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ABSTRACT
Motivation: Biclustering of transcriptomic data, that is, clustering
genes and samples simultaneously, is an important unsupervised
approach to extract knowledge from gene expression measurements.
However, most biclustering methods do not apply generative models
which would allow to utilize well understood model selection
techniques and to apply the Bayesian framework. The few existing
generative models are restricted to additive models and therefore
not suited to explain effects due to mRNA degradation or PCR
amplification. Further, they assume Gaussian distributions which
cannot explain the heavy tailed distributions of microarray data. We
introduce a novel generative model for biclustering called “Factor
Analysis for Bicluster Acquisition” (FABIA). FABIA is based on
a multiplicative model that assumes realistic non-Gaussian signal
distributions with heavy tails.
Results: On 100 simulated data sets with known true, artificially
implanted biclusters, FABIA clearly outperformed all 11 competitors.
The generative framework allows to determine the information content
of each bicluster and hence to separate spurious biclusters from true
biclusters as shown in the experiments. FABIA was tested on three
microarray data sets with known sub-clusters, where it was two times
the best and once the second best method among 11 biclustering
approaches.
Availability: FABIA is available as an R package on Bioconductor
(http://www.bioconductor.org). All data sets, results, and software can
be found at http://www.bioinf.jku.at/software/fabia/fabia.html.
Contact: hochreit@bioinf.jku.at

1 INTRODUCTION
Recent array technologies like the Affymetrix array plates open
up new possibilities for high-throughput expression profiling. The
same is expected for next-generation transcriptome sequencing.
These technologies in turn require advanced analysis tools to extract
knowledge from the huge amount of data. If for the data analysis
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the experimental conditions like osmotic pressure or temperature
are known, supervised techniques such as support vector machines
are suitable to extract the dependencies between conditions and
gene expression profiles or to identify condition-indicative genes.
However, conditions may not be known or biologists and medical
researchers are interested in dependencies within conditions or
across conditions. For instance, it could be possible to refine
pathways across conditions or to identify new subgroups within one
condition. For these tasks, unsupervised methods like clustering
and projection approaches are required. Conventional clustering
techniques, such as hierarchical or k-means clustering, are typically
not sufficient, because samples may only be similar to each other
on a subset of genes and vice versa. In drug design, for example,
researchers want to reveal how compounds affect gene expression;
the compounds, however, may be similar to each other only on a
subgroup of genes.

For unsupervised analysis of transcriptomic data, biclustering
algorithms that simultaneously cluster the genes and the samples
are of high interest. A bicluster of a transcriptomic data set is a pair
of a gene set and a sample set for which the genes are similar to
each other on the samples and vice versa. A sample may belong to
different biclusters, e.g. if more than one pathway is active in that
sample. A gene may belong to different biclusters, for example, if
this gene participates in different pathways for different conditions.
Thus, biclusters can overlap.

A survey over various biclustering approaches has been given
by Madeira and Oliveira (2004). In principle, there exist four
categories of biclustering methods: (1) variance minimization
methods, (2) two-way clustering methods, (3) motif and
pattern recognition methods, and (4) probabilistic and generative
approaches. Transcriptomic data are usually supplied as a matrix,
where each gene corresponds to one row and each sample to one
column; the matrix entries themselves are the expression levels.

(1) Variance minimization methods define clusters as blocks in
the matrix with minimal deviation of their elements. This definition
has been already considered by Hartigan (1972) and extended by
Tibshirani et al. (1999). The δ-cluster methods search for blocks
of elements having a deviation (“variance”) below δ. One example
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are δ-ks clusters (Califano et al., 2000), where the maximum
and the minimum of each row need to differ less than δ on the
selected columns. A second example are δ-pClusters (Wang et al.,
2002) which are defined as 2 × 2 sub-matrices with pairwise edge
differences less than δ. A third example are the Cheng and Church
(2000) δ-biclusters having a mean squared error below δ after fitting
an additive model with a constant, a row, and a column effect.
FLexible Overlapped biClustering (FLOC; Yang et al., 2005) extend
Cheng-Church δ-biclusters by dealing with missing values via an
occupancy threshold θ and by using both l1 and l2 norms.

(2) Two-way clustering methods apply conventional clustering
to the columns and rows and (iteratively) combine the results.
Coupled Two-Way Clustering (CTWC; Getz et al., 2000) iteratively
performs standard clustering of the rows (columns) using previously
constructed columns (rows) clusters as features. Also Interrelated
Two-Way Clustering (ITWC; Tang et al., 2001) using k-means
and Double Conjugated Clustering (DCC; Busygin et al., 2002)
using self-organizing maps integrate the results of column and row
clustering.

(3) Motif and pattern recognition methods define a bicluster
as samples sharing a common pattern or motif. To simplify this
task, some methods discretize the data in a first step, like xMOTIF
(Murali and Kasif, 2003) or Bimax (Prelic et al., 2006) which
even binarizes the data and searches for blocks with an enrichment
of ones. Order-Preserving Sub-Matrices (OPSM; Ben-Dor et al.,
2003) searches for blocks having the same order of values in their
columns. Using partial models, only the column order on subsets
must be preserved. Spectral clustering (SPEC; Kluger et al., 2003)
performs a singular value decomposition of the data matrix after
normalization. SPEC extracts columns (samples) with the same
conserved gene expression pattern using the fact that they are
linearly dependent and span a subspace associated with a certain
singular value.

(4) Probabilistic and generative methods use model-based
techniques to define biclusters. Statistical-Algorithmic Method
for Bicluster Analysis (SAMBA; Tanay et al., 2002) uses a bi-
partitioned graph, where both conditions and genes are nodes. An
edge from a gene to a condition means that the gene responds
to the condition. With a probabilistic objective, subgraphs are
found that have a significantly higher connectivity than the overall
graph. In another approach, Sheng et al. (2003) use Gibbs sampling
to estimate the parameters of a simple frequency model for the
expression pattern of a bicluster. However, the data must first
be discretized and then only one bicluster with constant column
values at each step can be extracted. Probabilistic Relational
Models (PRMs; Getoor et al., 2002; Segal et al., 2003) and their
extension ProBic (Van den Bulcke, 2009) are fully generative
models which combine probabilistic modeling and relational logic.
Another generative approach is cMonkey (Reiss et al., 2006) which
models biclusters by Markov chain processes. Both PRMs and
cMonkey are able to integrate non-transcriptomic data sources.

In the plaid model family (Lazzeroni and Owen, 2002), the i-
th bicluster is extracted by row and column indicator variables ρki
and κij . The values of each bicluster are explained by a general
additive model θkij = µi + αki + βij . Parameters are estimated
by a least square fit subject to

∑
k αkiρ

2
ki = 0 and

∑
j βijκ

2
ij = 0

to enforce that αki and βij account for the deviation from mean µi.
Gu and Liu (2008) generalized the plaid models to fully generative
models called Bayesian BiClustering model (BBC). To avoid the

high percentage of overlap in the plaid models, BBC constrains the
overlapping of biclusters to only one dimension. Further it allows
different error variances per bicluster. Caldas and Kaski (2008)
also extended the plaid model to a fully generative model using a
Bayesian framework and found that the plaid model is equivalent to
the PRM model for specific parameters. Further it has been shown
that “binary matrix factorization” (Meeds et al., 2007) is the plaid
model with α = β = 0 (constant bicluster) if the weighting matrix
is diagonal.

The latter models (Gu and Liu, 2008; Caldas and Kaski, 2008)
are generative models which have the advantage that (1) they
select models using well-understood model selection techniques like
maximum likelihood, (2) hyperparameter selection methods (e.g.
to determine the number of biclusters) can rely on the Bayesian
framework, (3) signal-to-noise ratios can be computed, (4) they can
be compared to each other via the likelihood or posterior, (5) tests
like the likelihood ratio test are possible, and (6) they produce a
global model to explain all data. These models are additive and
assume that all effects are Gaussian to utilize Gibbs sampling for
parameter estimation. However after prefiltering, real microarray
data sets are not Gaussian distributed and have heavy tails (Hardin
and Wilson, 2009), even after log-transformation, which can be seen
in Figures S8, S9, and S10 in the supplementary for gene expression
data sets. In this paper, we propose a generative multiplicative model
tailored to the special characteristics of gene expression data.

This paper is organized as follows. Section 2 introduces the
multiplicative bicluster model class. Section 3 describes the model
selection (training) algorithm for the new model class. Section 4
highlights how biclusters can be ranked according to the information
they contained about the data. Section 5 describes how to extract
bicluster members from our new models. Finally, Section 6 provides
a experimental validation of the new method.

2 THE FABIA MODEL
We propose a multiplicative model class for analyzing gene expression
data sets for several reasons. First, a multiplicative model allows to model
heavy tailed data as we observed in gene expression data. Secondly, it
can relate the strength of gene expression patterns to characteristics of
the induced condition like elapsed time or concentration of compounds.
After log transformation, also exponential dynamics like decay (mRNA or
compound) or saturation can be modeled. Note that supervised multiplicative
models, e.g. support vector machines, were successfully applied to log-
transformed gene expression data sets. Further, artificial multiplicative
effects are introduced during data preprocessing, for example if expression
values are standardized then variations stemming from noise scale the signal.

We assume that the gene expression data set is preprocessed and filtered
for genes that contain a signal (e.g. informative call or signal strength).
The resulting data is given as a data matrix X ∈ Rn×l, where every row
corresponds to a gene and every column corresponds to a sample; the value
xkj corresponds to the expression level of the k-th gene in the j-th sample.
The matrixX is the input to biclustering methods.

We define a bicluster as a pair of a row (gene) set and a column (sample)
set for which the rows are similar to each other on the columns and vice
versa. In a multiplicative model, two vectors are similar if one is a multiple
of the other, that is the angle between them is zero or as realization of
random variables their correlation coefficient is one. It is clear that such a
linear dependency on subsets of rows and columns can be represented as an
outer product λ zT of two vectors λ and z. The vector λ corresponds to a
prototype column vector that contains zeros for genes not participating in the
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Fig. 1. The outer product λ zT of two sparse vectors results in a matrix
with a bicluster. Note, that the non-zero entries in the vectors are adjacent to
each other for visualization purposes only.

bicluster, whereas z is a vector of factors with which the prototype column
vector is scaled for each sample; clearly z contains zeros for samples not
participating in the bicluster. Vectors containing many zeros or values close
to zero are called sparse vectors. Fig. 1 visualizes this representation by
sparse vectors schematically.

The overall model for p biclusters and additive noise is

X =

p∑
i=1

λi z
T
i + Υ = Λ Z + Υ , (1)

where Υ ∈ Rn×l is additive noise and λi ∈ Rn and zi ∈ Rl are the
sparse prototype vector and the sparse vector of factors of the i-th bicluster,
respectively. The second formulation above holds if Λ ∈ Rn×p is the sparse
prototype matrix containing the prototype vectors λi as columns and Z ∈
Rp×l is the sparse factor matrix containing the transposed factors zTi as
rows. Note that Eq. (1) formulates biclustering as sparse matrix factorization.

According to Eq. (1), the j-th sample xj , i.e., the j-th column ofX , is

xj =

p∑
i=1

λi zij + εj = Λ z̃j + εj , (2)

where εj is the j-th column of the noise matrix Υ and z̃j =
(z1j , . . . , zpj)

T denotes the j-th column of the matrix Z. Recall that
zTi = (zi1, . . . , zil) is the vector of values that constitutes the i-th bicluster
(one value per sample), while z̃j is the vector of values that contribute to the
j-th sample (one value per bicluster).

The formulation in Eq. (2) facilitates a generative interpretation by a factor
analysis model with p factors

x =

p∑
i=1

λi z̃i + ε = Λ z̃ + ε , (3)

where x are the observations, Λ is the loading matrix, z̃i is the value of
the i-th factor, z̃ = (z̃1, . . . , z̃p)T is the vector of factors, and ε ∈ Rn
is the additive noise. Standard factor analysis assumes that the noise is
independent of z̃, that z̃ is N (0, I)-distributed, and that ε is N (0,Ψ)-
distributed, where the covariance matrix Ψ ∈ Rn×n is a diagonal matrix
expressing independent Gaussian noise. The parameter Λ explains the
dependent (common) and Ψ the independent variance in the observations x.
Normality of the additive noise in gene expression is justified by the findings
in (Hochreiter et al., 2006).

The unity matrix as covariance matrix for z̃ may be violated by
overlapping biclusters, however we want to avoid to divide a real bicluster
into two factors. Thus, we prefer uncorrelated factors over more sparseness.
The factors can be decorrelated by setting ẑ := A−1 z̃ and Λ̂ := Λ A

with the symmetric invertible matrixA2 = E
(
z̃ z̃T

)
:

Λ z = ΛAA−1 z = Λ̂ ẑ and

E
(
ẑ ẑT

)
= A−1 E

(
z̃ z̃T

)
A−1 = A−1A2A−1 = I .

Standard factor analysis does not consider sparse factors and sparse
loadings which are essential in our formulation to represent biclusters.
Sparseness is obtained by a component-wise independent Laplace
distribution (Hyvärinen and Oja, 1999), which is now used as a prior on
the factors z̃ instead of the Gaussian:

p(z̃) =
(

1√
2

)p p∏
i=1

e−
√

2 |z̃i|

Sparse loadings λi and, therefore sparse Λ, are achieved by two alternative
strategies. In the first model, called FABIA, we assume a component-wise
independent Laplace prior for the loadings (like for the factors):

p(λi) =
(

1√
2

)n n∏
k=1

e−
√

2 |λki| (4)

The FABIA model contains the product of Laplacian variables which is
distributed proportionally to the 0-th order modified Bessel function of the
second kind (Bithas et al., 2007). For large values, this Bessel function is
a negative exponential function of the square root of the random variable.
Therefore, the tails of the distribution are heavier than those of the Laplace
distribution. The Gaussian noise, however, reduces the heaviness of the tails
such that the heaviness is between Gaussian and Bessel function tails —
about as heavy as the tails of the Laplacian distribution. These heavy tails
are exactly the desired model characteristics.

The second model, called FABIAS, uses a prior distribution for the
loadings that is nonzero only in regions where the loadings are sparse.
Following (Hoyer, 2004), we define sparseness as

sp(λi) =

√
n −

∑n
k=1 |λki| /

∑n
k=1 λ

2
ki√

n − 1

leading to the prior with parameter spL

p(λi) =

{
c for sp(λi) ≤ spL

0 for sp(λi) > spL
. (5)

Relation to Independent Component Analysis. The FABIA and the
FABIAS models are closely related to Independent Component Analysis
(ICA; Comon, 1994; Bell and Sejnowski, 1995; Hyvärinen, 1999). ICA
searches for a matrix factorization, where the components of z̃ in model
Eq. (3) without noise ε should be statistically independent from each other.
The matrix decomposition for ICA is

X = ΛICA ZICA, where ZICA Z
T
ICA = I .

If super-Gaussian priors (e.g. Laplacian) are assumed, contrast functions like
the kurtosis of the components of zICA are maximized for a given variance
and sparse representations are obtained. Thus only ZICA is sparse, but not
ΛICA as in FABIA and FABIAS.

3 MODEL SELECTION
The free parameters Λ and Ψ can be estimated by Expectation-
Maximization (EM; Dempster et al., 1977). With a prior probability on the
loadings, the a posteriori of the parameters is maximized like in (Hochreiter
et al., 2006; Talloen et al., 2007).

3.1 Variational Approach for Sparse Factors
Model selection is not straightforward because the likelihood

p(x | Λ,Ψ) =

∫
p(x | z̃,Λ,Ψ) p(z̃) dz̃

cannot be computed analytically for a Laplacian prior p(z̃). We employ a
variational approach according to Girolami (2001) and Palmer et al. (2006)
for model selection. They introduce a model family that is parametrized by
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ξ, where the maximum over models in this family is the true likelihood:

arg max
ξ

p(x|ξ) = log p(x) .

Using an EM algorithm, not only the likelihood with respect to the
parameters Λ and Ψ is maximized, but also with respect to ξ.

In the following, Λ and Ψ denote the actual parameter estimates.
According to Girolami (2001) and Palmer et al. (2006), we obtain

E
(
z̃j | xj

)
=
(
ΛT Ψ−1 Λ + Ξ−1

j

)−1
ΛT Ψ−1 xj and

E
(
z̃j z̃

T
j | xj

)
=
(
ΛT Ψ−1 Λ + Ξ−1

j

)−1
+

E
(
z̃j | xj

)
E(z̃j | xj)T ,

where Ξj stands for diag (ξj). The update for ξj is

ξj = diag
(√

E(z̃j z̃Tj | xj)
)
.

3.2 New Update Rules for Sparse Loadings
The update rules for FABIA (Laplace prior on loadings) are

Λnew =

1
l

∑l
j=1 xj E(z̃j | xj)T − α

l
Ψ sign(Λ)

1
l

∑l
j=1 E(z̃j z̃Tj | xj)

(6)

diag (Ψnew) = ΨEM + diag
(α
l

Ψ sign(Λ)(Λnew)T
)

where

ΨEM = diag

(
1

l

l∑
j=1

xjx
T
j − Λnew 1

l

l∑
j=1

E (z̃j | xj) xTj
)
.

The update rules for FABIAS must take into account that each λi from
Λ has a prior with restricted support. Therefore the sparseness constraints
sp(λi) ≤ spL from Eq. (5) hold. These constraints are ensured by a
projection of λi after each Λ update according to Hoyer (2004). The
projection is a convex quadratic problem which minimizes the Euclidean
distance to the original vector subject to the constraints. The projection
problem can be solved fast by an iterative procedure where the l2-norm of
the vectors is fixed to 1. We update diag(Ψnew) = ΨEM and project each
updated prototype vector to a sparse vector with sparseness spL giving the
overall projection:

Λnew = proj

(
1
l

∑l
j=1 xj E (z̃j | xj)T

1
l

∑l
j=1 E(z̃j z̃Tj | xj)

, spL

)
3.3 Extremely Sparse Priors
Some gene expression data sets are sparser than Laplacian. For example,
during estimating DNA copy numbers with Affymetrix SNP 6 arrays,
we observed a kurtosis larger than 30 (FABIA results shown at
http://www.bioinf.jku.at/software/fabia/fabia.html). We want to adapt our
model class to deal with such sparse data sets. Toward this end, we define
extremely sparse priors both on the factors and the loadings utilizing the
following (pseudo) distributions:

Generalized Gaussians: p(z) ∝ exp
(
− |z|β

)
Jeffrey’s prior: p(z) ∝ exp (− ln |z|) = 1/|z|
Improper prior: p(z) ∝ exp

(
|z|−β

)
For the first distribution, we assume 0 < β ≤ 1 and for the third 0 < β.
Note, the third distribution may only exist on the interval [ε, a] with 0 <
ε < a. We assume that ε is sufficiently small.

For the loadings, we need the derivatives of the negative log-distributions
for optimizing the log-posterior. These derivatives are proportional to
|z|−spl, where spl = 0 corresponds to the Laplace prior and spl > 0 to
sparser priors. The update rule is as in Eq. (6), where sign(Λ) is replaced
by |Λ|−spl sign(Λ) with element-wise operations (absolute value, sign,
exponentiation, multiplication).

For the factors, we represent the priors through a convex variational
form according to Palmer et al. (2006). That is possible because g(z) =

− ln p(
√
z) is increasing and concave for z > 0 (first order derivatives

are larger and second order smaller than zero). According to Palmer et al.
(2006), the update for ξj is

ξj ∝ diag
(
E
(
z̃j z̃

T
j | xj

)spz
)

for all spz ≥ 1/2, where spz = 1/2 (β = 1) represents the Laplace prior
and spz > 1/2 leads to sparser priors.

3.4 Data Preprocessing and Initialization
The data x may be centered either to zero mean or to zero median which
we prefer to obtain sparser raw data. Then the data should be scaled to unit
second moments to allow initialization of the parameters in the same range.
See the supplementary for justification of these preprocessing steps.

The iterative model selection procedure requires initialization of the
parameters Λ, Ψ, and ξj . The simplest strategy is to initialize Λ randomly

while ensuring that Ψ = diag
(
covar(x) − ΛΛT

)
≥ δ > 0. The

variational parameter vectors ξj are initialized as vectors of ones. An
alternative initialization strategy can be based on ICA. The ICA solution
supplies factors ZICA that are sparse and decorrelated.

4 INFORMATION CONTENT OF BICLUSTERS
A highly desired property for biclustering algorithms is the ability to rank the
extracted biclusters analogously to principal components which are ranked
according to the data variance they explain. We rank biclusters according to
the information they contain about the data. The information content of z̃j
for the j-th observation xj is the mutual information between z̃j and xj :

I(xj ; z̃j) = H(z̃j) − H(z̃j | xj) =
1

2
ln
∣∣Ip + Ξj ΛT Ψ−1 Λ

∣∣
The independence of xj and z̃j across j gives

I(X;Z) =
1

2

l∑
j=1

ln
∣∣Ip + Ξj ΛT Ψ−1 Λ

∣∣ .
For the FARMS summarization algorithm (p = 1 and Ξj = 1), this
information is the negative logarithm of the I/NI call (Talloen et al., 2007).

To assess the information content of one factor, we consider the case
that factor z̃i is removed from the final model. This corresponds to setting
ξij = 0 (by ξij , we denote the i-th entry in ξj ) and therefore the explained
covariance ξji λi λTi is removed:

xj | (z̃j \ zij) ∼ N
(
Λ z̃j |zij=0 , Ψ + ξij λi λ

T
i

)
The information of zij given the other factors is

I(xj ; zij | (z̃j \ zij)) = H(zij | (z̃j \ zij))−H(zij | (z̃j \ zij),xj)

=
1

2
ln
(
1 + ξij λ

T
i Ψ−1λi

)
.

Again independence across j gives

I(X;zTi | (Z \ zTi )) =
1

2

l∑
j=1

ln
(
1 + ξij λ

T
i Ψ−1λi

)
.

This information content gives that part of information in x that zTi conveys
across all examples. Note that also the number of nonzero λi’s (size of the
bicluster) enters into the information content.

5 EXTRACTING MEMBERS OF BICLUSTERS
After model selection in Section 3 and ranking of bicluster in Section 4, the
i-th bicluster has soft gene memberships given by the absolute values of λi
and soft sample memberships given by the absolute values of zTi .
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However, applications may need hard memberships. We determine the
members of bicluster i by selecting absolute values λki and zij above
thresholds thresL and thresZ, respectively.

First, the second moment of each factor is normalized to 1 resulting in
a factor matrix Ẑ (in accordance with E(z̃z̃T ) = I). Consequently, Λ
is rescaled to Λ̂ such that ΛZ = Λ̂Ẑ. Now the threshold thresZ can be
chosen to determine which percentage of samples will on average belong
to a bicluster. For a Laplace prior, this percentage can be computed by
1
2

exp(−
√

2/thresZ).
In the default setting, for each factor ẑi, only one bicluster is extracted.

In gene expression, an expression pattern is either absent or present but not
negatively present. Therefore, the i-th bicluster is either determined by the
positive or negative values of ẑij . Which one of these two possibilities is
chosen is decided by whether the sum over

∣∣ẑij∣∣ > thresZ is larger for the
positive or negative ẑij .

The threshold thresL for the loadings is more difficult to determine,
because normalization would lead to a rescaling of the already normalized
factors. Since biclusters may overlap, the contribution of λkizij that
are relevant must be estimated. Therefore, we first estimate the standard
deviation of ΛZ by

sdLZ =

√√√√√ 1

p l n

(p,l,n)∑
(i,j,k)=(1,1,1)

(
λ̂ki ẑij

)2
.

We set this standard deviation to the product of both thresholds which
is solved for thresL: thresL = sdLZ / thresZ. However, an optimal
thresL depends on the sparseness parameters and on the characteristics of
the biclustering problem.

6 EXPERIMENTS
6.1 Evaluating Biclustering Results
We introduce a novel procedure for comparing two sets of biclusters,
where a bicluster is a set of matrix elements. Previous comparison
measures like the measures in (Gu and Liu, 2008) do not take into
account that one element may belong to more than one bicluster.
Another aspect is that missing a whole, but small, bicluster can be
more serious than missing the same number of elements in a larger
bicluster, because incomplete biclusters can be extended in a post-
processing step or by supervised learning.

We compute the similarity of bicluster sets as follows:
(1) Compute similarity index of all pairs of biclusters, where one

is from the first set and the other from the second set;
(2) Assign the biclusters of one set to biclusters of the other set

by maximizing the assignment through the Munkres algorithm
(Munkres, 1957);

(3) Divide the sum of similarities of the assigned biclusters by the
number of biclusters of the larger set.

Step (3) is essential to ensure that sets with a single bicluster and
sets with all possible biclusters do not obtain the maximal score.
Note, that the same procedure can analogously be used to compare
results of ordinary clustering results.

It remains to define the similarity of two biclusters. In (Boyce
and Ellison, 2001), different similarity indices for sets have been
compared. We choose 4 out of the best 5 indices and excluded
the Baroni-Urbani & Buser index. It also uses zero-zero matches
which is inappropriate in gene expression analysis where only
differentially expressed genes are of interest. For two biclusters A
and B, we define a as number of elements that are both in bicluster
A and in bicluster B (joint occurrences), b as number of elements in
bicluster B, but not in bicluster A, and c as number of elements in

bicluster A, but not in bicluster B. We use the following similarity
indices for sets:

Jaccard index (“ja”): a
a + b + c

Kulczynski index (“ku”): 1
2

(
a

a + b
+ a

a + c

)
Ochiai index (“oc”): a√

(a + b) (a + c)

Sørensen index (“so”): 2 a
2 a + b + c

The following holds for all four indices: the higher the similarity,
the higher the value. The highest value is 1 and it is only obtained
for two identical sets.

6.2 Compared Methods
We compare the following 13 biclustering methods:

(1) FABIA: our new method with sparse prior Eq. (4)
(2) FABIAS: our new method with sparseness projection Eq. (5)
(3) MFSC: matrix factorization with sparseness constraints

(Hoyer, 2004)
(4) plaid: plaid model (Lazzeroni and Owen, 2002)
(5) ISA: iterative signature algorithm (Ihmels et al., 2004)
(6) OPSM: order-preserving sub-matrices (Ben-Dor et al., 2003)
(7) SAMBA: statistical-algorithmic method for bicluster analysis

(Tanay et al., 2002)
(8) xMOTIF: conserved motifs (Murali and Kasif, 2003)
(9) Bimax: divide-and-conquer algorithm (Prelic et al., 2006)

(10) CC: Cheng-Church δ-biclusters (Cheng and Church, 2000)
(11) plaid t: improved plaid model (Turner et al., 2003)
(12) FLOC: flexible overlapped biclustering, a generalization of

Cheng-Church δ-biclusters (Yang et al., 2005)
(13) spec: spectral biclustering (Kluger et al., 2003)

For evaluating the methods, we used: for (1)–(3) our R package
fabia, for (4) the authors’ software1, for (5) and (6) the software
BicAT (Barkow et al., 2006), for (7) the software EXPANDER
(Shamir et al., 2005), for (8)–(13) the R package biclust (Kaiser
and Leisch, 2008).

In all experiments, rows (genes) were standardized to mean
0 and variance 1. For fair comparison, the parameters of the
methods were optimized on additional toy data sets. If more than
one setting was close to the optimum, all near optimal parameter
settings were tested. In the following, these variants are denoted as
method variant (e.g. plaid ss). A complete list of all settings and
variants is available in the supplementary.

6.3 Simulated Data Sets with Known Biclusters
Benchmark data sets published in (Prelic et al., 2006) and (Li
et al., 2009) are small (50 to 100 genes), have low noise, have
equally sized biclusters, and have only simultaneous row and
column overlaps. FABIA performed very well on these data sets (see
supplementary S6.3.1 and S6.3.2). However, we use more realistic
simulated data sets as shown in supplementary S6.3, where Fig. S8,
S9 and S10 show density and moments for real gene expression data
and S7 for our simulated data. Our simulated data match the gene
expression data better especially by the heavy tails. We assumed to
have n = 1000 genes and l = 100 samples. We implanted p = 10
multiplicative biclusters with the model given by Eq. (1).

1 http://www-stat.stanford.edu/˜owen/plaid/
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FABIA: reconstructed data
( 1000  genes,  100  samples,  13  biclusters )
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FABIA: absolute factors
( 1000  genes,  100  samples,  13  biclusters )
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FABIA: data
( 1000  genes,  100  samples,  13  biclusters )
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FABIA: noise free data
( 1000  genes,  100  samples,  13  biclusters )
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FABIA: absolute loadings
( 1000  genes,  100  samples,  13  biclusters )
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Fig. 2. An example of FABIA model selection. The data have 10 true
biclusters. We have trained the model with 13 biclusters. Only for
visualization purposes, the biclusters are generated as contiguous blocks.
Top: data (left) and noise-free data (right). Middle: factors Z. Bottom: data
reconstructed by the FABIA model as Λ Z (left) and loadings (right). The
lines indicate three biclusters and connect each bicluster in the reconstructed
data with its corresponding factors (middle) and loadings (bottom right).

The λi’s are generated by (i) randomly choosing the number Nλ
i

of genes in bicluster i from {10, . . . , 210}, (ii) choosing Nλ
i genes

randomly from {1, . . . , 1000}, (iii) adding N (0, 0.2) noise to λi
components that are not in bicluster i, and (iv) adding anN (±3, 1)
signal to λi components that are in bicluster i, where the sign is
chosen randomly for each gene.

The zi’s are generated by (i) randomly choosing the number
Nzi of samples in bicluster i from {5, . . . , 25}, (ii) choosing Nzi
samples randomly from {1, . . . , 100}, (iii) adding N (0, 0.2) noise
to zi components that are not in bicluster i, and (iv) adding an
N (2, 1) signal to zi components that are in bicluster i.

Finally, we draw the Υ entries (additive noise on all entries)
according toN (0, 3) and compute the dataX according to Eq. (1).

This data generation procedure is repeated independently 100
times to create 100 simulated data sets. Figure 2 visualizes a
FABIA result on a simulated data set, where, in contrast to our 100
benchmark data sets, the biclusters have been created as contiguous
blocks for visualization purposes. Table 1 shows the results for

Table 1. A: Results on the 100 simulated data sets. Average similarity scores
to the true biclusters as defined in Subsection 6.1 (standard deviation in
brackets). Best results are printed bold and second best in italics (“better”
means significantly better according to both a paired t-test and a McNemar
test of correct elements in biclusters). B: The last two rows show the p-values
of a two-sided Spearman rank correlation test on (i) the information content
and (ii) the similarity to true biclusters.

A: Scores for finding true biclusters
method ja ku oc so
FABIA 0.478(1e-2) 0.574(1e-2) 0.568(1e-2) 0.564(1e-2)
FABIAS 0.564(3e-3) 0.676(3e-3) 0.669(3e-3) 0.662(3e-3)
MFSC 0.057(2e-3) 0.113(3e-3) 0.106(3e-3) 0.100(3e-3)
plaid ss 0.045(9e-4) 0.195(2e-4) 0.119(1e-3) 0.081(2e-3)
plaid ms 0.072(4e-4) 0.169(9e-4) 0.141(5e-4) 0.124(5e-4)
plaid ms 5 0.083(6e-4) 0.195(2e-3) 0.165(1e-3) 0.144(9e-4)
ISA 1 0.046(8e-5) 0.137(6e-5) 0.101(1e-5) 0.076(5e-5)
ISA 2 0.077(3e-3) 0.129(4e-3) 0.123(4e-3) 0.117(4e-3)
ISA 3 0.039(3e-3) 0.067(5e-3) 0.064(5e-3) 0.062(4e-3)
OPSM 0.012(1e-4) 0.061(1e-4) 0.033(8e-5) 0.023(2e-4)
SAMBA 0.006(5e-5) 0.025(9e-5) 0.017(9e-5) 0.012(1e-4)
xMOTIF 0.002(6e-5) 0.011(1e-4) 0.006(1e-4) 0.003(1e-4)
Bimax 0.004(2e-4) 0.018(9e-4) 0.011(5e-4) 0.007(3e-4)
CC 0.001(7e-6) 0.011(2e-4) 0.004(2e-5) 0.002(1e-5)
plaid t ab 0.046(5e-3) 0.167(1e-2) 0.111(1e-2) 0.078(9e-3)
plaid t a 0.037(4e-3) 0.173(9e-3) 0.100(8e-3) 0.064(6e-3)
FLOC 0.006(3e-5) 0.015(2e-5) 0.013(1e-5) 0.011(5e-5)
spec 1 0.032(5e-4) 0.085(2e-3) 0.068(1e-3) 0.057(1e-3)
spec 2 0.011(5e-4) 0.027(1e-3) 0.024(1e-3) 0.021(1e-3)

B: p-value of rank correlation between information and similarity score
method ja ku oc so
FABIA 1.7e-05 6.8e-08 2.4e-06 1.7e-05
FABIAS 6.1e-03 9.8e-04 1.5e-03 6.1e-03

these 100 simulated data sets. The low p-values of a two-sided
Spearman’s rank correlation ρ test on information content and
similarity to true biclusters demonstrate that true biclusters can
indeed be identified by their information content (cf. Section 4). The
methods are evaluated by the average similarity score to the true
biclusters as defined in Subsection 6.1. Our new methods FABIA
and FABIAS outperform all other methods considerably.

The other methods showed similar characteristics as observed by
Gu and Liu (2008) for biclusters created by an additive model:
ISA has problems with multiple overlapping clusters; SAMBA
and OPSM excluded many relevant biclusters; SAMBA, Bimax,
xMOTIF, CC, and FLOC found many small random biclusters
(overfitting). MFSC extracted equally sized biclusters which did
not reflect the true biclusters structure, but explained the data well;
spec produces a partition of the samples for each gene set. The
plaid models tend to find large overlapping clusters.

6.4 Gene Expression Data Sets
We consider three gene expression data sets which have been
provided by the Broad Institute and were previously analyzed
by Hoshida et al. (2007). They first clustered the samples using
additional data sets and then confirmed the clusters by gene set
enrichment analysis. Our goal was to study how well biclustering
methods are able to re-identify these clusters without any additional
information.
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(A) The “breast cancer” data set (van’t Veer et al., 2002) was
aimed at discovering a predictive gene signature for the outcome of
a breast cancer therapy. We removed the outlier array S54 which
leads to a data set with 97 samples and 1213 probe sets. After
standardization, skewness was 0.45 and excess kurtosis 0.93. In
(Hoshida et al., 2007), three biologically meaningful sub-classes
were found, where 50 out of 61 cases from class 1 and 2 were
estrogen receptor positive and only 3 out of 36 from class 3.

(B) The “multiple tissue types” data set (Su et al., 2002) are
gene expression profiles from human and mouse samples across
diverse tissues and cell lines aimed at constructing a reference for
the mammalian transcriptome. The data set contains 102 samples
with 5565 probe sets. After standardization, skewness was 0.15 and
excess kurtosis 1.3. Biclustering should be able to re-identify the
tissue types.

(C) The “diffuse large-B-cell lymphoma (DLBCL)” data set
(Rosenwald et al., 2002) was aimed at predicting the survival after
chemotherapy. It consists of 180 samples and 661 probe sets, and
after standardization the skewness was -0.05 and excess kurtosis
0.35. In (Hoshida et al., 2007), three classes were found: OxPhos
(oxidative phosphorylation), BCR (B-cell response), and HR (host
response). These subclasses should be found by biclustering.

The biclustering results are summarized in Table 2. The
performance was assessed by comparing known classes of samples
in the data sets with the sample sets identified by biclustering as
defined in Subsection 6.1, in this case on sample clusters instead of
biclusters. For multiple tissue samples, the plaid models perform
best and our methods FABIA and FABIAS are second best. Our
methods found more biclusters than defined by the tissue types.
Additional clusters may stem from the different organisms that
are considered. For breast cancer and DLBCL data sets, our new
methods FABIA and FABIAS detected the clusters most accurately.

The new methods FABIA and FABIAS have considerably fewer
genes in their bicluster than the next best performing method, plaid.

6.5 Drug Design
In a drug design project, Affymetrix GeneChip HT HG-U133+
PM array plates with 96 samples (12 × 8) per plate were used to
analyze the effect of different compounds on gene expression. The
compounds are selected to be active on a cancer cell line and were
tested in groups of three replicates.

Raw expression data were summarized with FARMS (Hochreiter
et al., 2006) and informative probe sets are selected by I/NI calls
(Talloen et al., 2007). The preprocessed data matrix was 1413 ×
95 (one array was missing) with skewness of -0.39 and excess
kurtosis larger than 3.0 (i.e. heavier tails than Laplace). We tested
FABIA on this data set. Biclusters were extracted with thresZ =
1.5 for an average cluster size of 5 to 6 for the Laplacian prior
( 1
2

exp(−
√

2 1.5) ≈ 0.06).
FABIA found four biclusters. The first bicluster consisted of two

replicate sets (6 arrays), the second consisted of 5 replicate sets
with one replicate missing (14 arrays). The third bicluster consisted
of 3 replicate sets and an additional array (10 arrays). The fourth
bicluster consisted of arrays located at the last column of the plate —
corresponding to border arrays which dry out. In the meantime, this
problem has been fixed by Affymetrix. That replicates are clustered
together shows that our biclustering approach works correctly.

Table 2. Results on the (A) breast cancer, (B) multiple tissue samples, (C)
diffuse large-B-cell lymphoma (DLBCL) data sets measured by the score
from in Subsection 6.1. An “nc” entry means that the method did not
converge for this data set. Best results are in bold and second best in italics
(again “better” means significantly better according to a paired t-test).

(A) breast cancer (B) multiple tissues (C) DLBCL
method ja – ku – oc – so ja – ku – oc – so ja – ku – oc – so
FABIA 0.52–0.69–0.67–0.65 0.53–0.59–0.59–0.59 0.37–0.48–0.48–0.47
FABIAS 0.52–0.67–0.65–0.64 0.44–0.54–0.54–0.54 0.35–0.46–0.46–0.45
MFSC 0.17–0.29–0.27–0.26 0.31–0.44–0.44–0.44 0.18–0.29–0.28–0.28
plaid ss 0.39–0.47–0.45–0.44 0.56–0.66–0.65–0.64 0.30–0.40–0.40–0.39
plaid ms 0.39–0.47–0.46–0.44 0.50–0.63–0.62–0.60 0.28–0.38–0.38–0.38
plaid ms 5 0.29–0.36–0.36–0.35 0.23–0.25–0.25–0.25 0.21–0.29–0.29–0.28
plaid a ss 0.37–0.46–0.44–0.43 0.65–0.71–0.71–0.71 0.28–0.40–0.39–0.38
plaid a ms 0.34–0.40–0.39–0.39 0.58–0.65–0.65–0.65 0.27–0.37–0.37–0.37
plaid a ms 5 0.16–0.18–0.18–0.18 0.20–0.20–0.20–0.20 0.18–0.26–0.26–0.25
ISA 1 0.01–0.02–0.02–0.01 nc – nc – nc – nc 0.01–0.03–0.02–0.01
ISA 2 0.05–0.07–0.07–0.07 nc – nc – nc – nc 0.03–0.05–0.05–0.05
ISA 3 0.02–0.03–0.03–0.03 nc – nc – nc – nc 0.03–0.05–0.05–0.05
OPSM 0.04–0.08–0.07–0.06 0.04–0.07–0.07–0.07 0.03–0.21–0.10–0.05
SAMBA 01 0.01–0.02–0.02–0.01 0.01–0.02–0.02–0.02 0.01–0.02–0.02–0.02
SAMBA 05 0.02–0.04–0.03–0.03 0.03–0.05–0.04–0.04 0.02–0.04–0.03–0.03
xMOTIF 0.07–0.19–0.15–0.12 0.11–0.29–0.23–0.18 0.05–0.19–0.12–0.08
Bimax 0.01–0.01–0.01–0.01 0.10–0.33–0.02–0.13 0.07–0.04–0.24–0.18
CC 0.11–0.24–0.22–0.19 nc – nc – nc – nc 0.05–0.18–0.13–0.09
plaid t ab 0.24–0.31–0.30–0.29 0.38–0.49–0.48–0.46 0.17–0.25–0.24–0.22
plaid t a 0.23–0.28–0.28–0.27 0.39–0.48–0.48–0.48 0.11–0.26–0.22–0.19
spec 1 0.12–0.17–0.16–0.15 0.37–0.48–0.47–0.47 0.05–0.07–0.07–0.06
spec 2 0.07–0.11–0.10–0.10 0.21–0.31–0.30–0.30 0.08–0.14–0.14–0.14
FLOC 0.04–0.18–0.11–0.07 nc – nc – nc – nc 0.03–0.19–0.10–0.05

The bicluster with highest information content (2 sets of
replicates) extracted genes that are related to mitosis (GO gene set
enrichment analysis gave p < 10−13 for the hypergeometric test).
Regulation of mitosis genes is biologically plausible as inhibiting
cell division would be consistent with an active compound which
did not kill the cells. The compounds of this bicluster are now under
investigation by Johnson & Johnson Pharmaceuticals.

7 CONCLUSION
We have introduced a novel biclustering method called “Factor
Analysis for Bicluster Acquisition” (FABIA) that is a generative
multiplicative model that assumes realistic non-Gaussian signal
distributions with heavy tails. The generative model allows to rank
biclusters according to their information content. Model selection is
performed by maximum a posteriori via an EM algorithm based on
a variational approach.

On 100 simulated data sets with known true biclusters, FABIA
clearly outperformed all 11 competing methods. On three gene
expression data sets with previously verified sub-clusters, FABIA
was once the second best and twice the best-performing method.
Finally, FABIA has been successfully applied to drug design to find
compounds with similar effects on gene expression.
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