied as positives, i.e.

FPR =
#FP

#FP + #TN
.

Precision: proportion of predicted positive
examples that were correct, i.e.

PREC =
#TP

#TP + #FP
.

True Negative Rate (aka specificity):
proportion of correctly identified
negatives, i.e.

TNR =
#TN

#FP + #TN
.

False Negative Rate: proportion of positive
examples that were incorrectly classi-
fied as negatives, i.e.

FNR =
#FN

#TP + #FN
.
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EVALUATION MEASURES DESIGNED

FOR UNBALANCED DATA

Balanced Accuracy: mean of true positive and true negative rate, i.e.

BACC =
TPR + TNR

2

Matthews Correlation Coefficient: measure of non-randomness of clas-
sification; defined as normalized determinant of confusion matrix, i.e.

MCC =
#TP · #TN− #FP · #FN√

(#TP + #FP)(#TP + #FN)(#TN + #FP)(#TN + #FN)

F-score: harmonic mean of precision and recall, i.e.

F1 = 2 · PREC · TPR
PREC + TPR
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CONFUSION MATRIX FOR

MULTI-CLASS CLASSIFICATION

Assume that we have a k-class classification task. Given a data set, the
confusion matrix is defined as follows:

predicted class g(x)

1 · · · j · · · k

1 C11 · · · C1j · · · C1k

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

i Ci1 · · · Cij · · · Cik

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.ac

tu
al

va
lu

e
y

k Ck1 · · · Ckj · · · Ckk

The entries Cij correspond to the numbers of test samples that actually
belong to class i and have been classified as j by the classifier g(.).
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ACCURACY FOR MULTI-CLASS

CLASSIFICATION

For a multi-class classification task (with the notations as on the
previous slide), the accuracy of a classifier g(.) is defined as

ACC =

k∑
i=1

Cii

k∑
i,j=1

Cij

=
1

m
·

k∑
i=1

Cii,

i.e., not at all surprisingly, as the proportion of correctly classified
samples. The other evaluation measures cannot be generalized to
the multi-class case in a straightforward way.
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OTHER PERFORMANCE MEASURES

FOR MULTI-CLASS CLASSIFICATION

Beside accuracy, the other evaluation measures cannot be generalized to the multi-
class case in a direct way, but we can easily define them for each class separately.
Given a class j, we can define the confusion matrix of class j as follows:

predicted value g(x;w)

= j 6= j

= j #TPj #FNj

ac
tu

al
va

lu
e
y

6= j #FPj #TNj

From this confusion matrix, we can easily define all previously known evaluation
measures (for class j).
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RISK FOR BINARY CLASSIFICATION:

ASYMMETRIC CASE (1/3)

Consider the following loss function (with lFP, lFN > 0):

Las(y, g(x;w)) =


0 y = g(x;w)

lFP y = −1 and g(x;w) = +1

lFN y = +1 and g(x;w) = −1

Then we obtain the following:

R(g(.;w)) =

∫
X−1

lFN · p(x, y = +1)dx +

∫
X+1

lFP · p(x, y = −1)dx

=

∫
X

 lFP · p(y = −1 | x) if g(x;w) = +1

lFN · p(y = +1 | x) if g(x;w) = −1

 · p(x)dx
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RISK FOR BINARY CLASSIFICATION:

ASYMMETRIC CASE (2/3)

We can infer the following optimal classification function:

g(x) =

+1 if lFN · p(y = +1 | x) > lFP · p(y = −1 | x)

−1 if lFP · p(y = −1 | x) > lFN · p(y = +1 | x)

= sign(lFN · p(y = +1 | x)− lFP · p(y = −1 | x)) (3)

The resulting minimal risk is

Rmin =

∫
X

min(lFP · p(x, y = −1), lFN · p(x, y = +1))dx

=

∫
X

min(lFP · p(y = −1 | x), lFN · p(y = +1 | x)) · p(x)dx
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RISK FOR BINARY CLASSIFICATION:

ASYMMETRIC CASE (3/3)

Since
lFN · p(y = +1 | x) > lFP · p(y = −1 | x)

if and only if (with the convention 1/0 =∞)

p(y = +1 | x)

p(y = −1 | x)
>
lFP

lFN
,

we can rewrite (3) as follows:

g(x) = sign
(p(y = +1 | x)

p(y = −1 | x)
− lFP

lFN

)
Hence, the optimal classification function only depends on the ratio of lFP

and lFN.
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GENERAL PERFORMANCE OF

DISCRIMINANT FUNCTION

If we have a general discriminant function ḡ that maps objects to real
values, we can adjust to different asymmetric/unbalanced situations
by varying the classification threshold θ (which is by default 0):

g(x) = sign(ḡ(x)− θ)

Question: can we assess the general performance of a classifier
without choosing a particular discrimination threshold?
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ROC CURVES

ROC stands for Receiver Operator Characteristic. The concept
has been introduced in signal detection theory.
ROC curves are a simple means for evaluating the performance
of a binary classifier independent of class distributions and mis-
classification costs.
The basic idea of ROC curves is to plot the true positive rate
(TPR) vs. the false positive rate (FPR) while varying the classi-
fication threshold.
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ROC CURVES: PRACTICAL

REALIZATION

Sort samples descendingly according to ḡ.
Divide horizontal axis into as many bins as there are negative
samples; divide vertical axis into as many bins as there are
positive samples.
Start curve at (0, 0).
Iterate over all possible thresholds, i.e. all possible “slots” be-
tween two discriminant function values. Every positive sample
is a step up, every negative sample is a step to the right.
In case of ties (equal discriminant function values), process
them at once (which results in a ramp in the curve).
Finally, end curve in (1, 1).



121Unit 2: Basics of Supervised Machine Learning

AREA UNDER THE ROC CURVE (AUC)

The area under the ROC curve (AUC) is a common measure
for assessing the general performance of a classifier g(.; w).
The lowest possible value is 0, the highest possible value is 1.
Obviously, the higher the better.
An AUC of 1 means that there exists a threshold which perfectly
separates the test samples.
A random classifier produces an AUC of 0.5 in average; hence,
an AUC smaller than 0.5 corresponds to a classification that is
worse than random and an AUC greater than 0.5 corresponds
to a classification that is better than random.
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AUC: CORRESPONDENCES

Suppose that #p and #n are the numbers of positive and negative sam-
ples, respectively, and further assume that ỹ is the label vector if the sam-
ples are sorted according to the discriminant function value g(.;w). Then
the following holds:

AUC =
1

#p ·#n ·
( ( ∑

ỹi>0

i
)

︸ ︷︷ ︸
=R

−#p · (#p+ 1)

2

)

Obviously, R is the sum of ranks of positive examples. Note that

U = R− #p · (#p+ 1)

2

is nothing else but the Mann-Whitney-Wilcoxon statistic.
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ROC EXAMPLE:
GAUSSIAN CLASSIF. EXAMPLE #2 REVISITED

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0



124Unit 2: Basics of Supervised Machine Learning

ROC CURVE FOR ḡ((x1, x2)) = x1
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ROC CURVE FOR ḡ((x1, x2)) = x2
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ROC EXAMPLE:
k-NN EXAMPLE #2 REVISITED
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ROC CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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ROC CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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ROC CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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ROC CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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ROC CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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ROC CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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ROC CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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ROC CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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ROC CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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PRECISION-RECALL (PR) CURVES

For highly unbalanced data sets, in particular, if there are many
true negatives, the ROC curves may not necessarily provide a
very informative picture.
For computing a precision-recall curve, similarly to ROC
curves, sweep through all possible thresholds, but plot preci-
sion (vertical axis) versus recall (horizontal axis)
The higher the area under the curve, the better the classifier.
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PR CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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PR CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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PR CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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PR CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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PR CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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PR CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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PR CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)
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PR CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)
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PR CURVES FOR k-NN EXAMPLE #2
(75% training, 25% test samples)

k = 1:
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SUMMARY AND OUTLOOK

In this unit, we have studied the following:

How to evaluate a given model:

� Generalization error/risk
� Estimates via test set method and cross validation
� Confusion matrices and evaluation measures
� ROC and PRC analysis

Simple predictors like k-NN and linear/polynomial regression.
ERM and the phenomena of underfitting and overtitting.

The following units will be devoted to state-of-the-art methods for

classification and regression.
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