Institute of Bioinformatics, Johannes Kepler University Linz

FABIA: Factor Analysis for Bicluster Acquisition — Examples how to use FABIA —

Sepp Hochreiter

Institute of Bioinformatics, Johannes Kepler University Linz Altenberger Str. 69, 4040 Linz, Austria *hochreit@bioinf.jku.at*

Version 0.1.3, December 30, 2009

Contents

1	Example 1	3
2	Example 2	41

1 Example 1

Now we demonstrate how to use the package fabia on an example with output and plots. The data has been constructed using the package fabia by:

```
> n=200
> 1=100
> p=4
> dat <- make_fabi_data_blocks(n = n,l= l,p = p,f1 = 5,f2 = 5,of1 = 5,of2 = 10,
+ sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_1_noise = 0.2,
+ mean_1 = 3.0, sd_1 = 1.0
> X <- dat[[1]]
> ZC <- dat[[3]]
> LC <- dat[[4]]
> gclab <- rep.int(0,1)
> gllab <- rep.int(0,n)</pre>
> clab <- as.character(1:1)</pre>
> llab <- as.character(1:n)</pre>
> for (i in 1:p){
 +
     for (j in ZC[i]){
         clab[j] <- paste(as.character(i),"_",clab[j],sep="")</pre>
 +
     }
 +
 +
     for (j in LC[i]){
         llab[j] <- paste(as.character(i),"_",llab[j],sep="")</pre>
 +
     }
 +
 +
     gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i</pre>
     gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i</pre>
 +
 + }
> groups <- gclab
> write.csv(X, file = "datafile.csv")
> write.table(groups, file = "groups.txt")
> write.table(clab, file = "clabels.txt")
> write.table(llab, file = "rlabels.txt")
```

We stored the data to keep the same data in each Sweave run.

```
1. Load the library:
```

```
> library(fabia)
```

```
+----+
|....|
#
                              ######
                                    ###
                                          #
|....|
                    #
                          # #
                                         # #
                              #
                                  #
                                     #
|....#####....|
                    #
                         #
                              #
                                  #
                                     #
|....#####....
                    #####
                         #
                            # ######
                                     #
                                            #
|....|
                    #
                         ###### #
                                  #
                                     #
                                        #######
|....#####....|
                         #
                                            #
                    #
                            # #
                                     #
                                        #
                                  #
|....###....|
                   #
                         #
                            # ######
                                    ###
                                            #
                                        #
|....###....|
|....|
+----+
FABIA: Factor Analysis for Bicluster Acquisition
Changes in FABIA:
Version 0.1.1: first version (paper).
Version 0.1.2: centering, mode estimation.
Version 0.1.3: S4 classes, plot, summary, show.
```

For updates please check http://www.bioinf.jku.at/software/fabia/fabia.html

2. Read the data file "datafile.csv" and labels:

```
> X <- read.table("datafile.csv", header = TRUE, sep = ",")
> X <- as.matrix(X[, -1])
> groups <- read.table(file = "groups.txt")
> clab <- read.table(file = "clabels.txt")
> llab <- read.table(file = "rlabels.txt")
> colnames(X) <- 1:ncol(X)
> rownames(X) <- 1:nrow(X)</pre>
```

3. Select the model based on the data: 4 biclusters; sparseness 0.1; 400 cycles

> res <- fabia(X, 4, 0.1, 400, 1, 1)</pre>

```
Running FABIA on 200 x 100 matrix with
  Number of biclusters ----- p:
                                     4
  Sparseness factor ----- alpha:
                                     0.1
  Number of iterations ----- cyc:
                                     400
  Loading prior parameter ----- spl:
                                     1
  Factor prior parameter ----- spz:
                                     1
  Initialization interval ----- random:
                                     1
  Centering ----- center: 2 = median
  Scaling to variance one: ----- norm:
                                     1 = Yes
```

```
Scaling loadings per iteration -- scale: 0
                                                = No
   Constraint variational parameter -- lap: 1
Cycle: 0
Cycle: 20
Cycle: 40
Cycle: 60
Cycle: 80
Cycle: 100
Cycle: 120
Cycle: 140
Cycle: 160
Cycle: 180
Cycle: 200
Cycle: 220
Cycle: 240
Cycle: 260
Cycle: 280
Cycle: 300
Cycle: 320
Cycle: 340
Cycle: 360
Cycle: 380
```

4. Show information content of the biclusters:

> res@avini

[1] 83.39424 84.55786 97.26839 63.55998 328.77310

5. Give summary:

First, it gives the number or rows and columns of the original matrix and then the number of clusters. Then for the row cluster the information content is given. Then for each column its information content is given. Then for each cluster a column summary is given by a boxplot. Finally, for each cluster a row summary is given by a boxplot.

Information content of the clusters: BC 1 BC 2 BC 3 BC 4 BC sum 83.39 84.56 97.27 63.56 328.77

Informa	tion	content	; of	the samples:						
Sample 1		Sample	e 2	Sample 3	Sample	e 4	Sample	e 5	Sample	e 6
5.79		6.	30	8.27	7.	.07	7	. 17	12	.06
Sample	7	Sample	e 8	Sample 9	Sample	10	Sample	11	Sample	12
7.	11	5.	76	9.78	9.	.73	12	. 59	5	.38
Sample	13	Sample	14	Sample 15	Sample	16	Sample	17	Sample	18
5.	13	7.	70	8.03	7.	.81	4	.71	10	.69
Sample	19	Sample	20	Sample 21	Sample	22	Sample	23	Sample	24
11.	00	6.	50	9.58	4.	.49	6	. 89	13	.77
Sample	25	Sample	26	Sample 27	Sample	28	Sample	29	Sample	30
8.	60	8.	20	7.34	8.	. 25	6	.45	5	.87
Sample	31	Sample	32	Sample 33	Sample	34	Sample	35	Sample	36
5.	40	8.	23	6.53	3.	. 68	10	.03	3	.97
Sample	37	Sample	38	Sample 39	Sample	40	Sample	41	Sample	42
3.	59	2.	61	4.12	7.	. 30	9	. 45	12	.05
Sample	43	Sample	44	Sample 45	Sample	46	Sample	47	Sample	48
5.	25	5.	79	6.71	6.	. 85	1	.46	8	.84
Sample	49	Sample	50	Sample 51	Sample	52	Sample	53	Sample	54
4.	94	8.	33	8.60	3.	.72	1	.64	6	.87
Sample	55	Sample	56	Sample 57	Sample	58	Sample	59	Sample	60
2.	24	8.	.04	5.70	3.	.96	10	. 35	0	.95
Sample	61	Sample	62	Sample 63	Sample	64	Sample	65	Sample	66
1.	96	0.	96	5.26	7.	. 55	3	. 67	2	.11
Sample	67	Sample	68	Sample 69	Sample	70	Sample	71	Sample	72
6.	39	6.	.07	6.86	4.	.16	4	.68	9	.65
Sample	73	Sample	74	Sample 75	Sample	76	Sample	77	Sample	78
15.	58	9.	61	9.81	10.	.09	6	. 35	3	.28
Sample	79	Sample	80	Sample 81	Sample	82	Sample	83	Sample	84
13.	85	8.	.00	8.02	6.	.67	6	.84	6	.82
Sample	85	Sample	86	Sample 87	Sample	88	Sample	89	Sample	90
12.	98	З.	55	9.70	2.	.13	5	. 93	3	.02
Sample	91	Sample	92	Sample 93	Sample	94	Sample	95	Sample	96
5.	24	3.	.05	5.62	2.	. 29	3	. 92	3	.93
Sample	97	Sample	98	Sample 99	Sample 1	100	Sample :	sum		
4.	27	6.	35	3.81	2.	.31	328	.77		
Column	clust	cers / F	acto	ors:						
BC 1		E	3C 2		BC 3]	3C 4		
Min.	:-1.1	L566 M	lin.	:-4.0084	Min.	:-1	.3693 1	lin.	:-5.5	285

1st Qu.:-0	0.2591	1st Qu.	:-0.0658	1st Qu.	:-0.3100	1st Qu.	:-0.0311
Median :-0	0.0234	Median	: 0.0297	Median	:-0.0215	Median	: 0.0169
Mean : (0.1373	Mean	:-0.2001	Mean	: 0.1641	Mean	:-0.0896
3rd Qu.: (0.0493	3rd Qu.	: 0.2514	3rd Qu.	: 0.1272	3rd Qu.	: 0.2271
Max. : 4	4.0055	Max.	: 1.1020	Max.	: 3.4562	Max.	: 1.9453

Row clusters / Loadings:

BC 1	BC 2	BC 3	BC 4
Min. :-0.7547	Min. :-0.78254	Min. :-0.7855	Min. :-0.60071
1st Qu.:-0.0815	1st Qu.:-0.07069	1st Qu.:-0.0903	1st Qu.:-0.09105
Median : 0.0000	Median : 0.00000	Median : 0.0000	Median : 0.00000
Mean : 0.0155	Mean :-0.00120	Mean :-0.0278	Mean :-0.00874
3rd Qu.: 0.0901	3rd Qu.: 0.07902	3rd Qu.: 0.0676	3rd Qu.: 0.07569
Max. : 0.7918	Max. : 0.80556	Max. : 0.3557	Max. : 0.54532

6. Plot some statistics:

> show(res)

The statistics are shown in Figure 1 to Figure 4. They give

- (1) the information content of biclusters (Figure 1),
- (2) the information content of samples (Figure 2),
- (3) boxplots of loadings for each bicluster (row membership, Figure 3),
- (4) boxplots of factors for each bicluster (column membership, Figure 4).

Figure 1: Information content of biclusters. The biclusters are ranked according to their information. More information means larger and less noisy biclusters.

Information Content of Samples

Figure 2: Information content of samples. The samples are ranked according to their information. More information means that the sample participates at more biclusters or has stronger signals.

Loadings of the Biclusters

Figure 3: Boxplots of loadings for each bicluster (row membership). Gives the row size of the biclusters.

Factors of the Biclusters

Figure 4: Boxplots of factors for each bicluster (column membership). Gives the column size of the biclusters. Biclusters may be driven by few samples and are not robust.

Figure 5: The data.

7. Plot the factorization results:

```
> rr <- extract_plot(res,ti="FABIA")</pre>
```

The results are shown in Figure 5 to Figure 11. They give

- (1) the original data (Figure 5),
- (2) the reconstructed data by FABIA (Figure 6),
- (3) the reconstruction error of FABIA (Figure 7),
- (4) the estimated absolute loadings (Figure 8),
- (5) the estimated absolute factors (Figure 9),
- (6) the reconstructed data matrix sorted according to *k*-means membership applied to factors/columns and loadings/rows (Figure 10),
- (7) the original data matrix sorted according to *k*-means membership applied to factors/columns and loadings/rows (Figure 11),

Figure 6: The reconstructed data by FABIA.

Figure 7: The reconstruction error of FABIA.

Figure 8: The estimated absolute loadings.

Figure 9: The estimated absolute factors.

Figure 10: The reconstructed data matrix sorted according to k-means membership applied to factors (columns) and loadings (rows).

Figure 11: The original data matrix sorted according to k-means membership applied to factors (columns) and loadings (rows).

8. Plot the result as a biplot:

> colnames(res@X) <- clab\$x
> rownames(res@X) <- llab\$x</pre>

The biclusters will be sorted according to their information content.

Matrix factorization results are presented as *biplots*. A *biplot* allows information on both columns (samples) and rows (genes or variables) of a data matrix (gene expression matrix) to be displayed graphically.

In our plots,

- (1) indicative row items: red large circles give the most indicative row items (genes),
- (2) less indicative row items: golden small circles are row items (genes) which are less indicative,
- (3) **column items:** squares are the column items (samples),
- (4) **groups of column items:** column items (samples) of the same group have the same color,
- (5) **labels:** all data points are labeled according the column/row position in the original data matrix,
- (6) true bicluster membership: If a column/row item belongs to a true bicluster (from data generation) then this is indicated by the bicluster number as a prefix of the label followed by an underscore note, that an item my belong to more than one bicluster.

If squares/circles have a large deviation from zero in the x-direction then they will be assigned to the bicluster in x direction. If squares/circles have a large deviation from zero in the y-direction then they will be assigned to the bicluster in y direction. Squares/circles with large deviation from zero in 45° or 135° belong to both biclusters.

We give the following biplots:

- (1) biplot of bicluster 1 and 2 of the FABIA result (Figure 12),
- (2) biplot of bicluster 1 and 3 of the FABIA result (Figure 13),
- (3) biplot of bicluster 1 and 4 of the FABIA result (Figure 14),
- (4) biplot of bicluster 2 and 3 of the FABIA result (Figure 15),
- (5) biplot of bicluster 2 and 4 of the FABIA result (Figure 16),
- (6) biplot of bicluster 3 and 4 of the FABIA result (Figure 17).

BC1: 15%, 97 FABIA

Figure 12: Biplot of bicluster 1 and 2 of the FABIA result, where biclusters are sorted now according to their information content. Red large circles give the most indicative row items. Golden small circles are row items which are less indicative. Squares are the column items, where members of the same group have the same color. All data points are labeled according the column/row position in the original data matrix. If a column/row item belongs to a true bicluster (from data generation) then this is indicated by the bicluster number as a prefix of the label followed by an underscore. Note, that an item my belong to more than one bicluster. If squares/circles have a large deviation from zero in the x-direction then they will be assigned to the bicluster in x direction. If squares/circles have a large deviation from zero in the y-direction then they will be assigned to the bicluster in y direction. Squares/circles with large deviation from zero in 45° or 135° belong to both biclusters. Bicluster 1 and 2 share genes which are large circles on the 45° line or on the 135° line depending on the sign of loadings of the genes for the biclusters. The shared genes can be seen at the reconstructed data in Fig. 6 and the loadings in Fig. 8. Note, that the bicluster 1 and bicluster 4.

BC1: 15%, 97 FABIA

Figure 13: Biplot of bicluster 1 and 3 of the FABIA result. See Fig. 12 for the explanation.

BC1: 15%, 97 FABIA

Figure 14: Biplot of bicluster 1 and 4 of the FABIA result. See Fig. 12 for the explanation. Bicluster 1 and 4 share genes which are large circles on the 45° line or on the 135° line depending on the sign of loadings of the genes for the biclusters. The shared genes can be seen at the reconstructed data in Fig. 6 and the loadings in Fig. 8. Note, that the biclusters are sorted now according to their information content, thus bicluster 1 is the extracted bicluster 1 and bicluster 4 is the extracted bicluster 2.

BC2: 13%, 84 FABIA

Figure 15: Biplot of bicluster 2 and 3 of the FABIA result. See Fig. 12 for the explanation.

BC2: 13%, 84 FABIA

Figure 16: Biplot of bicluster 2 and 4 of the FABIA result. See Fig. 12 for the explanation. Bicluster 2 and 4 share genes which are large circles on the 135° line. The shared genes can be seen at the reconstructed data in Fig. 6 and the loadings in Fig. 8. Note, that the biclusters are sorted now according to their information content, thus bicluster 2 is the extracted bicluster 4 and bicluster 4 is the extracted bicluster 2.

BC3: 13%, 83 FABIA

Figure 17: Biplot of bicluster 3 and 4 of the FABIA result. See Fig. 12 for the explanation. Also bicluster 3 and 4 share genes which are large circles on the 45° line or on the 135° line depending on the sign of loadings of the genes for the biclusters. The shared genes can be seen at the reconstructed data in Fig. 6 and the loadings in Fig. 8. Note, that the biclusters are sorted now according to their information content, thus bicluster 3 is the extracted bicluster 3 and bicluster 4 is the extracted bicluster 2.

9. Extract biclusters:

> rb <- extract_bic(res)</pre>

In bic the biclusters are extracted according to the largest absolute values of the component *i*, i.e. the largest values of λ_i and the largest values of z_i .

The components of bic are:

- binp,
- bixv,
- bixn,
- biypv, and
- biypn.

They contain following information:

- binp give the size of the bicluster: number observations and number samples.
- bixv gives the values of the extracted observations that have absolute values above a threshold. They are sorted.
- bixn gives the extracted observation names (e.g. gene names).
- biypv gives the values of the extracted samples that have absolute values above a threshold. They are sorted.
- biypn gives the names of the extracted samples (e.g. sample names).

In bicopp the opposite cluster to the biclusters are given. Opposite means that the negative pattern is present.

The components of opposite clusters bicopp are:

- ∎ binn,
- bixv,
- ∎ bixn,
- biypnv, and
- biynn.

They contain following information:

- binp give the size of the opposite bicluster: number observations and number samples.
- bixv gives the values of the extracted observations that have absolute values above a threshold. They are sorted.
- bixn gives the extracted observation names (e.g. gene names).
- biynv gives the values of the opposite extracted samples that have absolute values above a threshold. They are sorted.
- biynn gives the names of the opposite extracted samples (e.g. sample names).

That means the samples are divided into two groups where one group shows large positive values and the other group has negative values with large absolute values. That means a observation pattern can be switched on or switched off relative to the average value.

numn gives the indices of bic with components:

- numng = bix and
- numnp = biypn.

numn gives the indices of bicopp with components:

- numng = bix and
- numnn = biynn.

```
10. List bicluster 1:
```

```
> rb$bic[1, ]
   $binp
   [1] 28 12
   $bixv
    [1] 0.7918153 -0.7546732 -0.7480349 0.7418612 0.7281603 0.6547531
    [7] 0.6399667 0.6389596 -0.6240919 -0.6034900 0.5979212 0.5971951
   [13] 0.5852676 0.5838222 -0.5801785 0.5771147 -0.5584461 -0.5559548
   [19] 0.5525784 0.5309607 0.5066357 0.4783094 -0.4777657 -0.4773567
   [25] -0.4571823 0.4543615 -0.4474381 -0.4232859
   $bixn
    [1] "10" "14" "8" "2" "23" "36" "20" "29" "4" "31" "24" "13" "15" "11" "32"
   [16] "44" "6" "19" "17" "22" "3" "21" "35" "33" "39" "5" "18" "1"
   $biypv
    [1] 4.0054604 3.8168875 3.6448392 3.3843838 3.1769709 3.1319345 2.7893371
    [8] 2.1336908 0.6475568 0.5227615 0.5112324 0.5020229
   $biypn
    [1] "4" "11" "7" "6" "9" "5" "10" "3" "96" "35" "81" "2"
11. List bicluster 2:
   > rb$bic[2, ]
   $binp
   [1] 18 15
   $bixv
    [1]
        0.8055587 -0.7825429 -0.7733592 -0.7650996 0.7398992 -0.6990429
```

[7] 0.6516050 -0.6444496 0.6286309 0.6284904 0.6168964 -0.5731003

```
[13] -0.5712088 -0.5571252 0.5115990 0.4739272 -0.4720350 -0.4639124
   $bixn
    [1] "49" "67" "58" "57" "68" "69" "56" "72" "55" "64" "53" "60" "52" "50" "71"
   [16] "70" "61" "51"
   $biypv
    [1] -4.0083639 -3.9008218 -3.3355192 -2.6362816 -2.5422327 -2.4198204
    [7] -2.4134336 -2.3951393 -2.3828737 -2.1094423 -1.7356527 -1.5410969
   [13] -1.2403794 -0.6502351 -0.5057733
   $biypn
    [1] "85" "84" "82" "83" "76" "72" "74" "79" "80" "75" "73" "77" "81" "52" "71"
12. Show bicluster 3:
   > rb$bic[3, ]
   $binp
   [1] 8 21
   $bixv
   [1] -0.7855035 -0.6323874 -0.6294644 -0.5624963 -0.5594361 -0.4439355 -0.4275572
   [8] -0.4138484
   $bixn
   [1] "28" "33" "25" "31" "30" "29" "27" "24"
   $biypv
    [1] 3.4561763 2.8548925 2.8172918 2.7746912 2.7271221 2.6195334 2.2525953
    [8] 2.1828300 2.1007515 1.9336496 1.8872969 1.7031376 1.4253472 0.9879875
   [15] 0.9763863 0.8680340 0.7882886 0.7342218 0.6836046 0.6107089 0.5105079
   $biypn
    [1] "21" "26" "33" "16" "28" "20" "32" "25" "24" "18" "35" "30" "19" "15" "22"
   [16] "23" "27" "79" "17" "85" "29"
13. List bicluster 4:
   > rb$bic[4, ]
   $binp
   [1] 8 16
   $bixv
   [1] -0.6007108 -0.5744221 0.5453208 -0.4550748 -0.4381924 0.4362393 0.4359989
   [8] -0.4266766
```

```
$bixn
[1] "39" "34" "37" "48" "46" "26" "41" "45"
$biypv
[1] -5.5284726 -3.2427672 -3.0101572 -2.9576651 -2.5290120 -2.1341345
[7] -1.5557628 -1.3484948 -1.1482656 -0.9229002 -0.7785127 -0.7505664
[13] -0.7178881 -0.5920485 -0.5435078 -0.5166205
$biypn
[1] "46" "41" "42" "43" "44" "45" "79" "40" "12" "68" "69" "64" "87" "35" "29"
[16] "80"
```

14. Plot bicluster 1:

Now the biclusters are visualized in the original data. Each bicluster is visualized in the raw data by two plots:

- Plot1: The data matrix is sorted such that the bicluster appear at the upper left corner. The bicluster is marked by a rectangle.
- Plot2: Only the bicluster is plotted.

We have following figures:

- Plot1 bicluster 1: Fig. 18,
- Plot2 bicluster 1: Fig. 19,
- Plot1 bicluster 2: Fig. 20,
- Plot2 bicluster 2: Fig. 21,
- Plot1 bicluster 3: Fig. 22,
- Plot2 bicluster 3: Fig. 23,
- Plot1 bicluster 4: Fig. 24,
- Plot2 bicluster 4: Fig. 25.

> plotBicluster(X,unlist(rb\$bic[1,5]),unlist(rb\$bic[1,3]))

15. Plot bicluster 2:

```
> plotBicluster(X,unlist(rb$bic[2,5]),unlist(rb$bic[2,3]))
```

16. Plot bicluster 3:

```
> plotBicluster(X,unlist(rb$bic[3,5]),unlist(rb$bic[3,3]))
```

17. Plot bicluster 4:

```
> plotBicluster(X,unlist(rb$bic[4,5]),unlist(rb$bic[4,3]))
```


Figure 18: Plot of Bicluster 1. The bicluster is moved to the top left of the original matrix and marked.

Figure 19: Plot of Bicluster 1. The bicluster, marked region of the previous image, is enlarged.

Figure 20: Plot of Bicluster 2. The bicluster is moved to the top left of the original matrix and marked.

Figure 21: Plot of Bicluster 2. The bicluster, marked region of the previous image, is enlarged.

Figure 22: Plot of Bicluster 3. The bicluster is moved to the top left of the original matrix and marked.

Figure 23: Plot of Bicluster 3. The bicluster, marked region of the previous image, is enlarged.

Figure 24: Plot of Bicluster 4. The bicluster is moved to the top left of the original matrix and marked.

Figure 25: Plot of Bicluster 4. The bicluster, marked region of the previous image, is enlarged.

```
18. List opposite bicluster 1:
```

```
> rb$bicopp[1, ]
$binn
[1] 28 16
$bixv
 [1] 0.7918153 -0.7546732 -0.7480349 0.7418612 0.7281603 0.6547531
 [7] 0.6399667 0.6389596 -0.6240919 -0.6034900 0.5979212 0.5971951
[13] 0.5852676 0.5838222 -0.5801785 0.5771147 -0.5584461 -0.5559548
[19] 0.5525784 0.5309607 0.5066357 0.4783094 -0.4777657 -0.4773567
[25] -0.4571823 0.4543615 -0.4474381 -0.4232859
$bixn
 [1] "10" "14" "8" "2" "23" "36" "20" "29" "4" "31" "24" "13" "15" "11" "32"
[16] "44" "6" "19" "17" "22" "3" "21" "35" "33" "39" "5" "18" "1"
$biynv
 [1] -1.1565660 -1.1412940 -0.8615079 -0.7913953 -0.7871622 -0.7658792
 [7] -0.7532986 -0.7442789 -0.6551553 -0.6362984 -0.6301016 -0.6200443
[13] -0.6000115 -0.5882842 -0.5192052 -0.5060870
$biynn
 [1] "73" "8" "59" "89" "87" "49" "27" "76" "24" "99" "85" "72" "57" "54" "91"
[16] "40"
```

19. Plot of opposite bicluster 1:

Now the opposite biclusters are visualized in the original data. In some applications the negative row pattern may be important which is given by opposite biclusters.

- Plot1: The data matrix is sorted such that the opposite bicluster appear at the upper left corner. The opposite bicluster is marked by a rectangle.
- Plot2: Only the opposite bicluster is plotted.

We have following figures:

- Plot1 opposite bicluster 1: Fig. 26,
- Plot2 opposite bicluster 1: Fig. 27.

```
> plotBicluster(X,unlist(rb$bicopp[1,5]),unlist(rb$bic[1,3]))
```


Figure 26: Plot of opposite Bicluster 1. The bicluster is moved to the top left of the original matrix and marked.

Figure 27: Plot of opposite Bicluster 1. The bicluster, marked region of the previous image, is enlarged.

2 Example 2

Here another example which has been exactly generated as the previous one but with different initialization.

- 1. Load the library:
 - > library(fabia)
- 2. Read the data file "datafile.csv" and labels:

```
> X <- read.table("datafile1.csv", header = TRUE, sep = ",")
> X <- as.matrix(X[, -1])
> groups <- read.table(file = "groups1.txt")
> clab <- read.table(file = "clabels1.txt")
> llab <- read.table(file = "rlabels1.txt")
> colnames(X) <- 1:ncol(X)
> rownames(X) <- 1:nrow(X)</pre>
```

3. Select the model based on the data: 4 biclusters; sparseness 0.1; 400 cycles

```
> res <- fabia(X, 4, 0.1, 400, 1, 1)
```

```
Running FABIA on 200 x 100 matrix with
  Number of biclusters ----- p:
                                         4
  Sparseness factor ----- alpha:
                                        0.1
  Number of iterations ----- cyc:
                                        400
  Loading prior parameter ----- spl:
                                        1
  Factor prior parameter ----- spz:
                                        1
  Initialization interval ----- random:
                                        1
  Centering ----- center: 2 = median
  Scaling to variance one: ----- norm: 1 = Yes
  Scaling loadings per iteration -- scale:
                                           = No
                                        0
  Constraint variational parameter -- lap:
                                        1
Cycle: 0
Cycle: 20
Cycle: 40
Cycle: 60
Cycle: 80
Cycle: 100
Cycle: 120
Cycle: 140
Cycle: 160
Cycle: 180
Cycle: 200
Cycle: 220
Cycle: 240
Cycle: 260
```

Cycle: 280 Cycle: 300 Cycle: 320 Cycle: 340 Cycle: 360 Cycle: 380

4. Show information content of the biclusters:

> res@avini
[1] 83.70053 55.00468 81.34770 110.41335 330.45634

5. Give summary:

First, it gives the number or rows and columns of the original matrix and then the number of clusters. Then for the row cluster the information content is given. Then for each column its information content is given. Then for each cluster a column summary is given by a boxplot. Finally, for each cluster a row summary is given by a boxplot.

> summary(res) An object of class Factorization call: "fabia" Number of rows: 200 Number of columns: 100 Number of clusters: 4 Information content of the clusters: BC 1 BC 2 BC 4 BC sum BC 3 83.70 55.00 81.35 110.41 330.46

Information	content of	the samples:			
Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
5.01	11.31	6.45	2.60	9.65	7.48
Sample 7	Sample 8	Sample 9	Sample 10	Sample 11	Sample 12
3.92	1.64	5.75	10.04	3.21	4.00
Sample 13	Sample 14	Sample 15	Sample 16	Sample 17	Sample 18
3.23	1.37	0.97	8.93	13.74	3.69
Sample 19	Sample 20	Sample 21	Sample 22	Sample 23	Sample 24
9.93	10.75	10.53	4.21	3.19	4.02

Sample 25	Sample 26	Sample 27	Sample 28	Sample	29 Sample 30
2.01	3.86	1.41	1.74	3.	70 6.32
Sample 31	Sample 32	Sample 33	Sample 34	Sample	35 Sample 36
4.45	9.59	12.25	2.74	10.	43 7.17
Sample 37	Sample 38	Sample 39	Sample 40	Sample	41 Sample 42
9.46	14.02	11.85	12.09	9.	88 11.93
Sample 43	Sample 44	Sample 45	Sample 46	Sample	47 Sample 48
11.47	12.01	1.20	7.16	6.	02 5.68
Sample 49	Sample 50	Sample 51	Sample 52	Sample	53 Sample 54
3.96	4.16	7.14	3.43	4.	66 2.69
Sample 55	Sample 56	Sample 57	Sample 58	Sample	59 Sample 60
2.42	6.97	4.97	7.37	7.	67 5.77
Sample 61	Sample 62	Sample 63	Sample 64	Sample	65 Sample 66
6.31	7.38	4.81	3.36	4.	63 4.64
Sample 67	Sample 68	Sample 69	Sample 70	Sample	71 Sample 72
5.52	1.53	1.01	5.18	- 9.	50 1.45
Sample 73	Sample 74	Sample 75	Sample 76	Sample	77 Sample 78
7.48	10.12	13.32	11.24	12.	21 8.55
Sample 79	Sample 80	Sample 81	Sample 82	Sample	83 Sample 84
11.85	7.32	11.50	10.23	11.	02 12.40
Sample 85	Sample 86	Sample 87	Sample 88	Sample	89 Sample 90
7 74	7 53	6 79	7 15	5	76 4 59
Sample 91	Sample 92	Sample 93	Sample 94	Sample	95 Sample 96
3 80	8 57	8 72	1 35	5 Sound to	50 Dampie 50
0.00 Sample 97	0.07 Sample 98	21.0 Sample 99	Sample 100	Sample g	01 0.40
7 71		5 55	2 54	330 pambre 2	46
1.11	4.23	0.00	2.04	550.	40
Column clust	tors / Facto	ra·			
	BC 0	15.	BC 3		BC /
$Min \qquad \cdot 1 1$	1050 Min	. 1 20000		2001	$M_{in} \rightarrow 1 020E$
$\begin{array}{ccc} \text{MIII.} &1.1 \\ 1_{\text{ct}} & 0_{\text{Ct}} & . \\ \end{array}$	1209 MIII.	1.30922	1 ct On . (0.3201	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ISU QU.:-0.2	2007 ISU Q 2171 Madia	u.:-0.13620	ISC QU.:-(0.0700	Ist $Qu.:=0.3572$
Median :-0.0	JI/I Media	n :-0.00999	Median : (0.0174	Median :-0.0524
Mean : 0.1	1788 Mean	: 0.12864	Mean :- (0.2033	Mean : 0.1780
3ra Qu.: 0.0		u.: 0.06568	3rd Qu.: ().1729	3rd Uu.: 0.0502
Max. : 4.0	0803 Max.	: 4.89308	Max. : ().9322	Max. : 4.1988
D J .	/ T] ·				
Row clusters	s / Loadings	:	59.0		5.9.4
BC 1	BC 2		BC 3		BC 4
Min. :-0.7	7055 Min.	:-0.73476	Min. :-().7696	Min. :-0.8073
1st Qu.:-0.(0487 1st Q	u.:-0.05721	1st Qu.:-().0861	1st Qu.:-0.0783
Median : 0.0	0000 Media	n : 0.00000	Median : (0.0000	Median : 0.0000
Mean : 0.0	0119 Mean	:-0.00738	Mean :-0	0.0248	Mean : 0.0144
3rd Qu.: 0.0	0685 3rd Q	u.: 0.04417	3rd Qu.: (0.0506	3rd Qu.: 0.1054
Max. : 0.7	7283 Max.	: 0.70033	Max. : (0.7840	Max. : 0.8347

Information Content of Biclusters

Figure 28: Information content of biclusters. The biclusters are ranked according to their information. More information means larger and less noisy biclusters.

- 6. Plot some statistics:
 - > show(res)

The statistics are shown in Figure 28 to Figure 31. They give

- (1) the information content of biclusters (Figure 28),
- (2) the information content of samples (Figure 29),
- (3) boxplots of loadings for each bicluster (row membership, Figure 30),
- (4) boxplots of factors for each bicluster (column membership, Figure 31).

Figure 29: Information content of samples. The samples are ranked according to their information. More information means that the sample participates at more biclusters or has stronger signals.

Loadings of the Biclusters

Figure 30: Boxplot of loadings for each bicluster (row membership). Gives the row size of the biclusters.

Factors of the Biclusters

Figure 31: Boxplot of factors for each bicluster (column membership). Gives the column size of the biclusters. Biclusters may be driven by few samples and are not robust.

Figure 32: The data.

7. Plot the factorization results:

```
> rr <- extract_plot(res,ti="FABIA")</pre>
```

The results are shown in Figure 32 to Figure 38. They give

- (1) the original data (Figure 32),
- (2) the reconstructed data by FABIA (Figure 33),
- (3) the reconstruction error of FABIA (Figure 34),
- (4) the estimated absolute loadings (Figure 35),
- (5) the estimated absolute factors (Figure 36),
- (6) the reconstructed data matrix sorted according to *k*-means membership applied to factors/columns and loadings/rows (Figure 37),
- (7) the original data matrix sorted according to k-means membership applied to factors/columns and loadings/rows (Figure 38),

Figure 33: The reconstructed data by FABIA.

Figure 34: The reconstruction error of FABIA.

Figure 35: The estimated absolute loadings.

Figure 36: The estimated absolute factors.

Figure 37: The reconstructed data matrix sorted according to *k*-means membership applied to factors (columns) and loadings (rows).

Figure 38: The original data matrix sorted according to k-means membership applied to factors (columns) and loadings (rows).

8. Plot the result as a biplot:

> colnames(res@X) <- clab\$x
> rownames(res@X) <- llab\$x</pre>

The biclusters will be sorted according to their information content.

Matrix factorization results are presented as *biplots*. A *biplot* allows information on both columns (samples) and rows (genes or variables) of a data matrix (gene expression matrix) to be displayed graphically.

In our plots,

- (1) indicative row items: red large circles give the most indicative row items (genes),
- (2) less indicative row items: golden small circles are row items (genes) which are less indicative,
- (3) **column items:** squares are the column items (samples),
- (4) **groups of column items:** column items (samples) of the same group have the same color,
- (5) **labels:** all data points are labeled according the column/row position in the original data matrix,
- (6) true bicluster membership: If a column/row item belongs to a true bicluster (from data generation) then this is indicated by the bicluster number as a prefix of the label followed by an underscore note, that an item my belong to more than one bicluster.

If squares/circles have a large deviation from zero in the x-direction then they will be assigned to the bicluster in x direction. If squares/circles have a large deviation from zero in the y-direction then they will be assigned to the bicluster in y direction. Squares/circles with large deviation from zero in 45° or 135° belong to both biclusters.

We give the following biplots:

- (1) biplot of bicluster 1 and 2 of the FABIA result (Figure 39),
- (2) biplot of bicluster 1 and 3 of the FABIA result (Figure 40),
- (3) biplot of bicluster 1 and 4 of the FABIA result (Figure 41),
- (4) biplot of bicluster 2 and 3 of the FABIA result (Figure 42),
- (5) biplot of bicluster 2 and 4 of the FABIA result (Figure 43),
- (6) biplot of bicluster 3 and 4 of the FABIA result (Figure 44).

BC1: 17%, 110 FABIA

Figure 39: Biplot of bicluster 1 and 2 of the FABIA result, where biclusters are sorted now according to their information content. Red large circles give the most indicative row items. Golden small circles are row items which are less indicative. Squares are the column items, where members of the same group have the same color. All data points are labeled according the column/row position in the original data matrix. If a column/row item belongs to a true bicluster (from data generation) then this is indicated by the bicluster number as a prefix of the label followed by an underscore. Note, that an item my belong to more than one bicluster. If squares/circles have a large deviation from zero in the x-direction then they will be assigned to the bicluster in x direction. If squares/circles have a large deviation from zero in the y-direction then they will be assigned to the bicluster in y direction. Squares/circles with large deviation from zero in 45° or 135° belong to both biclusters.

Figure 40: Biplot of bicluster 1 and 3 of the FABIA result. See Fig. 39 for the explanation.

Figure 41: Biplot of bicluster 1 and 4 of the FABIA result. See Fig. 39 for the explanation.

BC2: 13%, 83 FABIA

Figure 42: Biplot of bicluster 2 and 3 of the FABIA result. See Fig. 39 for the explanation. This is an nice example where bicluster 2 and 3 share most of the genes. Those shared genes are large circles on the 45° line or on the 135° line depending on the sign of loadings of the genes for the biclusters. The shared genes can be seen at the reconstructed data in Fig. 33 and the loadings in Fig. 35. Note, that the biclusters are sorted now according to their information content, thus bicluster 2 is the extracted bicluster 4 and bicluster 3 is the extracted bicluster 1.

Figure 43: Biplot of bicluster 2 and 4 of the FABIA result. See Fig. 39 for the explanation.

BC4: 8%, 55

BC3: 12%, 81 FABIA

Figure 44: Biplot of bicluster 3 and 4 of the FABIA result. See Fig. 39 for the explanation.

9. Extract biclusters:

> rb <- extract_bic(res)</pre>

In bic the biclusters are extracted according to the largest absolute values of the component *i*, i.e. the largest values of λ_i and the largest values of z_i .

The components of bic are:

- binp,
- bixv,
- bixn,
- biypv, and
- biypn.

They contain following information:

- binp give the size of the bicluster: number observations and number samples.
- bixv gives the values of the extracted observations that have absolute values above a threshold. They are sorted.
- bixn gives the extracted observation names (e.g. gene names).
- biypv gives the values of the extracted samples that have absolute values above a threshold. They are sorted.
- biypn gives the names of the extracted samples (e.g. sample names).

In bicopp the opposite cluster to the biclusters are given. Opposite means that the negative pattern is present.

The components of opposite clusters bicopp are:

- ∎ binn,
- bixv,
- ∎ bixn,
- biypnv, and
- ∎ biynn.

They contain following information:

- binp give the size of the opposite bicluster: number observations and number samples.
- bixv gives the values of the extracted observations that have absolute values above a threshold. They are sorted.
- bixn gives the extracted observation names (e.g. gene names).
- biynv gives the values of the opposite extracted samples that have absolute values above a threshold. They are sorted.
- biynn gives the names of the opposite extracted samples (e.g. sample names).

That means the samples are divided into two groups where one group shows large positive values and the other group has negative values with large absolute values. That means a observation pattern can be switched on or switched off relative to the average value.

numn gives the indices of bic with components:

- numng = bix and
- numnp = biypn.

numn gives the indices of bicopp with components:

- numng = bix and
- numnn = biynn.

```
10. List bicluster 1:
```

```
> rb$bic[1, ]
$binp
[1] 14 14
$bixv
[1] 0.7282878 -0.7055136 -0.7050421 0.6752001 0.6471913 0.6392858
[7] -0.6378798 0.6158848 0.5978589 -0.5855576 0.5782550 -0.5320636
[13] 0.5149076 0.4799769
```

```
$bixn
```

[1] "51" "55" "66" "72" "56" "64" "69" "57" "74" "65" "60" "53" "70" "71"

\$biypv

[1] 4.0803425 3.7670183 3.7393711 3.7091438 2.7555222 2.7072182 2.5175424 [8] 2.1430550 1.8178234 0.9949151 0.9910319 0.7287770 0.6252090 0.5440144

```
$biypn
```

[1] "87" "93" "83" "82" "84" "88" "92" "86" "85" "89" "79" "10" "75" "77"

11. List bicluster 2:

```
> rb$bic[2, ]
```

\$binp

[1] 10 12

```
$bixv
```

[1] -0.7347599 -0.7237299 0.7003256 0.6429161 0.6170422 0.5831093 [7] 0.5489500 -0.5199172 -0.4922033 -0.4897646

\$bixn

[1] "158" "157" "151" "156" "147" "150" "153" "149" "155" "148"

```
$biypv
    [1] 4.8930808 4.3301115 4.2630195 3.6650263 2.1011037 1.3127166 1.0532333
    [8] 1.0140897 0.9411019 0.8386498 0.7978445 0.6374875
   $biypn
    [1] "19" "17" "21" "16" "20" "5" "22" "9" "75" "18" "56" "43"
12. Show bicluster 3:
   > rb$bic[3, ]
   $binp
   [1] 26 14
   $bixv
    [1] 0.7840192 -0.7695602 -0.7415442 -0.7264132 -0.7176893 -0.7049110
    [7] 0.7045732 0.6903743 -0.6785510 -0.6698484 -0.6696130 0.6554305
   [13] 0.6241190 0.6032392 -0.5814744 0.5638100 -0.5338614 -0.5232321
   [19] -0.5199036 -0.5143169 -0.5093665 0.5089974 -0.4958850 0.4944296
   [25] -0.4935683 0.4934973
   $bixn
   [1] "47" "73" "59" "78" "54" "48" "63" "71" "61" "58" "62" "49" "75" "70" "68"
   [16] "50" "67" "76" "60" "52" "53" "57" "56" "64" "74" "77"
   $biypv
    [1] -5.3200551 -3.9675752 -3.4955638 -3.1081751 -2.9868574 -2.4878519
    [7] -2.4697203 -2.0037119 -1.0014696 -0.6284133 -0.5760768 -0.5184633
   [13] -0.5080778 -0.5069546
   $biypn
    [1] "79" "80" "81" "73" "75" "76" "77" "74" "78" "83" "10" "20" "26" "35"
13. List bicluster 4:
   > rb$bic[4, ]
   $binp
   [1] 35 12
   $bixv
    [1] 0.8347163 -0.8073244 -0.7982483 -0.7968363 0.7950034 -0.7722240
    [7] -0.7653183 -0.7602627 0.7373761 -0.7363439 -0.7278777 -0.7235443
   [13] 0.7130559 0.6968159 0.6948011 -0.6883460 0.6641010 0.6639213
   [19] -0.6561803 0.6432195 -0.6369467 0.6274656 -0.6182669
                                                                0.6057058
   [25] -0.6041100 0.5902159 0.5878468 0.5877135 0.5851631
                                                               0.5525924
   [31] 0.5471646 -0.5453413 0.5349082 0.4986227 -0.4938649
```

```
$bixn
[1] "103" "122" "96" "130" "109" "114" "94" "95" "98" "123" "107" "129"
[13] "102" "124" "127" "99" "92" "126" "104" "106" "89" "117" "105" "116"
[25] "88" "108" "100" "101" "111" "90" "128" "97" "110" "118" "113"
$biypv
[1] 4.198769 3.655922 3.510759 3.483028 2.662345 2.626083 2.388467 2.274455
[9] 2.097810 1.652436 1.510333 1.066223
$biypn
[1] "42" "41" "43" "37" "39" "44" "33" "38" "40" "32" "35" "84"
```

14. Plot bicluster 1:

Now the biclusters are visualized in the original data. Each bicluster is visualized in the raw data by two plots:

- Plot1: The data matrix is sorted such that the bicluster appear at the upper left corner. The bicluster is marked by a rectangle.
- Plot2: Only the bicluster is plotted.

We have following figures:

- Plot1 bicluster 1: Fig. 45,
- Plot2 bicluster 1: Fig. 46,
- Plot1 bicluster 2: Fig. 47,
- Plot2 bicluster 2: Fig. 48,
- Plot1 bicluster 3: Fig. 49,
- Plot2 bicluster 3: Fig. 50,
- Plot1 bicluster 4: Fig. 51,
- Plot2 bicluster 4: Fig. 52.

> plotBicluster(X,unlist(rb\$bic[1,5]),unlist(rb\$bic[1,3]))

15. Plot bicluster 2:

```
> plotBicluster(X,unlist(rb$bic[2,5]),unlist(rb$bic[2,3]))
```

16. Plot bicluster 3:

```
> plotBicluster(X,unlist(rb$bic[3,5]),unlist(rb$bic[3,3]))
```

17. Plot bicluster 4:

> plotBicluster(X,unlist(rb\$bic[4,5]),unlist(rb\$bic[4,3]))

Figure 45: Plot of Bicluster 1. The bicluster is moved to the top left of the original matrix and marked.

Figure 46: Plot of Bicluster 1. The bicluster, marked region of the previous image, is enlarged.

Figure 47: Plot of Bicluster 2. The bicluster is moved to the top left of the original matrix and marked.

Figure 48: Plot of Bicluster 2. The bicluster, marked region of the previous image, is enlarged.

Figure 49: Plot of Bicluster 3. The bicluster is moved to the top left of the original matrix and marked.

Figure 50: Plot of Bicluster 3. The bicluster, marked region of the previous image, is enlarged.

Figure 51: Plot of Bicluster 4. The bicluster is moved to the top left of the original matrix and marked.

Figure 52: Plot of Bicluster 4. The bicluster, marked region of the previous image, is enlarged.

```
18. List opposite bicluster 1:
```

```
> rb$bicopp[1, ]
$binn
[1] 14 12
$bixv
[1] 0.7282878 -0.7055136 -0.7050421 0.6752001 0.6471913 0.6392858
[7] -0.6378798 0.6158848 0.5978589 -0.5855576 0.5782550 -0.5320636
[13] 0.5149076 0.4799769
$bixn
[1] "51" "55" "66" "72" "56" "64" "69" "57" "74" "65" "60" "53" "70" "71"
$biynv
[1] -1.1258789 -0.9619663 -0.8908189 -0.7996883 -0.7895223 -0.7641011
[7] -0.7051749 -0.6602593 -0.5784825 -0.5447497 -0.5399782 -0.5005576
$biynn
[1] "62" "38" "70" "42" "56" "33" "39" "21" "31" "50" "20" "67"
```

19. Plot of opposite bicluster 1:

Now the opposite biclusters are visualized in the original data. In some applications the negative row pattern may be important which is given by opposite biclusters.

- Plot1: The data matrix is sorted such that the opposite bicluster appear at the upper left corner. The opposite bicluster is marked by a rectangle.
- Plot2: Only the opposite bicluster is plotted.

We have following figures:

- Plot1 opposite bicluster 1: Fig. 53,
- Plot2 opposite bicluster 1: Fig. 54.

> plotBicluster(X,unlist(rb\$bicopp[1,5]),unlist(rb\$bic[1,3]))

Figure 53: Plot of opposite Bicluster 1. The bicluster is moved to the top left of the original matrix and marked.

Figure 54: Plot of opposite Bicluster 1. The bicluster, marked region of the previous image, is enlarged.