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Abstract

We present an approach for convolving single-nucleotide variants (SNVs) with a
position kernel in order to augment SNVs with information about close-by SNVs.
By means of the Position-Dependent Kernel Association Test (PODKAT), we
demonstrate the potential of this approach to leverage the analysis of rare and
private SNVs. Finally, we also provide some ideas how machine-learning based
predictions from genomic data can benefit from this augmentation.

1 Introduction

High-throughput sequencing technologies have facilitated the identification of large numbers of
single-nucleotide variants (SNVs). Genome-wide association studies [7, 15] have become standard in
statistical genetics and helped to find many associations of SNVs with diseases or other traits. While it
is common to test for statistical associations between single SNVs and the traits, these single-marker
tests are generally underpowered for rare SNVs and for complex traits that involve interactions of
SNVs on multiple loci. So, many genetic influences remain elusive, where rare SNVs are supposed
to play one of the crucial roles in this “missing heritability” [16]. In order to cope with the statistical
challenges of analyzing rare SNVs, different collapsing strategies have been proposed with the aim to
improve statistical power by considering multiple SNVs occurring in a region simultaneously. Such
strategies can be classified into burden tests and non-burden tests [19], where the acclaimed SNP-set
Kernel Association Test1 (SKAT) [23] is an important representative of the latter.

Several large sequencing studies, such as, the 1000 Genomes Project [21], the UK10K project [22], or
the NHLBI-Exome Sequencing Project [20], have consistently reported a large proportion of private
SNVs, that is, SNVs that are unique to a family or even a single individual. Non-burden tests like
SKAT are typically utilizing correlations between SNVs to increase statistical power — a strategy
that is not applicable to private SNVs, since singular events are generally uncorrelated. Burden tests
are potentially able to deal with private SNVs, but only if the number of private SNVs occurring in a
region is correlated with the trait under consideration. Moreover, burden tests have a disadvantage if
deleterious and protective SNVs occur together in the same region.

Association tests try to find only statistical correlations between SNVs and traits. With recent
advances in machine learning, the prediction of phenotypes (traits, diseases, etc.) from genotypes has
become increasingly feasible. Among other methods, deep networks have a great potential in this
direction, but the large number of inputs in conjunction with the relatively low number of samples
poses a serious problem, since very large numbers of parameters need to be learned from relatively
few samples. Diet networks [18], for instance, address this challenge by a parametrization technique
that reduces the number of free parameters. This is achieved by learning the weights between inputs
and the first hidden layer using an auxiliary network that utilizes the similarities between SNVs

1formerly known as Sequence Kernel Association Test
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across samples. While this is generally a very attractive idea that works well for common SNVs, rare
and private SNVs will generally expose little similarity to other SNVs, so the auxiliary network will
not be able to meaningfully generalize weights across SNVs.

In this contribution, we present an approach for convolving SNVs with a position kernel. This
approach follows the assumption that, the closer two SNVs are on the genome, the more likely they
have similar effects on the trait under consideration. This assumption is fulfilled as long as deleterious,
neutral, and protective variants are grouped sufficiently well along the genome. Convolving the
genotype matrix with a position kernel then allows for uncovering positional similarities even of very
rare and private SNVs in a way that they can be used directly as inputs for further processing, be it
an association test or a predictive model. We motivate this approach by introducing the Position-
Dependent Kernel Association Test (PODKAT) [2, 1], a generalization of SKAT which uses this
idea to better deal with very rare and private SNVs. Finally, we will expose possibilities to use this
approach in other settings as well.

2 The Position-Dependent Kernel Association Test (PODKAT)

In line with SKAT [23], PODKAT uses a variance component score test to test for associations
between genotypes and traits. PODKAT and SKAT assume that traits are distributed according to the
following semi-parametric mixed models:

logit
(
p(y = 1)

)
= α0 +α

T · x+ h(z) (if trait is binary)

y = α0 +α
T · x+ h(z) + ε (if trait is continuous)

In the above formulas, y is the trait, x is the covariate vector (if any), z is the genotype vector, α0 is
the intercept, α are the fixed effect coefficients, h(.) is an unknown centered smooth function and ε
is the error term. SKAT and PODKAT both assume that the function h(.) is from a function space
that is generated by a given positive semi-definite kernel function K(., .) [12].

The null hypothesis is that y is not influenced by the genotype:

p(y = 1) = logit−1
(
α0 +α

T · x
)

(if trait is binary)

y = α0 +α
T · x+ ε (if trait is continuous)

As mentioned above, we use a variance component score test [11, 12, 23] to test against the null
hypothesis. The test statistics is given as

Q = (y − ŷ)T ·K · (y − ŷ),
where y − ŷ is the vector of residuals of the (logistic) linear model has been trained to fit traits to the
covariates only (the so-called null model) and K is a positive semi-definite kernel matrix defined as
Ki,j = K(zi, zj), where zi and zj are the genotypes of the i-th and j-th sample. The kernel matrix
K measures the pairwise similarity of genotypes of samples. Since K is positive semi-definite, Q
is non-negative. The more structure the residuals y − ŷ and the matrix K share, the larger Q. If
the residuals and the genotypes are independent, i.e. if the test’s null hypothesis holds true, large
values can only occur by pure chance with a low probability. Hence, we test whether the actually
observed Q value is higher than expected by pure chance. More specifically, the test’s p-value is
computed as the (estimated) probability of observing a value under the null hypothesis that is at least
as large as the observed Q. For continuous traits and normally distributed noise ε, the residuals are
normally distributed and the distribution of Q is obviously a mixture of χ2 distributions. For binary
traits, Q approximately follows a mixture of χ2 distributions, too [11, 23]. This null distribution can
be estimated efficiently to compute p-values without permutation testing [5, 13].

As mentioned above, the choice of a kernel function that computes the pairwise similarities of the
samples’ genotypes is essential. The simplest kernel is the linear kernel that computes the similarities
as the outer product of the genotype matrices: K = Z ·ZT . This kernel is a standard choice in SKAT
as well as the weighted linear kernel which weighs the genotype matrix before computing the outer
product, i.e. K = Z ·W ·WT · ZT , with W being a diagonal weight matrix that assigns weights
to SNVs. By these weights, it becomes possible to put more emphasis on rare emphasis than on
common SNVs. The weights are usually functions of the minor allele frequency of the SNVs.

PODKAT convolves the genotype matrix with a position kernel before computing the linear kernel:

K = Z ·W ·P ·PT ·WT · ZT ,

2



A Z K = Z · ZT

SNVs

1 2 3 4 5 6 7 8 9 10 11

Sample 6

Sample 5

Sample 4

Sample 3

Sample 2

Sample 1

300 250 400 650 300 400 900 400 500 300} } } } } } } } } }

Sample 6

Sample 5

Sample 4

Sample 3

Sample 2

Sample 1

S
am

pl
e 

1

S
am

pl
e 

2

S
am

pl
e 

3

S
am

pl
e 

4

S
am

pl
e 

5

S
am

pl
e 

6
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Figure 1: Toy example demonstrating how the position kernel takes private SNVs into account.
A: genotype matrix Z (left) and kernel matrix of the linear kernel (right); B: convolution of genotype
matrix Z with position kernel (left) and resulting kernel matrix (right).

The matrix P is a positive semi-definite kernel matrix that measures the similarities/closeness of
positions of SNVs [3], i.e.

Pi,j = max
(
1− 1

r |posi − posj |, 0
)
,

where posi and posj are the genomic positions of the i-th and the j-th SNV, respectively. The
hyperparameter r determines the maximal radius of tolerance beyond which two SNVs are considered
completely dissimilar. Note that, by this approach, PODKAT allows for a smooth interpolation
between SKAT (for r < 1) and a weighted burden test [14] (for r →∞). In that respect, PODKAT
resembles SKAT-O [10], but without inheriting the burden test’s disadvantage that the presence of
deleterious and protective SNVs in the same window dilutes detection power.

Fig. 1 shows a toy example that demonstrates how the position kernel takes private SNVs into account
while the linear kernel is unable to do that. On the left, Panel A, shows a genotype matrix Z of 6
samples each of which has one private SNV (minor alleles are 1’s and major alleles are 0’s in the
matrix). The right-hand side of Panel A shows the kernel matrix that would be obtained for the
linear kernel. Since all SNVs are private, the kernel matrix is diagonal, which does not allow for
any meaningful association testing. The left side of Panel B shows the convolution of Z with the
position kernel matrix P, and the right side shows the resulting kernel matrix. Suddenly, two blocks
of samples become visible. If, as an example samples 1–3 are cases and samples 4–6 are controls,
PODKAT would be able to detect an association, while SKAT with the linear kernel would fail.

The test statistic of PODKAT can be decomposed into individual contributions of single variants:

Q = (y − ŷ)T · Z ·W ·P ·PT ·WT · ZT · (y − ŷ) = ‖PT ·WT · ZT · (y − ŷ)‖2.

So, Q is the squared norm of a vector p = PT ·WT · ZT · (y − ŷ) with one entry per SNV that
can be interpreted as the SNV’s contribution to the test statistic Q. The signs of the entries of p
indicate the direction of the association (deleterious or protective) and normalizing the squares of
contributions allows for quantifying relative contributions.

3 Results

To validate PODKAT’s actual ability to better deal with rare and private SNVs, we performed an
extensive set of simulation experiments. Fig. 2 shows some results obtained for different numbers of
simulated genomes with simulated traits. The results have been obtained for a window size of 5kb
and with a genome-wide significance threshold of α = 10−6. The plots show that, for given sample
size, PODKAT achieves better detection power. For a given detection power, PODKAT potentially
suffices with fewer samples. For different significance thresholds and window sizes, the insights are
similar (results not shown). If unweighted variants of SKAT and PODKAT are used, the results are
much worse (not shown) because the traits have intensionally be simulated such that rare and private
SNVs have a higher effect size.

Similar results were obtained for whole-genome and whole-exome data from the UK10K project [22]
with simulated traits. However, type I error simulations have shown that SKAT with the weighted
IBS kernel [23] has strongly inflated p-values for binary traits, so the results shown by the orange
curve in the left panel of Fig. 2 may be overly optimistic.
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Figure 2: Power simulations for binary (left) and continuous traits (right) using different weighted
variants of SKAT and PODKAT.

Results with real-world data were also highly encouraging. For a study investigating genetic associa-
tions with intolerances to nonsteroidal anti-imflammatory drugs (NSAIDs) [4], a new association with
a rare SNV has been found. We also investigated all phenotypes available for the two whole-genome
data sets within the UK10K project which are subsets of the Avon Longitudinal Study of Parents
and Children (ALSPAC) [6] and the TwinsUK study [17]. While many of the found associations
were already known and also found with other methods, there were indeed some interesting new
associations in previously unknown, also non-coding, regions. Though being promising, the results
are preliminary and require more detailed interpretations and follow-up.

PODKAT’s ability to quantify the contributions of individual SNVs can also be used for feature selec-
tion. A recent paper uses machine learning to predict antibiotics resistances of various Pseudomonas
aeruginosa strains from their genomes [9]. In a first step, PODKAT is applied window-wise and
candidate SNVs are selected on the basis of their individual contributions to the associations. Then
the Potential Support Vector Machine (PSVM) [8] is used to actually predict antibiotics resistances
from the set of selected SNVs. This reduction of input dimension is indispensable for tasks in which
the number of SNVs is too large for feeding them into a predictor directly. However, even in cases
where a machine learning model can be applied to the genotype matrix directly, the PODKAT-based
feature selection has often turned out to be advantageous.

4 Conclusion and Future Prospects

The results above demonstrate that convolving SNV data with a position kernel can leverage the
analysis of very rare and private SNVs. This is true for the association test PODKAT which is
still in line with the traditional approach of association testing. The results shown in [9], however,
indicate that this idea of putting rare and private SNVs in context with their genomic proximity has
great potential also when actually making predictions from genomic data using machine learning
methods. Though this is only a vague idea at the moment, convolutions with a position kernel may
also help machine learning methods to learn from SNVs without using any association test like
PODKAT. Reconsider Fig. 1: convolving the genotype matrix with a position kernel (see left graphics
in panel B) augments each SNV with information about other SNVs in its proximity. That may ease
predictions if this convolved genotype matrix is fed into a machine learning method directly, be it
a deep neural network or any other suitable method. Furthermore, an approach like Diet Networks
[18] would benefit from this augmentation too, since similarities between close-by rare/private SNVs
would suddently become apparent to the auxiliary network. More specifically, similar input weights
will be assigned to rare/private SNVs that are close to each other. Without the convolution with a
position kernel, the SNVs would be dissimilar and the auxiliary network would not be able to learn
any meaningful representation of input weights for these SNVs.
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