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Abstract

This documentation introduces the PSVM (see [ncpsvm]) software li-
brary which is designed for MICROSOFT Windows as well as for UNIX
systems. Compiling the software results in a program which can be used
with command line options (e.g. kernel type, learning/testing, etc.) which
does not depend on other software or on a particular software-environment.
The PSVM software package also includes a MATLAB interface for con-
venient working with the PSVM package. In addition lots of sample data
and scripts are included. The PSVM software contains a classification, a
regression, and a feature selection mode and is based on an efficient SMO
optimization technique. The software can directly be applied to dyadic (ma-
trix) data sets or it can be used with kernels like standard SVM software. In
contrast to standard SVMs the kernel function does not have to be positive
definite, e.g. the software already implements the indefinite sin-kernel. An
important feature of the software is that is allows forn-fold cross validation
and for hyperparameter selection. For classification tasks it offers the de-
termination of the significance level and ROC data. In summary the basic
features of the software are

• WINDOWS and UNIX compatible

• no dependencies to other software

• command line interface

• MATLAB interface

• n-fold cross validation

• hyperparameter selection

• relational data

• non-Mercer kernels

• significance testing

• computation of Receiver-Oprator-Characteristic (ROC) curves

If you use the software please cite [ncpsvm] in your publications.
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1 Introduction

1.1 Machine Learning

The main tasks in machine learning are learning and prediction. Learning in this
case means to fit a model with a so called training dataset and its known target
values in order to apply the model to future, unknown test data. The prediction
task then maps a set of inputs to the corresponding target values.
The difficulty is to choose a model, its degree of freedom, andthe free parame-
ters, while maintaining a good prediction performance on the test data, i.e. the
outputs should match the unknown target values. This objective is known as to
generalize to unknown data (generalization). If the dataset with known targets is
small, the generalization capabilities can be measured by dividing the dataset into
n parts and doingn training tasks while using one different part for testing each.
The generalization performance is determined by averagingover all testing tasks.
This is called n-fold crossvalidation.
Furthermore it may be interesting if a good generalization performance as mea-
sured for example via n-fold crossvalidation is caused by chance while drawing
the training examples. Therefore, the performance is compared with the perfor-
mance after shuffling the target data. Then the probability of being better on shuf-
fled data is approximated with the relative frequency of training cycles, where
the performance is the same or better than the performance for the original target
values. This is called a significance test.

1.2 Support Vector Machines

A standard support vector machine (SVM) (Schölkopf and Smola, 2002; Vapnik,
1998) is a model design, which is applicable to real valued vectorial data, where
each component is called an attribute of the examples. Ordinal attributes (or tar-
gets) can be converted into numerical attributes by creating a new attribute for
each value and use+1 or −1 depending on whether this value is assumed or not.
If targets are real valued the learning problem is called regression, if targets are
binary it is called classification. Non-binary ordinal targets require a combination
of multiple support vector machines, which is called a multiclass support vector
machine.
In SVM learning the data is internally transformed into a high dimensional feature
space and a set of so called support vectors are selected fromthe training set. The
support vectors define a hyperplane in the feature space which is used to calculate
the target values. If a simple linear SVM is used, the featurespace is equal to the
data space. In most SVM algorithms the transformation into the feature space is
done implicitly by a kernel function, which qualifies a relation between two ex-



1 INTRODUCTION 4

amples in feature space.
The generalization performance of SVMs may depend on some user defined hy-
perparameters. A simple way to optimize these parameters isa grid search using
the crossvalidation error as a measure of quality.

1.3 The Potential Support Vector Machine

Understanding the capabilities of the Potential Support Vector Machine needs a
discussion of different representations of data:

• Vectorial Data:
Most of the techniques for solving classification and regression problems
were specifically designed for vectorial data, where data objects are de-
scribed by vectors of numbers which are treated as elements of a vector
space (figure 1.3A). They are very convenient, because of thestructure im-
posed by the Euclidean metric. However, there are datasets for which a
vector-based description is inconvenient or simply wrong,and representa-
tions which consider relationships between objects, are more appropriate.

• Dyadic Data:
In dyadic descriptions, the whole dataset is represented using a rectangular
matrix whose entries denote the relationships between “row” and “column”
objects (figure 1.3C). The column objects are the objects to bedescribed and
the row objects serve for their description (Hofmann and Puzicha, 1998; Li
and Loken, 2002; Hoff, 2005).

• Dyadic Pairwise Data:
If “row” and “column” objects are from the same set, the representation is
usually called pairwise data, and the entries of the matrix can often be inter-
preted as the degree of similarity (or dissimilarity) between objects (figure
1.3B).

Dyadic descriptions are more powerful than vector-based descriptions, as vecto-
rial data can always be brought into dyadic form when required. This is often done
for kernel-based classifiers or regression functions like the standard SVM, where
a Gram matrix of mutual similarities is calculated before the predictor is learned.
A similar procedure can also be used in cases where the “row” and “column” ob-
jects are from different sets. If both of them are described by feature vectors, a
matrix can be calculated by applying a kernel function to pairs of feature vectors,
one vector describing a “row” and the other vector describing a “column” object.
In many cases, however, dyadic descriptions emerge, because the matrix entries
are measured directly. Pairwise data representations as a special case of dyadic
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A)

a b c

α 2 4 7
β -1 -3 6
χ 0 -5 8
δ 1 5 8
ǫ -1 4 7

B)

α β χ δ ǫ

α 1 -0.1 0.2 0.9 -0.5
β -0.1 1 0.2 0.1 0.3
χ 0.2 0.2 1 -0.2 -0.2
δ 0.9 0.1 -0.2 1 0.5
ǫ -0.5 0.3 -0.2 0.5 1

C)

α β χ δ ǫ φ

A 0 2 0 -1 -7 -8
B 1 7 2 0 0 -2
X 8 -9 -1 0 1 2
∆ -7 0 8 -2 1 0
E 1 0 3 -2 0 0

Figure 1:A) vectorial data: The vectorial objects{α, β, . . .} are described by its compo-
nents{a, b, . . .}. B) vectorial objects and descriptors: The application of a kernel function
to vectorial data results in a matrix where the objects{α, β, . . .} are described by mutual
relations. C) true dyadic data: The column objects{α, β, . . .} are described by measured
relations to row objects{A, B, . . .}.

data can be found for datasets where similarities or distances between objects are
measured. Genuine dyadic data occur whenever two sets of objects are related.
Traditionally, “row” objects have often been called “features” and “column” vec-
tors of the dyadic data matrix have mostly been treated as “feature vectors”.
We suggest to interpret the matrix entries of dyadic data as the result of a ker-
nel function or measurement kernel, which takes a “row” object, applies it to a
“column” object, and outputs a number. Using an improved measure for model
complexity and a new set of constraints which ensure a good performance on the
training data, we arrive at a generally applicable method tolearn predictors for
dyadic data. The new method is called the “potential supportvector machine” (P-
SVM). It can handle rectangular matrices as well as pairwisedata whose matrices
are not necessarily positive semidefinite, but even when theP-SVM is applied to
regular Gram matrices, it shows very good results when compared with standard
methods. Due to the choice of constraints, the final predictor is expanded into a
usually sparse set of descriptive “row” objects, which is different from the stan-
dard SVM expansion in terms of the “column” objects. This opens up another
important application domain: a sparse expansion is equivalent to feature selec-
tion (Guyon and Elisseeff, 2003; Hochreiter and Obermayer,2004b; Kohavi and
John, 1997; Blum and Langley, 1997).
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2 Software Features

The software is written in C++ and implements the potential support vector ma-
chine from [ncpsvm, psvmsmo]. The source files are divided into the software
library which offers the main P-SVM functions, a command line user interface
and a MATLAB interface. Binaries for Microsoft Windows Systems are included,
for other systems a C++ compiler is required to produce the binaries. The soft-
ware includes sample datasets for testing the command line application, sample
scripts for testing the MATLAB implementation, and a user manual. Some of
the MATLAB sample scripts refer to functions from the libSVMlibrary [libsvm],
which is also included in the package.
The current version of the software requires that:

• inputs and targets must be real valued and ”don’t care” free

• binary inputs and targets must be encoded as +1. or -1.

Ordinal values are not supported directly, they must be encoded via binary at-
tributes or labels as mentioned in (1.2).

2.1 Command Line Application

The command line application uses files in plain text format for data input and
output. All progress and result messages are sent to the console output and addi-
tionally into a log file.
The offered functionality is

• P-SVM regression and classification

• P-SVM feature extraction

• theC- andǫ-regularization schemes ([ncpsvm])

• training with n-fold crossvalidation, hyperparameter selection through grid
search, significance testing

• choice between the five predefined kernel functions: linear,polynomial,
radial basis, sigmoid, and plummer

• implementation of user defined kernels

• application of the P-SVM to true dyadic (matrix) data

• prediction of labels after training
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• calculation of ROC curves for validation purposes

• SMO optimization options (epsilon annealing, block optimization, and re-
duction) for tradeoff between speed and precision

• GNU-Plot interface for the result of the hyperparameter selection through
grid search (figure 2), for the ROC curves for validation (figure 3), and for
the significance testing (figure 4) by exporting data and script files.

• calculation of an upper limit of hyperparametersǫ andC for a given dataset
(helps the user to select hyperparameters which affect the predictor)

• calculation of mean and variance for a given dataset (helps to select useful
kernel parameters)

2.2 MATLAB interface

The package includes sourcecodes of six MEX-functions which bind the P-SVM
library and serve as an interface for the main P-SVM routinesto MATLAB. For
Microsoft Windows Systems the binaries are included as dynamic link libraries
which can directly be used as MATLAB functions. For other systems a C++
compiler is required to produce the binaries. The result is asystem dependent
library which can be accessed directly whithin MATLAB. The main MATLAB
functions are “psvmtrain” and “psvmpredict” and offer:

• P-SVM regression and classification

• P-SVM feature extraction

• theC- andǫ-regularization schemes ([ncpsvm])

• choice between the five predefined kernel functions: linear,polynomial,
radial basis, sigmoid, and plummer

• implementation of user defined kernels

• application of the P-SVM to true dyadic (matrix) data

• prediction of labels after training

• SMO optimization options (epsilon annealing, block optimization, and re-
duction) for tradeoff between speed and precision
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As explained in the next section the training algorithm within P-SVM divides
into three tasks, which might be interesting to access separately within MATLAB.
These functions are

• “psvmgetnp” and “psvmputnp” for accessing the normalization task

• “psvmkernel” for calculation of one of the five predefined kernel functions
or a user defined kernel function

• “psvmsmo” for solving the P-SVM optimization problem

In contrast to the command line version, the compiled MATLABfunctions offer
no crossvalidation, modelselection and significance testing. Instead of that the
package includes MATLAB scripts for doing

• crossvalidation

• exporting data matrices to files which can be processed directly through the
P-SVM command line application

• exporting data matrices to files which can be processed directly through the
application “libsvm” (see [libsvm])

• random shuffling of data matrices as preprocessing step for crossvalidation
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10-fold cv-MSE regression dataset <newdata>
contour line 0.000245
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Figure 2:Generalization error estimated via 10-fold crossvalidation for different combinations
of the hyperparameters. This plot is generated by default ifthe hyperparameter selection mode of
the P-SVM software is used.
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Figure 3:Receiver Operating Characteristic (ROC) of the P-SVM for a P-SVM classifier trained
with the sample dataset ’arcene’. This plot is generated by default with option ’-test’ of the P-SVM
software.
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Figure 4: Visualization of the significance testing results: This plot shows the generalization
errors of the sample dataset ’arcene’ estimated by 10-fold crossvalidation ordered by magnitude
after random shuffling of the training label. Every data point corresponds to a specific label permu-
tation and provides results after hyperparameter selection has been performed. The horizontal line
marks the error for original labels. This plot is generated by default after enabling the significance
test with the option ’-sig’. The corresponding confidence interval is calculated and printed to the
console.
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3 The components of the P-SVM

The software can handle dyadic (matrix) data as well as vectorial data via prede-
fined kernels.

3.1 P-SVM for Measured Dyadic (Matrix) Data

The P-SVM predictor for dyadic data has the form:

oc(k) = sign(norm(k,np) · α + b)

for classification and

or(k) = norm(k,np) · α + b

for regression tasks, where

k : dyadic description of the “column” object which is to be classified: P -
component vector which quantifies the relations toP “row” objects

oc : P-SVM class prediction ofk (+1 or−1)

or : P-SVM real valued prediction ofk

α : support features (part of the P-SVM model):P -component vector which
quantifies the importances of “row” objects for serving as features.

b : bias (part of the P-SVM model)

np : normalization statistics (part of the P-SVM model) - Breaks into maximum,
minimum, mean, and variance for allP “row” objects and is used by the
“norm”-function.

Learning proceeds by

1. Data Matrix: loading theL × P dyadic data matrixK.

2. Normalization: Gets statistics for allP columns ofK and stores its max-
ima, minima, mean, and a scaling factor inP -dimensional vectorsnp. np

is then used to normalize each column ofK.

3. Calculation ofb: The biasb is set to the mean of theL labels represented by
the label vectory.

4. Sequential Minimal Optimization (SMO): The SMO reads thenormalized
kernel matrixK and the labelsy and calculates a p-dimensional vectorα

for a normalized kernel matrixK and labelsy. αi corresponds to thei-th
column ofK and is normally sparse.
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3.2 P-SVM for Vectorial Data

The P-SVM predictor for vectorial data has the form:

oc(u) = sign(norm(k(u,X),np) · α + b)

for classification and

or(u) = norm(k(u,X),np) · α + b

for regression tasks, where

u : “column” object which is to be classified (N -component vector)

oc : P-SVM class prediction ofu (+1 or−1)

or : P-SVM real valued prediction ofu

X : N × P matrix composed byP “row” objects (N -component vectors). The
“row” objects and “column” objects match andX equals the set initially
used for training.

k() : calculates aP component vector by applying a kernel function to a “col-
umn” object and a set ofP “row” objects

α : support features (part of the P-SVM model):P -component vector which
quantifies the importances of “row” objects for serving as features.

b : bias (part of the P-SVM model)

np : normalization statistics (part of the P-SVM model) - Breaks into maximum,
minimum, mean, and variance for allP “row” objects and is used by the
“norm”-function.

Learning proceeds by

1. Vectorial Data: loading the dataset asN ×P matrixX composed byP N -
component data vectors. (Note that for compatibility reasons the MATLAB
functions expectXT as vectorial input.)

2. Kernel: calculating a kernel matrix which quantifies relations on training
data vectors using a kernel functionKi,j = k(xi,xj)

3. Normalization: Gets statistics for allP columns ofK and stores its max-
ima, minima, mean, and a scaling factor inP -dimensional vectorsnp. Nor-
malizes each column ofK.
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4. Calculation ofb: The offsetb is set to the mean of theL labels represented
by the label vectory.

5. Sequential Minimal Optimization (SMO): The SMO reads thenormalized
kernel matrixK and the labelsy and calculates a p-dimensional vectorα,
which is sparse in most cases.αi corresponds to thei-th column ofK.

3.3 P-SVM for Vectorial Data using Complex Feature Vectors

The P-SVM predictor for vectorial data and complex feature vectors has the form:

oc(u) = sign(norm(k(u,Z),np) · α + b)

for classification and

or(u) = norm(k(u,Z),np) · α + b

for regression tasks, where

u : “column” object which is to be classified (N -component vector)

oc : P-SVM class prediction ofu (+1 or−1)

or : P-SVM real valued prediction ofu

Z : N×P matrix composed byP “row” objects (N -component complex feature
vectors).

k() : calculates aP component vector by applying a kernel function to a “col-
umn” object and a set ofP “row” objects

α : support features (part of the P-SVM model):P -component vector which
quantifies the importances of “row” objects for serving as features.

b : bias (part of the P-SVM model)

np : normalization statistics (part of the P-SVM model) - Breaks into maximum,
minimum, mean, and variance for allP “row” objects and is used by the
“norm”-function.

Learning proceeds by

1. Vectorial Data: loading the dataset asN × L matrixX composed byL N -
component data vectors. (Note that for compatibility reasons the MATLAB
functions expectXT as vectorial input.)
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2. Complex Feature Vector Matrix: loading the dataset asN × P matrix Z

composed byP N -component data vectors. (Note that for compatibility
reasons the MATLAB functions expectZT as vectorial input.)

3. Kernel: calculating a kernel matrix which quantifies relations on training
data vectors and complex feature vectors using a kernel function Ki,j =
k(xi,zj)

4. Normalization: Gets statistics for allP columns ofK and stores its max-
ima, minima, mean, and a scaling factor inP -dimensional vectorsnp. Nor-
malizes each column inK.

5. Calculation ofb: The offsetb is set to the mean of theL labels represented
by the label vectory.

6. Sequential Minimal Optimization (SMO): The SMO reads thenormalized
kernel matrixK and the labelsy and calculates a p-dimensional vectorα,
which is sparse in most cases.αi corresponds to thei-th column ofK.

3.4 Hyperparameters

Let X be the matrix of data vectors in some high-dimensional feature spaceφ, w

be the normal vector of a separating hyperplane,y the attributes (binary in case
of classification, or real valued in case of regression), andK the kernel matrix.
Then the P-SVM “primal” optimization problem has the form

min
w,ξ+,ξ−

1

2
‖X⊤ w‖2 + C1

⊤
(

ξ+ + ξ−
)

(1)

s.t. K⊤
(

X⊤ w − y
)

+ ξ+ + ǫ 1 ≥ 0

K⊤
(

X⊤ w − y
)

− ξ− − ǫ 1 ≤ 0

0 ≤ ξ+, ξ−

The parametersC andǫ correspond to the two different regularization schemes,
which have been suggested for the P-SVM method, whereǫ-regularization has
been proven more useful for feature selection and the C-regularization for classi-
fication or regression problems ([ncpsvm]).ξ+ andξ− are the vectors of the slack
variables describing violations of the constraints.
The parameterC controls the robustness against outliners by limiting the support
vector weightsα. If it is infinite, no regularization occurs. If it tends to zero, the
largest weights of support vectors decrease and the possibly increase of the train-
ing error will be compensated through finding similar data vectors and increasing
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their weights (they become support vectors). The number of support vectors in-
creases in order to average over important support vectors (see figure 5).
The second parameterǫ controls the tolerance level of small training errors. If
it tends to infinity, the primal P-SVM problem (eq. 1) is solved without support
vectors (α = 0). If it tends to zero, the tolerance level decreases and the train-
ing error decreases too as far as the number of support vectors increases. That
meansǫ controls the tradeoff between a poor representation of the training data
and overfitting.

3.5 Comparison P-SVM with libSVM

One of the effects of the P-SVMs primal optimization problemin contrast to the
“libSVM” can be easily seen by comparing the support vector placement, when
P-SVM and “libSVM” are used for vectorial data with a linear kernel function.
The P-SVM finds support vectors in the area around the normal vector of the
hyperplane, while the standard SVM finds support vectors around the hyperplane.
The effect to the prediction error depends strongly from thedata, but comparing
figure 5 and 6 even shows a better matching of the P-SVM hyperplane with the
optimal hyperplane according to the relying gaussian distribution (crossover of
the circles).
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Figure 5: These plots show the data points of a two dimensional gaussian distributed classi-
fication problem with two classes and the hyperplane (line) with support vectors (small circles)
found by the linear kernel P-SVM. The large circle marks the standard deviation of the gaussian
distribution for the two classes. The left plot is for a non-regularized solution (C = ∞) and the
right shows the effect of regularization (C = 0.0001).
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Figure 6:These plots show the same classification problem as used in figure 5 and the hyperplane
(line) with support vectors (small circles) found by the linear kernel standardǫ-SVM. The large
circle marks the standard deviation of the gaussian distribution for the two classes. The left plot
is for a non-regularized solution (C = ∞) and the right shows the effect of regularization (C =

0.0001). This experiment is done with the implementation from [libsvm].
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