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Abstract. Recurrent nets are in principle capable to store past inputs to produce the
currently desired output. This recurrent net property is used in time series prediction
and process control. Practical applications involve temporal dependencies spanning many
time steps between relevant inputs and desired outputs. In this case, however, gradient
descent learning methods take to much time. The learning time problem appears because
the error vanishes as it gets propagated back. The decaying error flow is theoretically
analyzed. Then methods trying to overcome vanishing gradient are mentioned. Finally,
experiments comparing conventional algorithms and alternative methods are presented.
Experiments using advanced methods show that learning long time lags problems can be
done in reasonable time.
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1 INTRODUCTION

Recurrent neural nets are capable to extract temporal dependencies. Therefore recurrent
nets are used for many applications including temporal delays of relevant signals, e.g.,
speech processing, non-Markovian control, time series analysis, process control (e.g.[18]),
and music composition (e.g.[14]). Recurrent nets must learn which past inputs have to be
stored and computed to produce the current desired output. With gradient based learning
methods the current error signal has to “flow back in time” over the feedback connections
to past inputs for building up an adequate input storage. Conventional backpropagation,
however, suffer from too much learning time, when minimal time lags between relevant
inputs and corresponding teacher signals are extended. For instance, with “backprop
through time” (BPTT, e.g. [28]) or “Real-Time Recurrent Learning” (RTRL, e.g., [20]),
error signals flowing backwards in time tend to vanish. In this case long-term dependencies
are hard to learn because of insufficient weight changes. The next Section 2 theoretically
analysis the vanishing gradient. Then Section 3 presents methods trying to overcome the
problem of vanishing gradient. In the experimental Section 4 conventional algorithms are
compared with some advanced methods on tasks including long time lags. This paper is
partly based on [8].



2 DECAYING GRADIENT

Conventional gradient descent. Assume a fully connected recurrent net with units 1,.... n.
The activation of a non-input unit ¢ is y'(¢) = f;(net;(¢)) with activation function f;, and
net input net;(t) = 3, wi;y’ (t — 1). wy; is the weight on the connection from unit j to i.
Let di(t) denote output unit k’s target at current time ¢. Using mean squared error, k’s
external (target) error is Fy(t) = fl(neti(#))(dp(t) — y*(t)) (all non-output units 7 have
zero external error F;(t) = 0). At an arbitrary time 7 < ¢ non-input unit j’s error signal
is the sum of the external error and the backpropagated error signal from previous time
step:

V() = fi(net;(1)) ( +Zw” T+1)

Error signals are set to zero if activations are reset at time 7: 9;(7) = 0 (fi(net;(7)) = 0).
The weight update at time 7 is w/* = w%* + a;(7)y'(7 — 1), where « is the learning
rate, and [ is an arbitrary unit connected to unit j.

Vanishing error problem. See also [2] and [7]. Propagating back an error occurring at an
unit u at time step ¢ to an unit v for ¢ time steps, scales the error by:
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With [, = v and [y = u, the scaling factor is
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Analyzing equation (2). Here the relation between the experimentally observed vanishing
gradient and equation (2) should be given. The sum of the n?~" terms [T} _, f/ (nety,,(t—
m))wy,i,,_, scales the error back flow. These terms may have different signs, therefore,
increasing the number of units n does not necessarily increase the absolute error flow value.
But with more units the expectation of the error back flow’s absolute value increases. If
p(m, by lny) = | f] (nety, (t — m))wy,,_,| < 1.0 for all m the largest product in (2)
decreases exponentially with ¢, that is, the error flow vanishes. A vanishing error back
flow has almost no effect on Weight updates. Given constant y'm=1 = 0 p(m, Ly, ln_1)
- coth(3net;,,). Increasing the absolute weight values

is maximal where wy, ; _

lwi,i,. | — oo lead to p(m lm,lm 1) — 0. Thus, the vanishing gradient cannot be
aV01ded by increasing the absolute weight values.

If fi,, is the logistic sigmoid function, then the maximal value of f/ is 0.25, therefore,
p(m, Ly L) is less than 1.0 for |wy,i,, .| < 4.0. If wne: < 4.0 holds for the absolute
maximal weight value w;,., (e.g. initialization) then all p(m, I, [,,—1) are smaller than
1.0. Hence, with logistic activation functions the error flow tends to vanish especially at
starting to learn.



Increasing the learning rate does not countermand the effects of vanishing gradient, be-
cause it won’t change the ratio of long-range error flow and short-range error flow (recent
input have still greater influence on the current output).

Upper bound for the absolute scaling factor. Matrix A’s element in the ¢-th column and
J-th row is denoted by [A];;. The i-th component of vector x is denoted by [z];. The acti-
vation vector at time ¢ is [V (¢)]; := y*(#) with net input vector Net(t) := W Y (¢t —1) and
weight matrix [W];; := w;;. The activation function vector is [F(Net(t)]; := fi(net; (1)),
therefore Y'(t) = F'(Net(t)) = F(W Y (t —1)). F'(t) is the diagonal matrix of first order
derivatives defined as: [F'(t)];; := fl(net;(t)) if ¢ = j, and [F'(t)];; := 0 otherwise. W, is

unit v’s outgoing weight vector ([W,]; := [Wl;, = wy,), Wyr is unit u’s incoming weight
vector ([W,r]; := [W]u = wyi). The vector % is defined as [ani}:((?—q)]i = anfzj((;)—q)
for ¢ > 0 and the matrix Vy_1)Y (2) is defined as [Vy )Y (1)];; := aj]y(:(j)l).

From the definitions Vy_1)Y () = F'(t) W is obtained. Again, the scaling factor of an
error flowing back from an unit v (at time ¢) for ¢ time steps to an unit v is computed:
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where T' is the transposition operator.
Using a matrix norm || . |4 compatible with vector norm || . ||, fl... is defined as

mag = maXm=1_o{| F'(t =m) |[a}. For maximy _n{l2il} < || @ ||l one gets [2Ty] <

n || x|z || y|le Since |fl(net,(t —q))| < || F'(t —q) ||a < [, the following inequality
is obtained:
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and only the k-th component is 1.

This best case upper bound will only be reached if all | F'( — m) ||4 are maximal, and
contributions from all error flow paths have equal sign (see the product terms in equation
(2)). Large || W ||, however, leads to small values of || F'(t — m) ||4. Most sigmoid
units are saturated and the derivatives are small (also confirmed by experiments). Taking
the norms || W ||4 := max, >, |w,s| and || « ||.:= max,|2,|, f,.. = 0.25 holds for the
logistic sigmoid. For |w;;| < wimar < 470 Vi, 5 one gets || W |4 < nwme, < 4.0. If setting

Y= (%) < 1.0 then we get the exponential decay | 878939(;(;)‘1) | < n(p).

Remember that large || W ||4 leads to small | F'(t — m) ||4 and, therefore, vanishing
gradient is almost ever observed.



3 METHODS FOR LONG TIME LAG LEARNING

Gradient descent based algorithms. The methods [5, 6, 27, 22, 15], and other mentioned
in [16] suffer from the vanishing gradient. They are hardly able to learn long-term depen-
dencies. To overcome the vanishing gradient problem there are four types of solutions:

1) Methods which do not use gradients.

2) Methods which keep gradients on larger values.

3) Methods which operate on higher levels.

4

Methods which use special architectures.

(1)
(2)
(3)
(4)

(1) Global search methods do not use a gradient. In [2] methods such as simulated
annealing, multi-grid random search were investigated. Random weight guessing was
tested in [21]. It was found that global search methods work well on “simple” problems
involving long-term dependencies. “Simple” problems are characterized by being solved
with nets having few parameters and not needing the computation of precise continuous
values.

(2) The gradient can be kept on larger values by time-weighted pseudo-Newton opti-
mization and discrete error propagation [2]. It seems that these methods have problems
learning to store precise real-valued information over time.

(3) An EM approach for target propagation was proposed in [1]. This approach uses a
discrete number of states and, therefore, will have problems with continuous values.

Kalman filter techniques are used in [18] for recurrent network training. But a derivative
discount factor leads to vanishing gradient problems.

It a long-time lag problem contains local regularities then a hierarchical chunker system

[23] works well.

In [19] higher order units to bridge long time lags were used. This very fast method is
not capable to generalize to temporal dependencies not being trained and the number of
additive units increase with the time lags.

(4) Second order nets (using sigma-pi units) are in principle capable to increase the error
flow. But vanishing error problems can hardly be avoided. For experiments with these
network types see [26] and [13].

With Time-Delay Neural Networks (TDNN, e.g. [11]) old net activations are fed back
into the net using fixed delay lines. These delay lines can be viewed as “jump ahead”
connections between copies in a time-unfolded network. In best case the length of the
delay line is the ratio of the error flowing steps in a conventional net and the error flowing
steps using a TDNN. In TDNN the error decrease is slowed down because the error uses
“shortcuts” as it gets propagated back. TDNN have to deal with a trade-off: increasing
the delay line length increases the error flow but the net has more parameters/units. For a



special case of TDNN (called NARX networks) see [12]. A weighted sum of old activations
instead of a fixed delay line was used in [17]. A more complex version of a TDNN was
proposed in [4]. The error flow can be controlled by designing special units.

In [14] time constants determine the scaling factor of the error if it gets propagated back for
one time step at a single unit. But only with external time constant fine tuning extended
time gaps can be processed. In [25] a single unit is updated by adding the old activation
and the scaled current net input. But the stored value is sensible to perturbations by
later irrelevant net inputs.

“Long Short Term Memory” (LSTM) [8, 10, 9] uses a special architecture to enforces
constant error flow through special units. Unlike in [25] perturbations by current irrelevant
signals are prevented by multiplicative units.

4 EXPERIMENTS
4.1 EXPERIMENT 1: EMBEDDED REBER GRAMMAR

Task. The “embedded Reber grammar” was used by various previous authors, e.g., [24],
[3] and [6]. This task do not include long time lags and, therefore, can be learned by con-
ventional methods. The experiment serves to show that even on short time lag problems
alternative methods outperform gradient descent methods.
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Figure 1: Reber grammar.
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Figure 2: Embedded Reber grammar.

Being at the leftmost node (with an empty string) in Figure 2 a string is produced by
following the directed edges and adding the corresponding symbols to the current string
until being in the rightmost node. Alternative edges are chosen randomly (probability:
0.5). The net sequentially processes the string getting as input the actual symbol and
having to predict the next symbol. To know the last but one string symbol the net have
to store the second symbol.

The task was tried to be solved by RTRL, Elman nets (ELM), Fahlman’s “Recurrent
Cascade-Correlation” (RCC), and LSTM. Experimental details can be found in the ref-



Table 1: FEXPERIMENT 1 — Embedded Reber grammar. Percentage of successful trials
and learning time for successful trials for RTRL (results taken from [2/]), Elman nets
(results taken from [3]), RCC (results taken from [6]) and LSTM (results taken from [8]).

‘ method ‘ hidden units ‘ # weights ‘ learning rate ‘ % of success ‘ success after ‘
RTRL 3 ~ 170 0.05 “some fraction” 173,000
RTRL 12 ~ 494 0.1 “some fraction” 25,000
ELM 15 ~ 435 0 >200,000
RCC 7-9 ~ 119-198 50 182,000
LSTM | 3 blocks, size 2 276 0.5 100 8,440

erences listed in table 1. Table 1 gives the results. Only LSTM always learned the task
and correct solution are learned faster then with gradient based methods.

4.2 EXPERIMENT 2: LONG TIME LAGS

The limitations of gradient descent based methods can be seen on this simple task in-
volving long minimal time lags. But advanced methods are able to learn the task with
minimal time lags of 100.

Two sequences are use for training: (y,ay,as,...,a,—1,y) and (x, a1, az,...,a,—1, ). The
symbols are coded locally which gives a p + 1 dimensional input vector. Strings are
processed sequentially and the net have to predict the next string symbol. For predicting
the last symbol the net has to remember the first symbol. Therefore this task involves a
minimal time lag of p.

RTRL [20], BPTT, the neural sequence chunker (CH) [23], and LSTM are applied to the
task. Experimental details can be found in [8]. Table 2 gives the results. Gradient based
methods (RTRL, BPTT) get into trouble when the minimal time lag exceeds 10 steps.
CH and LSTM are able to solve the task with long time lags.

Note: The sequences have local regularities required by the neural sequence chunker but
not by LSTM. LSTM performs well at sequences without local regularities (see [8]).

5 CONCLUSION

The error flow for gradient based recurrent learning methods was theoretically analyzed.
This analysis showed that learning to bridge long time lags can be difficult. Advanced
methods to overcome the vanishing gradient problem were mentioned. But most ap-
proaches have disadvantages (e.g., practicable only for discrete problems). The exper-
iments confirmed that conventional learning algorithms for recurrent nets cannot learn
long time lag problems in reasonable time. With conventional methods two advanced



Table 2: EXPERIMENT 2 — Long time lags. Success percentage and learning time until
success. With 100 time step delays, only CH and LSTM are successful.
‘ Method ‘ Delay p ‘ Learning rate ‘ # weights ‘ % Successful trials ‘ Success after ‘

RTRL 1 1.0 36 78 1,043,000
RTRL 4 1.0 36 56 892,000
RTRL 4 10.0 36 22 254,000
RTRL 10 1.0-10.0 144 0 > 5,000,000
RTRL | 100 1.0-10.0 10404 0 > 5,000,000
BPTT | 100 1.0-10.0 10404 0 > 5,000,000
CH 100 1.0 10506 33 32,400
LSTM | 100 1.0 10504 100 5,040

methods (the neural sequence chunker and long short term memory) were compared and
it was seen that they performed well on long time lag problems.
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