LOCOCODE PERFORMS NONLINEAR ICA
WITHOUT KNOWING THE NUMBER OF SOURCES

Sepp Hochreiter

Fakultat fiir Informatik
Technische Universitat Miinchen
80290 Miinchen, Germany

hochreit@informatik.tu-muenchen.de

ABSTRACT

Low-complexity coding and decoding (LOCOCODE), a
novel approach to sensory coding, trains autoassocia-
tors (AAs) by Flat Minimum Search (FMS), a recent
general method for finding low-complexity networks
with high generalization capability. FMS works by
minimizing both training error and required weight pre-
cision. We find that as a by-product LOCOCODE sepa-
rates nonlinear superpositions of sources without know-
ing their number. Assuming that the input data can
be reduced to few simple causes (this is often the case
with visual data), according to our theoretical analysis
the hidden layer of an FMS-trained AA tends to code
each input by a sparse code based on as few simple,
independent features as possible. In experiments LoO-
COCODE extracts optimal codes for difficult, nonlinear
versions of the “noisy bars” benchmark problem, while
traditional ICA and PCA do not.

1. INTRODUCTION

Blind source separation and Independent Component
Analysis (ICA) refer to recovering original source sig-
nals from observed mixtures of them. This belongs to
the area of unsupervised learning and has become one
of the most active areas in signal processing. ICA fa-
vors near-factorial, minimally redundant codes of the
input data. Recent efforts have focused on linear source
mixtures and fall into two major categories: Maximum
Entropy (ME) [3, 19] and Minimum Mutual Informa-
tion (MMI) [1, 5, 4, 15, 17]. Both are based on “code
component-oriented objective functions (COCOFs)”:
ME maximizes code entropy, MMI minimizes the mu-
tual information between code components. Most cur-
rent variants require a priori knowledge of the number
of independent sources.

There has been work on COCOF's for nonlinear ICA
given unknown source numbers, e.g., [2, 21, 7, 22].

Jurgen Schmidhuber

IDSTA
Corso Elvezia 36
6900 Lugano, Switzerland

juergen@idsia.ch

In particular, to the best of our knowledge reference
[21] represents the first “neural” approach to nonlin-
ear ICA. Here, however, we shift the point of view
away from COCOF-based approaches and instead fo-
cus on the information-theoretic costs of code genera-
tion. We use a novel approach to unsupervised learn-
ing called “low-complexity coding and decoding” (Lo-
COCODE [14]). In the spirit of research on minimum de-
scription length (MDL), LOCOCODE generates so-called
lococodes that (1) convey information about the input
data, (2) can be computed from the data by a low-
complexity mapping (LCM), and (3) can be decoded
by an LCM.

To implement LOCOCODE we regularize an autoas-
sociator (AA) whose hidden layer activations represent
the code. The hidden layer is forced to code infor-
mation about the input data by minimizing training
error; the regularizer reduces coding/decoding costs.
Our regularizer of choice will be Flat Minimum Search
(FMS) [13].

We will see that nonlinear ICA actually occurs as
a by-product of LOCOCODE’s more general complexity-
minimizing strategy: we find that LOCOCODE encour-
ages sparse codes based on few, separated, simple com-
ponent functions (the functions determining the activa-
tion of a code component in response to a given input).

This also establishes a connection to extensive re-
cent work on biologically plausible, sparse distributed
codes [18, 9, 23, 8, 6, 20, 11, 16]. In fact, we find that
LOoCOCODE is appropriate for extracting independent
sources if single inputs (with many input components)
are determined by few sources computable by simple
functions. Hence, assuming that visual data usually
can be reduced to few simple causes, LOCOCODE is ap-
propriate for visual coding. Unlike recent linear ICA
methods, LOCOCODE (a) is not inherently limited to
the linear case, and (b) does not need a priori infor-
mation about the number of independent data sources

- it simply prunes superfluous code components.

2. FLAT MINIMUM SEARCH: REVIEW
AND ANALYSIS

FMS is a general gradient-based method for finding
low-complexity networks with high generalization ca-
pability. FMS finds a large region in weight space such
that each weight vector from that region has similar
small error. Such regions are called “flat minima”. In
MDL terminology, few bits of information are required
to pick a weight vector in a “flat” minimum (corre-
sponding to a low-complexity network) — the weights
may be given with low precision. Previous FMS appli-
cations focused on supervised learning [12, 13].
Notation. Let O, H,I denote index sets for out-
put, hidden, and input units, respectively. For [€
O U H, the activation y' of unit [is y' = f (s;), where
s = > wimy™ is the net input of unit [(m € H
forl € O and m € I for | € H), wi, denotes the
weight on the connection from unit m to unit I, f de-
notes the activation function, and for m € I, y™ de-
notes the m-th component of an input vector. W =
(O x H)U (H x I)| is the number of weights.
Algorithm. FMS’ objective function E features
an unconventional error term:
2
)+ W

B= Y logz<

Oy
Ow:
i,j: iEOUH keO v

Bwij

W log Z Z -
k€O \ i,j:icOUH /Zkeo (%)

E = E, + AB is minimized by gradient descent, where
E, is the training set mean squared error (MSE), and
A a positive “regularization constant” scaling B’s in-
fluence. B measures the weight precision (number of
bits needed to describe all weights in the net). Given
a constant number of output units, FMS can be imple-
mented efficiently, namely, with standard backprop’s
order of computational complexity [13].

5%

2.1. FMS Analysis

Simple component functions (CFs). Minimizing
B’s term

T1 = Z

ij: iCOUH keO

obviously reduces output sensitivity with respect to
weights (and therefore units). 7T'1 is responsible for

pruning weights (and, therefore, units). 7T'1 is one rea-
son why low-complexity (or simple) CF's are preferred:
weight precision (or complexity) is mainly determined

by %. The chain rule allows for rewriting
ij

ayk _ a—yk ayi _ ayk
Bwij N 8:1/’ Bwij N 8:1/’

filsi) o, (2)

where f](s;) is the derivative of the activation function
of unit ¢ with activation y*. We obtain

9 Z fan-in(7) log fi(s;) +

i€OUH

2 Z fan-out(j) logy’ +
jEHUI

> fan-in(i)log) (‘3%:)2,

i€OUH keO

T1T =

where fan-in(z) (fan-out(7)) denotes the number of in-
coming (outgoing) weights of unit .

T1 makes (1) unit activations decrease to zero in
proportion to their fan-outs, (2) first-order derivatives
of activation functions decrease to zero in proportion to
their fan-ins, and (3) the influence of units on the out-
put decrease to zero in proportion to the unit’s fan-in.
For a detailed analysis see Hochreiter and Schmidhuber
(1997a).

Sparseness. Point (1) above favors sparse hid-
den unit activations (here: few active components);
point (2) favors non-informative hidden unit activa-
tions hardly affected by small input changes. Point
(3) favors sparse hidden unit activations in the sense
that “few hidden units contribute to producing the out-
put”. In particular, sigmoid hidden units with activa-
tion function m favor near-zero activations.

B’s second term

2

Byk
Bwi]—

T2 := Wlog) | >

.. k 2
k€O | ij€OVH | IS~ (gy)
S wi;

punishes units with similar influence on the output.
Using equation (2) and for i € O

Byk
oy’

—2 = 6]67:)
Shco (2
keO \ oyt

where § is the Kronecker delta (dy; = 1if k =¢ and 0
otherwise), we obtain

T2 = W log <|O| |O><H|2+|I|2ZZZ

k€O icH ueH

i
oy?
o 2 N 2
VSkeo (2) |/ Saeo (25)
See [14] for intermediate reformulation steps of T'2.

We observe: (1) an output unit that is very sensitive
with respect to two given hidden units will heavily con-
tribute to T2 (compare the numerator in the last term
of T'2). (2) This large contribution can be reduced by
making both hidden units have large impact on other
output units (see denominator in the last term of 7°2).

Few separated component functions. Hence
FMS tries to figure out a way of using (1) as few CFs as
possible for determining the activation of each output
unit, while simultaneously (2) using the same CFs for
determining the activations of as many output units as
possible (common CFs). (1) and T'1 separate the CFs:
the force towards simplicity (see T'1) prevents input
information from being channelled through a single CF;
the force towards few CFs per output makes them non-
redundant. (1) and (2) cause few CFs to determine all
outputs.

Summary. Collectively 71 and T2 (which make
up B) encourage sparse codes based on few separated
simple component functions producing all outputs. Due
to space limitations a more detailed analysis (e.g. linear
output activation) had to be left to a TR [14] (on the

Byk
oy

3. EXPERIMENTS

Nonlinear noisy bars adapted from [10, 11]. The
input is a 5 x 5 pixel grid with horizontal and vertical
bars at random positions. The task is to extract the
independent features (the bars). Each of the 10 pos-
sible bars appears with probability % Bar intensities
vary in [0.1,0.5]; input units that see a pixel of a bar
are activated correspondingly others adopt activation
—0.5. We add Gaussian noise with variance 0.05 and
mean 0 to each pixel. In contrast to [10, 11] we allow
for mixing of vertical and horizontal bars — this makes
the task harder, because the bars do not add linearly,
thus exemplifying a major characteristic of real visual
inputs.

Comparison. We compare LOCOCODE to PCA
and ICA, which is realized by Cardoso’s JADE algo-
rithm based on whitening and subsequent joint diago-
nalization of 4th-order cumulant matrices. To measure

the information conveyed by resulting codes we train
a standard backprop net on the training set used for
code generation. Its inputs are the code components;
its task is to reconstruct the original input. The test
set consists of 500 off-training set exemplars. Coding
efficiency is the average number of bits needed to code
a test set input pixel. The code components are scaled
to the interval [0, 1] and partitioned into discrete inter-
vals. Assuming independence of the code components
we estimate the probability of each discrete code value
by Monte Carlo sampling on the training set. To ob-
tain the test set codes’ bits per pixel (Shannon’s opti-
mal value) the average sum of all negative logarithms of
code component probabilities is divided by the number
of input components.

Source numbers. For ICA and PCA we have to
provide information about the number (ten) of inde-
pendent sources (tests with n assumed sources will be
denoted by ICA-n and PCA-n). LoCOCODE does not
require this — using 25 hidden units (HUs) we expect
LoCcocCODE to prune the 15 superfluous HUs. The non-
linearly added sources make the task hard for PCA
and ICA. All details necessary for reimplementation
are given in [14].

Results. See Table 1. LOoCOCODE finds indepen-
dent sources that ezactly mirror the pattern generation
process. PCA codes and ICA-15 codes, however, are
unstructured and dense. While ICA-10 codes are al-
most sparse and do recognize some sources, the sources
are not clearly separated like with LOCOCODE. While
the reconstruction errors of all methods are similar,
LococoDE has the best coding efficiency. 15 of its 25
HUs are indeed automatically pruned.

| rec. code bits per pixel

c. | err. type 10 50 100
LOC | 10 | 1.05 | sparse | 0.58 | 1.16 | 1.37
ICA | 10 | 1.02 | sparse | 0.81 | 1.45 | 1.68
PCA | 10 | 1.03 | dense | 0.80 | 1.42 | 1.66
ICA | 15 | 0.71 | dense | 1.19 | 2.14 | 2.50
PCA | 15 | 0.72 | dense | 1.17 | 2.11 | 2.47

Table 1: Results: coding method, number of relevant
code components (code size), reconstruction error, na-
ture of code observed on the test set. PCA’s and ICA’s
code sizes need to be prewired. LOCOCODE’s, however,
are found automatically: we always start with 25 HUs
but eventually end up with the optimal number of 10.
The final 3 columns show the coding efficiency mea-
sured in bits per pizel, assuming the real-valued HU ac-
tivations are partitioned into 10, 50, and 100 discrete
intervals. LOCOCODE codes most efficiently.

For each of the 25 HUs, Figure 1 shows a 5 x 5
square depicting 25 typical post-training weights on
connections from 25 inputs. Figure 2 shows the accord-
ing post-training weights on connections to 25 outputs.
White (black) circles on gray (white) background are
positive (negative) weights. The circle radius is pro-
portional to the weight’s absolute value. Figure 1 also
shows the bias weights (on top of the squares’ upper left
corners). The circle representing some HU’s maximal
absolute weight has maximal possible radius (circles
representing other weights are scaled accordingly).

input -> hidden
@ lpruned @ 2pruned @ 3 @ 4 @ 5pruned
el B sl efof-]- o O] - clo|-f-]-
o .O.
of|s|a|e|® .O. clo(e|=|e
Qo000 (e .

efafe]= a o= e|o|-|o- ol Py o) -8
@ 6pruned @ 7pruned @ 8 @ 9pruned /@ 10 pruned
S I S I B ERE ..,.O. oflofeofo]e slole|o]e

== . O

oo .On
11 pruned 12 13 pruned 14 pruned [@] 15
T e Ofefe]-T- ofo-T-T- el

O... o e o o | .

of-|-1- of]- o | Aol O

O..u s|ofo o |e]|e
oo foe O'°' oo of . alo|e
i@ 16 pruned i@ 17 /@ 18 @ 1 @ 20
OO0 |- e[-

ol 1 T 0 100

- aEE BRDEE) <O

PR PR . T 0 e
e <DDE T 10 NOE
21 pruned (@ 22 23 pruned 24 pruned 25 pruned
slol-lo]- -|e o] - o - =

@/ee/e) BE

Figure 1: LOCOCODE’s input-to-hidden weights (see
text for explanation). Despite noise and non-
linearity, LOCOCODE exactly extracts the indepen-
dent sources and prunes the 15 superfluous code com-
ponents.

LococoDE can exploit the advantages of sigmoid
output functions and is applicable to nonlinear signal
mixtures. PCA and ICA, however, are limited to linear
source superpositions. See Figure 3 for PCA results.
See Figure 4 for ICA-10 result with a priori information
about the number of sources. See Figure 5 for ICA-15
results.

4. CONCLUSION

According to our analysis LOCOCODE attempts to de-
scribe single inputs with as few and as simple sources
as possible. Given the statistical properties of many vi-
sual inputs (with few defining features), this typically

hidden -> output

1 pruned 2 pruned 3 4 5 pruned
]Q-.. e[o]o@e 5 «[Ofef«]-
T-lol- e o JO|ol- - HOBEE S[Ofelo]o
ORIEED @ [o|e]e O Tel-e
e - 0@ - |o|O]e]- @ee®e O o|o]e]0o]e
-[0[o]0]= INenE 10O e[
6 pruned 7 prun 8 9 pruned 10 pruned
[cJo]- @O [@e[®[-][o T 10O ol-[e]o]o] [-]CJo]o]e
o|-]:]0O LI B o@ :(c|e @ :|o|:|e
.- |@lO @®@®e -0 O ols |- |0+ }i.-..
olo|O]e O HBEEe) 110 - (@]«]o]o0] ‘OOO O
oo O u‘ooo 1O i‘i-- ‘. ol @
11 pruned 12 13 pruned 14 pruned 15
. o O o . o|Of-|e|@® fe) ...
. 1O O o-|e|@®@ Ol o o |- |-
o ol - O O O o|O]o ° .|@|e O OOO
. ol - SO HE o |Ofo o]« ol-l@le
. o]« [0 O O« |@ @) . o z =
16 pruned 17 18 19 20
o[- [-]O]- 00000 . NB BHOHE
ole|e|0]- C O
O e T O
.,.QOL C O
0 colleeeselnnnoninnnne lnne:
21 pruned 22 23 pruned 24 pruned 25 pruned
o |0|@O|e Ol|o|O] - 2O || @ Olc|o|@|e
olol«[}- 00000 - |@]]o]@ -[o|@]c]e Olo|+]e]°
slo/@Oe ol@|:[o|@ o o|Of e QO' o
- |l@Oe Jel - @ JOlele]- Le]e .
o|lole|() - o olo|e ol-|@:|e Olo]e o] -

Figure 2: LOCOCODE’s hidden-to-output weights.

PCA

2 3 5
@ @ ole|@®c -T-1-10]0 Ololo]- @
O O Ololo[- |0 o[- [-Jo o0l -
«|®|O oo () - o @
O O cj00@ - @ @O« of -~ @
ol-[-[+]O o@®0| o[- 0@

7 8 10
@) [®) -...ﬁ e]OJO[o]o Ole . QOEe
o o . elofo|@ @®|0|0 - o@|:|e o0
. . Ooooﬁ OEB . -] .|e] o|O|e|e|®
. . 0@ e clelo|e®] - o] ofs|o|@|0
Ole|O]=|° Ol |0|0] - %00 O« [O] 0 Oaeno

11 12 13 14 15
H..O. -[-]+]o]e «[-[-]0]e@] [c]e]e]-]O o]0
O|:|o]|e ol-|o|O|@ Ole|-|® ‘-O O < |O|e|e
Of-[o|e|e o -1@0 «O]:[e]@ @O :[e[O olo @]«
BERIEE e[O]e|O ofole . - |0|0@ o 0@
Ool+|° @ Olele[o] ol@[c|e HEBED ofe|]

16 17 18 19 20
O “JeloO]- ® - - [O O.""O. iHo.
O|l@|o|o|® sle|e|O O|O|e |@ L-o.u o [Jle]@)
BOB0e ol - @ - [0]O]e 'ﬂi&?j O[T @
O[] |® Ole[O]@]e o@ [0 «ol0@ - o[-]o
Solel: o@D Balele Cllitel DhTler
21 22 23 24 25
HEEIR0) o)| |o|® Q0.0! @ ||
oo Ol e olo|-|-|@ ° O|e|e|-|0O * | @O«
[®[-[e[c|O| [o]c[@e[o] [o] +|@[Cle[O] [Of-[ee
Of-[o]e@e BR0EE . . |- ®|@- O]~ Olel«[-]-
- @O «]- @[Ofo]-|e ..‘O‘. .Oo.. o[-0

Figure 3: PCA weights to code components. PCA
does not extract the true independent sources at all.

results in sparse codes. Since LOCOCODE minimizes the
information-theoretic complexity of the mappings used
for coding and decoding, the resulting codes typically
compromise between conflicting goals. They tend to be

4 5
[] O Je[-Tele] [OOOCO
o (@B -|@|e]o]e O|o|0|0|O|
@ (@] BOR00 00
O @B [@[e]e]® o[@eo)e
o o[- OlOICIC] [e]@]e]e]e
8 9 10

[) ele[-[Oe] [¢@ -0 OO
@ ee/-0Oe @ -- 0 [OO000O
. oo e OB [@00®[e)
. Tel- ()~ o[- [clo000
. oogen o -1- 00 AT

Figure 4: ICA with 10 components: weights to code
components. We observe that some of the sources are
partially reflected by some of ICA-10’s feature detec-
tors. The results are better than those of ICA-15, but
by far not as convincing as LOCOCODE’s.

1 2 3 4 5
OO~\.\O o[-Te]olo ol@[ofo]e oe@-e o
[] Ol o L) o @ .|o|@|o - |« [0]|O] - o®e -
ole[)o] o« @0 olo|@[o ole[o[o[+] |@|e]@[e][O]
@ -[el0[-] [O]C[c]e O[O0 |[-@-[- @ [OC0]o[o
lelo]- O OOo\QQ ek o.oT’T o|l@ o0
6 7 8 9 10
-[of-To]-] [-[o[efo]@] [-]@-[s]¢] [OIC]OICT [o[e]OIC]-
°o|l@0|0e - [Olo|0|e o|@|- 0@ | O|e[O|0O] e
c|le[0O|@ -[0[o[O]e B B0 0@ e [O@®C[O]°
:Hon. o |Olo]0] « O [o]0]o olofo|-]: o@ 0@
-le[c|C[e] [@[-[e]- @ [cl® " o/@@® -] [O]e[0[O]o
11 12 13 14 15
-[e[c]e][O] [O]-]@]- Olold - e[e[®[c]+| [COIO
ele|o [e) Ol - (@]« @ e ! ! OOOOV
ono OO.oo Olo|lof-] - ® OOOO
o|olo]e|O Ol - |@|e]e Olo|O]s]e ole|0|O]: ool 1)
0@ -®-] [[-/@e[e] [ClO[O -[-[I QOIo00

Figure 5: ICA with 15 components: weights to code
components. ICA-15 codes fail to represent the true
sources.

sparse and exhibit low but not minimal redundancy —
if the cost of minimal redundancy is too high.

Our results suggest that LOCOCODE’s objective may
embody a general principle of unsupervised learning go-
ing beyond previous, more specialized, COCOF-based
ones. We see that there is at least one representative
(FMS) of a broad class of algorithms (regularizers that
reduce network complexity) which (1) can do optimal
feature extraction as a by-product, (2) outperforms tra-
ditional ICA and PCA on nonlinear visual source sepa-
ration tasks, and (3) unlike ICA does not even need to
know the number of independent sources in advance.
This reveals an interesting, previously ignored connec-
tion between regularization and ICA research, and may
represent a first step towards unification of regulariza-
tion and unsupervised learning.

More. Due to space limitations, much additional
theoretical and experimental analysis had to be left to

a tech report (29 pages, 20 figures) on the WWW: see
[14].

Acknowledgements. This work was supported
by and DFG grant BR 609/10-2 from “Deutsche For-
schungsgemeinschaft.”

5. REFERENCES

[1] S. Amari, A. Cichocki, and H.H. Yang. A new
learning algorithm for blind signal separation.
In David S. Touretzky, Michael C. Mozer, and
Michael E. Hasselmo, editors, Advances in Neural
Information Processing Systems 8, pages 757-763.
The MIT Press, Cambridge, MA, 1996.

[2] H. B. Barlow, T. P. Kaushal, and G. J. Mitchison.
Finding minimum entropy codes. Neural Compu-
tation, 1(3):412-423, 1989.

[3] A. J. Bell and T. J. Sejnowski. An information-
maximization approach to blind separation and
blind deconvolution. Neural Computation,
7(6):1129-1159, 1995.

[4] J.-F. Cardoso and A. Souloumiac. Blind
beamforming for non Gaussian signals. IEE
Proceedings-F, 140(6):362-370, 1993.

[5] P. Comon. Independent component analysis — a
new concept? Signal Processing, 36(3):287-314,
1994.

[6] P. Dayan and R. Zemel. Competition and multi-
ple cause models. Neural Computation, 7:565-579,
1995.

[7] G. Deco and W. Brauer. Nonlinear higher-order
statistical decorrelation by volume-conserving
neural architectures. Neural Networks, 8(4):525—
535, 1995.

[8] D. J. Field. What is the goal of sensory coding?
Neural Computation, 6:559-601, 1994.

[9] P. Foldidk and M. P. Young. Sparse coding in
the primate cortex. In M. A. Arbib, editor, The
Handbook of Brain Theory and Neural Networks,
pages 895-898. The MIT Press, Cambridge, Mas-
sachusetts, 1995.

[10] G. E. Hinton, P. Dayan, B. J. Frey, and R. M.
Neal. The wake-sleep algorithm for unsupervised
neural networks. Science, 268:1158-1161, 1995.

[11] G. E. Hinton and Z. Ghahramani. Generative
models for discovering sparse distributed represen-
tations. Philosophical Transactions of the Royal
Society B, 352:1177-1190, 1997.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Hochreiter and J. Schmidhuber. Simplifying
nets by discovering flat minima. In G. Tesauro,
D. S. Touretzky, and T. K. Leen, editors, Advances
in Neural Information Processing Systems 7, pages
529-536. MIT Press, Cambridge MA, 1995.

S. Hochreiter and J. Schmidhuber. Flat minima.
Neural Computation, 9(1):1-42, 1997.

S. Hochreiter and J. Schmidhuber. LOCOCODE.
Technical Report FKI-222-97, Revised Version,
Fakultdt fiir Informatik, Technische Universitéit
Miinchen, 1998.

C. Jutten and J. Herault. Blind separation of
sources, part I: An adaptive algorithm based
on neuromimetic architecture. Signal Processing,
24(1):1-10, 1991.

M. S. Lewicki and B. A. Olshausen. Inferring
sparse, overcomplete image codes using an efficient
coding framework. In M. I. Jordan, M. J. Kearns,
and S. A. Solla, editors, Advances in Neural Infor-
mation Processing Systems 10, 1998. To appear.

L. Molgedey and H. G. Schuster. Separation of in-
dependent signals using time-delayed correlations.
Phys. Reviews Letters, 72(23):3634-3637, 1994.

M. C. Mozer. Discovering discrete distributed rep-
resentations with iterative competitive learning. In
R. P. Lippmann, J. E. Moody, and D. S. Touret-
zky, editors, Advances in Neural Information Pro-
cessing Systems 3, pages 627-634. San Mateo, CA:
Morgan Kaufmann, 1991.

J.-P. Nadal and N. Parga. Non-linear neurons in
the low noise limit: a factorial code maximises in-
formation transfer. Network, 5:565—-581, 1904.

B. A. Olshausen and D. J. Field. Emergence
of simple-cell receptive field properties by learn-
ing a sparse code for natural images. Nature,
381(6583):607—609, 1996.

J. Schmidhuber. Learning factorial codes by pre-
dictability minimization. Neural Computation,
4(6):863-879, 1992.

J. Schmidhuber, M. Eldracher, and B. Foltin.
Semilinear predictability minimization produces
well-known feature detectors. Neural Computa-
tion, 8(4):773-786, 1996.

R. S. Zemel and G. E. Hinton. Developing popu-
lation codes by minimizing description length. In
J. D. Cowan, G. Tesauro, and J. Alspector, edi-
tors, Advances in Neural Information Processing

Systems 6, pages 11-18. San Mateo, CA: Morgan
Kaufmann, 1994.

