Source Separation as a
By-Product of Regularization

Sepp Hochreiter Jirgen Schmidhuber
Fakultdt fiir Informatik IDSIA
Technische Universitat Miinchen Corso Elvezia 36
80290 Miinchen, Germany 6900 Lugano, Switzerland
hochreit@informatik.tu-muenchen.de juergen@idsia.ch
Abstract

This paper reveals a previously ignored connection between two
important fields: regularization and independent component anal-
ysis (ICA). We show that at least one representative of a broad
class of algorithms (regularizers that reduce network complexity)
extracts independent features as a by-product. This algorithm is
Flat Minimum Search (FMS), a recent general method for finding
low-complexity networks with high generalization capability. FMS
works by minimizing both training error and required weight pre-
cision. According to our theoretical analysis the hidden layer of
an FMS-trained autoassociator attempts at coding each input by
a sparse code with as few simple features as possible. In experi-
ments the method extracts optimal codes for difficult versions of
the “noisy bars” benchmark problem by separating the underlying
sources, whereas ICA and PCA fail. Real world images are coded
with fewer bits per pixel than by ICA or PCA.

1 INTRODUCTION

In the field of unsupervised learning several information-theoretic objective func-
tions (OFs) have been proposed to evaluate the quality of sensory codes. Most OFs
focus on properties of the code components — we refer to them as code component-
oriented OFs, or COCOFs. Some COCOFs explicitly favor near-factorial, mini-
mally redundant codes of the input data [2, 17, 23, 7, 24] while others favor local
codes [22, 3, 15]. Recently there has also been much work on COCOF's encouraging
biologically plausible sparse distributed codes [19, 9, 25, 8, 6, 21, 11, 16].

While COCOFs express desirable properties of the code itself they neglect the costs
of constructing the code from the data. E.g., coding input data without redun-

dancy may be very expensive in terms of information required to describe the code-
generating network, which may need many finely tuned free parameters. We believe
that one of sensory coding’s objectives should be to reduce the cost of code genera-
tion through data transformations, and postulate that an important scarce resource
is the bits required to describe the mappings that generate and process the codes.

Hence we shift the point of view and focus on the information-theoretic costs of
code generation. We use a novel approach to unsupervised learning called “low-
complexity coding and decoding” (LococoDnE [14]). Without assuming particular
goals such as data compression, subsequent classification, etc., but in the spirit
of research on minimum description length (MDL), LOCOCODE generates so-called
lococodes that (1) convey information about the input data, (2) can be computed
from the data by a low-complexity mapping (LCM), and (3) can be decoded by an
LCM. We will see that by minimizing coding/decoding costs LOCOCODE can yield
efficient, robust, noise-tolerant mappings for processing inputs and codes.

Lococodes through regularizers. To implement LOCOCODE we apply regular-
ization to an autoassociator (AA) whose hidden layer activations represent the code.
The hidden layer is forced to code information about the input data by minimizing
training error; the regularizer reduces coding/decoding costs. Our regularizer of
choice will be Flat Minimum Search (FMS) [13].

2 FLAT MINIMUM SEARCH: REVIEW AND ANALYSIS

FMS is a general gradient-based method for finding low-complexity networks with
high generalization capability. FMS finds a large region in weight space such that
each weight vector from that region has similar small error. Such regions are called
“flat minima”. In MDL terminology, few bits of information are required to pick a
weight vector in a “flat” minimum (corresponding to a low-complexity network) —
the weights may be given with low precision. FMS automatically prunes weights
and units, and reduces output sensitivity with respect to remaining weights and
units. Previous FMS applications focused on supervised learning [12, 13].

Notation. Let O, H,I denote index sets for output, hidden, and input units,
respectively. For [€ O U H, the activation y' of unit [is y' = f(s;), where
51 =3, Wimy™ is the net input of unit [(m € H forl € O and m € I forl € H),
Wy, denotes the weight on the connection from unit m to unit [, f denotes the
activation function, and for m € I, y™ denotes the m-th component of an input
vector. W = |(O x H)U (H x I)| is the number of weights.

Algorithm. FMS’ objective function F features an unconventional error term:

2

oy*
Bwi]—

B= Y 1ogz<§%fj>2+vmogz 3

2
i,j: iCOUH keO k€O \ inji€OUH | [$~ (By’“)
€ Bwi]—

E = E; + AB is minimized by gradient descent, where F, is the training set mean
squared error (MSE), and A\ a positive “regularization constant” scaling B’s in-
fluence. Choosing A corresponds to choosing a tolerable error level (there is no a
priori “optimal” way of doing so). B measures the weight precision (number of
bits needed to describe all weights in the net). Given a constant number of output
units, FMS can be implemented efficiently, namely, with standard backprop’s order
of computational complexity [13].

2.1 FMS: A Novel Analysis

Simple basis functions (BFs). A BF is the function determining the activation
of a code component in response to a given input. Minimizing B’s term

T1 = > 1og2<aw”>

ij: iCOUH k€O

obviously reduces output sensitivity with respect to weights (and therefore units).
T'1 is responsible for pruning weights (and, therefore, units). T'1 is one reason why
low-complexity (or simple) BFs are preferred: weight precision (or complexity) is

. . oy
mainly determined by B
Sparseness. Because T'1 tends to make unit activations decrease to zero it favors

sparse codes. But T'1 also favors a sparse hidden layer in the sense that few hidden
units contribute to producing the output. B’s second term

ay*
Bwi]—

T2 = Wlog) > -
keo \ i,5: icOUH /Zkeo (%)

punishes units with similar influence on the output. We reformulate it:

> ‘B_yk ‘ ay*
k O K u
T2=Wlg| 3. 3 < o -

i,j: t€OUH w,v: ueOUH Zk O \/Zk O
€ S

gl

ay*
EIvG

Wlog | O] [Ox H +[I7 Y>> o .
k€O i€eH ueH \/ZkEO %) \/ZkEO (gy

See intermediate steps in [14]. We observe: (1) an output unit that is very sensitive
with respect to two given hidden units will heavily contribute to T2 (compare the
numerator in the last term of 7'2). (2) This large contribution can be reduced by
making both hidden units have large impact on other output units (see denominator
in the last term of 7'2).

Few separated basis functions. Hence FMS tries to figure out a way of using
(1) as few BFs as possible for determining the activation of each output unit, while
simultaneously (2) using the same BF's for determining the activations of as many
output units as possible (common BFs). (1) and T'1 separate the BFs: the force to-
wards simplicity (see T'1) prevents input information from being channelled through
a single BF; the force towards few BF's per output makes them non-redundant. (1)
and (2) cause few BFs to determine all outputs.

Summary. Collectively T'1 and T2 (which make up B) encourage sparse codes
based on few separated simple basis functions producing all outputs. Due to space
limitations a more detailed analysis (e.g. linear output activation) had to be left to
a TR [14] (on the WWW).

3 EXPERIMENTS

We compare LOCOCODE to “independent component analysis” (ICA, e.g., [5, 1,
4, 18]) and “principal component analysis” (PCA, e.g., [20]). ICA is realized by
Cardoso’s JADE algorithm, which is based on whitening and subsequent joint diag-
onalization of 4th-order cumulant matrices. To measure the information conveyed
by resulting codes we train a standard backprop net on the training set used for
code generation. Its inputs are the code components; its task is to reconstruct the
original input. The test set consists of 500 off-training set exemplars (in the case
of real world images we use a separate test image). Coding efficiency is the average
number of bits needed to code a test set input pixel. The code components are
scaled to the interval [0,1] and partitioned into discrete intervals. Assuming inde-
pendence of the code components we estimate the probability of each discrete code
value by Monte Carlo sampling on the training set. To obtain the test set codes’
bits per pixel (Shannon’s optimal value) the average sum of all negative logarithms
of code component probabilities is divided by the number of input components. All
details necessary for reimplementation are given in [14].

Noisy bars adapted from [10, 11]. The input is a 5 x 5 pixel grid with horizontal
and vertical bars at random positions. The task is to extract the independent
features (the bars). Each of the 10 possible bars appears with probability 1. In
contrast to [10, 11] we allow for bar type mixing — this makes the task harder.
Bar intensities vary in [0.1,0.5]; input units that see a pixel of a bar are activated
correspondingly others adopt activation —0.5. We add Gaussian noise with variance
0.05 and mean 0 to each pixel. For ICA and PCA we have to provide information
about the number (ten) of independent sources (tests with n assumed sources will
be denoted by ICA-n and PCA-n). LoCOCODE does not require this — using 25
hidden units (HUs) we expect LOCOCODE to prune the 15 superfluous HUs.

Results. See Table 1. While the reconstruction errors of all methods are similar,
LococoDE has the best coding efficiency. 15 of the 25 HUs are indeed automati-
cally pruned: LOCOCODE finds an optimal factorial code which exactly mirrors the
pattern generation process. PCA codes and ICA-15 codes, however, are unstruc-
tured and dense. While ICA-10 codes are almost sparse and do recognize some
sources, the sources are not clearly separated like with LOCOCODE — compare the
weight patterns shown in [14].

Real world images. Now we use more realistic input data, namely subsections of:
1) the aerial shot of a village, 2) an image of wood cells, and 3) an image of striped
piece of wood. Each image has 150 x 150 pixels, each taking on one of 256 gray
levels. 7 x 7 (5 x 5 for village) pixels subsections are randomly chosen as training
inputs. Test sets stem from images similar to 1), 2), and 3).

Results. For the village image LOCOCODE discovers on-center-off-surround hidden
units forming a sparse code. For the other two images LOCOCODE also finds appro-
priate feature detectors — see weight patterns shown in [14]. Using its compact,
low-complexity features it always codes more efficiently than ICA and PCA.

exp. input | meth. | num. rec. code bits per pixel: # intervals

field comp. | error type 10 20 50 100
bars 5x5 | LOC 10 1.05 | sparse | 0.584 | 0.836 | 1.163 | 1.367
bars 5 x5 ICA 10 1.02 | sparse | 0.811 | 1.086 | 1.446 | 1.678
bars 5x5 | PCA 10 1.03 | dense | 0.796 | 1.062 | 1.418 | 1.655
bars 5x5 | ICA 15 0.71 dense | 1.189 | 1.604 | 2.142 | 2.502
bars 5x5 | PCA 15 0.72 | dense | 1.174 | 1.584 | 2.108 | 2.469

village | 5 x5 | LOC 8 1.05 | sparse | 0.436 | 0.622 | 0.895 | 1.068
village | 5 x5 ICA 8 1.04 | sparse | 0.520 | 0.710 | 0.978 | 1.165
village | 5 x5 | PCA 8 1.04 dense | 0.474 | 0.663 | 0.916 | 1.098

village | 5 x5 | ICA 10 1.11 | sparse | 0.679 | 0.934 | 1.273 | 1.495
village | 5 x5 | PCA 10 0.97 | dense | 0.578 | 0.807 | 1.123 | 1.355
village | 7x7 | LOC 10 8.29 | sparse | 0.250 | 0.368 | 0.547 | 0.688
village | 7x 7 | ICA 10 7.90 | dense | 0.318 | 0.463 | 0.652 | 0.796
village | 7x7 | PCA 10 9.21 | dense | 0.315 | 0.461 | 0.648 | 0.795
village | 7x 7 | ICA 15 6.57 | demse | 0.477 | 0.694 | 0.981 | 1.198
village | 7x7 | PCA 15 8.03 | dense | 0.474 | 0.690 | 0.972 | 1.189

cell 7x7 | LOC 11 0.840 | sparse | 0.457 | 0.611 | 0.814 | 0.961

cell 7x7 | ICA 11 0.871 | sparse | 0.468 | 0.622 | 0.829 | 0.983

cell 7x7 | PCA 11 0.722 | sparse | 0.452 | 0.610 | 0.811 | 0.960

cell 7x7 | ICA 15 0.360 | sparse | 0.609 | 0.818 | 1.099 | 1.315

cell 7x7 | PCA 15 0.329 | dense | 0.581 | 0.798 | 1.073 | 1.283
piece | 7x7 | LOC 4 0.831 | sparse | 0.207 | 0.269 | 0.347 | 0.392
piece | 7x7 | ICA 4 0.856 | sparse | 0.207 | 0.276 | 0.352 | 0.400
piece | 7x7 | PCA 4 0.830 | sparse | 0.207 | 0.269 | 0.348 | 0.397
piece | 7x7 | ICA 10 0.716 | sparse | 0.535 | 0.697 | 0.878 | 1.004
piece | 7x7 | PCA 10 0.534 | sparse | 0.448 | 0.590 | 0.775 | 0.908

Table 1: Overview of experiments: name of experiment, input field size, coding
method, number of relevant code components (code size), reconstruction error, na-
ture of code observed on the test set. PCA’s and ICA’s code sizes need to be prewired.
LOCOCODE’s, however, are found automatically (we always start with 25 HUs). The
final 4 columns show the coding efficiency measured in bits per pizel, assuming the
real-valued HU activations are partitioned into 10, 20, 50, and 100 discrete inter-
vals. LOCOCODE codes most efficiently.

4 CONCLUSION

According to our analysis LOCOCODE attempts to describe single inputs with as few
and as simple features as possible. Given the statistical properties of many visual
inputs (with few defining features), this typically results in sparse codes. Unlike
objective functions of previous methods, however, LOCOCODE’s does mot contain
an explicit term enforcing, say, sparse codes — sparseness or independence are not
viewed as a good things a priori. Instead we focus on the information-theoretic
complexity of the mappings used for coding and decoding. The resulting codes
typically compromise between conflicting goals. They tend to be sparse and exhibit
low but not minimal redundancy — if the cost of minimal redundancy is too high.

Our results suggest that LOCOCODE’s objective may embody a general principle of
unsupervised learning going beyond previous, more specialized ones. We see that
there is at least one representative (FMS) of a broad class of algorithms (regularizers
that reduce network complexity) which (1) can do optimal feature extraction as a
by-product, (2) outperforms traditional ICA and PCA on visual source separation
tasks, and (3) unlike ICA does not even need to know the number of independent
sources in advance. This reveals an interesting, previously ignored connection be-

tween regularization and ICA, and may represent a first step towards unification of
regularization and unsupervised learning.

More. Due to space limitations, much additional theoretical and experimental
analysis had to be left to a tech report (29 pages, 20 figures) on the WWW: see
[14].

Acknowledgments. This work was supported by DFG grant SCHM 942/3-1 and
DFG grant BR 609/10-2 from “Deutsche Forschungsgemeinschaft”.

References

[1] S. Amari, A. Cichocki, and H.H. Yang. A new learning algorithm for blind
signal separation. In David S. Touretzky, Michael C. Mozer, and Michael E.
Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages
757-763. The MIT Press, Cambridge, MA, 1996.

[2] H. B. Barlow, T. P. Kaushal, and G. J. Mitchison. Finding minimum entropy
codes. Neural Computation, 1(3):412-423, 1989.

[3] H. G. Barrow. Learning receptive fields. In Proceedings of the IEEE 1st Annual
Conference on Neural Networks, volume IV, pages 115-121. IEEE, 1987.

[4] A. J. Bell and T. J. Sejnowski. An information-maximization approach to
blind separation and blind deconvolution. Neural Computation, 7(6):1129-
1159, 1995.

[5] J.-F. Cardoso and A. Souloumiac. Blind beamforming for non Gaussian signals.
IEFE Proceedings-F, 140(6):362-370, 1993.

[6] P. Dayan and R. Zemel. Competition and multiple cause models. Neural
Computation, 7:565-579, 1995.

[7] G. Deco and L. Parra. Nonlinear features extraction by unsupervised redun-
dancy reduction with a stochastic neural network. Technical report, Siemens
AG, ZFE ST SN 41, 1994.

[8] D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559—
601, 1994.

[9] P. Foldidk and M. P. Young. Sparse coding in the primate cortex. In M. A.
Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 895—
898. The MIT Press, Cambridge, Massachusetts, 1995.

[10] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm
for unsupervised neural networks. Science, 268:1158-1161, 1995.

[11] G. E. Hinton and Z. Ghahramani. Generative models for discovering sparse
distributed representations. Philosophical Transactions of the Royal Society B,
352:1177-1190, 1997.

[12] S. Hochreiter and J. Schmidhuber. Simplifying nets by discovering flat minima.
In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural
Information Processing Systems 7, pages 529-536. MIT Press, Cambridge MA,
1995.

[13] S. Hochreiter and J. Schmidhuber. Flat minima. Newral Computation, 9(1):1-
42, 1997.

[14] S. Hochreiter and J. Schmidhuber. LOCOCODE. Technical Report FKI-222-
97, Revised Version, Fakultét fiir Informatik, Technische Universitit Miinchen,
1998.

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

T. Kohonen. Self-Organization and Associative Memory. Springer, second ed.,
1988.

M. S. Lewicki and B. A. Olshausen. Inferring sparse, overcomplete image codes
using an efficient coding framework. In M. I. Jordan, M. J. Kearns, and S. A.
Solla, editors, Advances in Neural Information Processing Systems 10, 1998.
To appear.

R. Linsker. Self-organization in a perceptual network. IEEE Computer, 21:105—
117, 1988.

L. Molgedey and H. G. Schuster. Separation of independent signals using time-
delayed correlations. Phys. Reviews Letters, 72(23):3634-3637, 1994.

M. C. Mozer. Discovering discrete distributed representations with iterative
competitive learning. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky,
editors, Advances in Neural Information Processing Systems 3, pages 627—634.
San Mateo, CA: Morgan Kaufmann, 1991.

E. Oja. Neural networks, principal components, and subspaces. International
Journal of Neural Systems, 1(1):61-68, 1989.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583):607—
609, 1996.

D. E. Rumelhart and D. Zipser. Feature discovery by competitive learning. In
Parallel Distributed Processing, pages 151-193. MIT Press, 1986.

J. Schmidhuber. Learning factorial codes by predictability minimization. Neu-
ral Computation, 4(6):863-879, 1992.

S. Watanabe. Pattern Recognition: Human and Mechanical. Willey, New York,
1985.

R. S. Zemel and G. E. Hinton. Developing population codes by minimizing
description length. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,
Advances in Neural Information Processing Systems 6, pages 11-18. San Mateo,
CA: Morgan Kaufmann, 1994.

