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Abstract— The joint analysis of genetic and brain imaging
data is the key to understand the genetic underpinnings of
brain dysfunctions in several psychiatric diseases known to have
a strong genetic component. The goal is to identify associations
between genetic and functional or morphometric brain mea-
surements. We here suggest a machine learning method to solve
this task, which is based on the recently proposed Potential
Support Vector Machine (P-SVM) for variable selection, a
subsequent k-NN classification and an estimation of the effect
of ’correlations by chance’. We apply it to the detection of
associations between candidate single nucleotide polymorphisms
(SNPs) and volumetric MRI measurements in alcohol dependent
patients and healthy controls.

I. I NTRODUCTION

An important topic in current psychiatric research is the
study of the genetic influence on brain (dys)functions in
patients suffering from diseases like alcohol dependence
and schizophrenia. Often, the limbic system is affected, a
group of brain structures, including the hippocampus and
the amygdala, that are associated with arousal, motivation,
emotion and recent memory. A genetic variability of seroton-
ergic and dopaminergic neurotransmitter systems, which are
targeted by drugs, might influence the treatment outcome. It
is important to better understand these genetic modulations
of higher brain functions, in order to get a deeper insight
into the the pathophysiology of the brain and to identify
genetic variables which might be used for screening. A
promising strategy is the combined analysis of genetic data
with magnetic resonance imaging (MRI) measurements of
the brain.

Here, we consider genetic data consisting of single nu-
cleotide polymorphisms, or SNPs (see Fig. 1). These are
DNA sequence variations that occur when a single nucleotide
(A, T, C, or G) in the genome sequence is altered. Each
individual has many single nucleotide polymorphisms that
together create a unique DNA pattern for that person. MRI
measurements can be used to get morphological informa-
tion, like form or size of brain structures of interest. The
combination of genetic, clinical and MRI data results in
datasets with a high number of variables and small sample
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size, which often cannot be dealt with by standard statistical
methods. Therefore, we here propose an analysis using
machine learning, which has three goals:

A. Detection of Dependencies

The first aim is to check whether the data provides
evidence for a statistical dependency between a set of d input
variablesx and a class labely. Under the assumption that
a dependency exists, a powerful enough predictor should be
able to learn it. The assessment of statistical dependency
should be based on the generalization error of the prediction.
This means that if the predictor was trained on a training
dataset assumed to be sampled from a certain distribution,
one wants to estimate the expected error it will make on a
yet unseen data point from the same distribution. For small
sample size, this generalization error can be estimated from
the average test error using a leave-one out cross-validation
method. The lower the generalization error, the stronger is
the detected dependency. If the generalization error is very
high, no evidence for a dependency could be found with the
current predictor; either it is not present in the dataset, or the
learning machine was not powerful enough. Therefore, this
method cannot affirm independencies, only dependencies.
However, any established dependency must still be assessed
for “correlations by chance” (see next paragraph).

B. Assessing the Effect of Correlations by Chance

Dependencies between input and class variables might
arise due to noise-induced “correlations by chance”. There-
fore, when judging the scientific relevance of a dependency
found in the dataset, one has to assess how likely it is
that a “correlation by chance” could have led to an equally
low generalization error. The result of this assessment (a
probability value) will strongly depend on the size of the
dataset, the specific noise level, the distributions of input and
class variables and the power of the predictor. The higher the
probability that a generalization error as low as the one found
on the dataset could have been produced by “correlations
by chance”, the lower is the evidence the data provides
for suspecting a dependency. In case of a high probability
it is nevertheless possible that with a larger sample the
dependency could be affirmed, but given the present sample,
not enough evidence is found.

C. Finding the Relevant Variables

If there was a dependency detected, and if the effect of
correlations by chance is estimated to be low, the next thing
we are interested in is to know which of the input variables



are most relevant for predicting the class label, in order to
increase the interpretability of the results. Therefore, the task
is to select a subset of the input variables which seems to be
important for good prediction performance of the learning
machine.

In this work, we suggest a new method to solve these
tasks, which is based on the recently proposed P-SVM
([1], [2], [3]). The P-SVM selects a compact subset of the
input variables, which is then used in the subsequent k-NN-
classification of the target label. A Jackknife estimate of the
correct classification rate per class gives a robust estimate
of generalization performance, thus judging the evidence
for a dependency between input variables and class label.
To provide a measure of confidence, the probability that
an equally good performance results from “correlations by
chance” is estimated. While this method can be used in
general, we apply it to the joint analysis of candidate SNPs,
clinical variables (e.g. sex and age) and volumetric MRI brain
measurements in alcoholic patients and healthy controls.

The paper is organized as follows: Section II reviews
the medical background of the problem we focus on. This
is followed by a description of the used methods (section
III). First, the techniques used in the acquisition of the
genetic (section III-A) and the MRI (section III-B) data
are summarized. Then the conduction of the volumetric
measurements (III-C) and the pre-processing of the SNP
variables (III-D) are described. Section III-E deals with the
methods used for variable selection and ranking. Section
III-F reviews the P-SVM algorithm, section III-G the k-
NN-classifier. The assessment of “correlations by chance”
is described in section III-H. In section IV the dataset and
the experimental setup are described, the results are given
and their clinical interpretation is discussed. The paper closes
with conclusions and outlook (V).

II. M EDICAL BACKGROUND

Studies over the last years have shown that the dopaminer-
gic reward system is involved in the development of alcohol
craving and reduced control of alcohol intake, factors thatare
known to be associated with an increased risk for alcohol
dependence (for review see [4]). Case-control association
studies and genome wide linkage analyses have identified
associations between alcoholism and common functional
polymorphisms in several candidate genes of the dopamin-
ergic system, including dopamine receptor D2, dopamine
transporter, and catechol-O-methyltransferase (COMT), one
of the main enzymes involved in dopamine degradation (for
review see [5]).

A single nucleotide polymorphism (“SNP”, see Fig. 1) of
COMT in exon 4 (alleleg → a) causes an amino acid ex-
change from valine to methionine (V al158Met) and thereby
reduces the enzyme activity to almost1

4
. In several studies,

the Met allele was associated with an increased risk to
develop alcoholism ([6], [7]). Whereas subjects with the Met
allele perform significantly better in working memory tasks,
they also seem to be more sensitive to exogenous stress and

Fig. 1. The main chromosomal component is desoxyribonucleic acid
(DNA), which is the carrier of genetic information. The molecular structure
of DNA are two intertwined chains held together by hydrogen bounds. The
main elements of DNA are the purine bases guanine (G) and adenine (A)
and the pyrimidine bases cytosine (C) and thymine (T), whereG pairs
exclusively with C, and A with T. A SNP (single nucleotide polymorphism)
represents an exchange of one single nucleotide within the genome sequence
that is transmitted to all offspring. By definition a SNP occurs in at least
1% of the population. SNPs can be found at approximately every 300-1000
base pairs. These sequence variations are the main basis of interindividual
differences in humans. On the left the original double-stranded DNA is
shown, on the right the mutated DNA with the introduction of aSNP, in
this case a substitution from C to A. The corresponding base on the second
chain is altered accordingly.

anxiety-generating situations, and they show higher reactivity
to unpleasant stimuli in the limbic system ([8]). However,
other studies did not find a significant association between
the V al158Met polymorphism and the risk to develop alco-
hol dependence ([9], [10], [11]).

Reasons for the contradictory results might be manifold
and include multifactorial pathogenesis of complex disorders,
locus heterogeneity, inhomogeneous patient samples, and
differing ethnic backgrounds. Recent studies have startedto
dissect complex and heterogeneous disorders by using en-
dophenotypes which generate more homogeneous diagnostic
subgroups. The number of potentially influencing factors
is reduced and genetic contributions can be more easily
identified. Among a variety of promising alcohol-related
endophenotypes, brain imaging studies seem to be a very
robust tool ([12], [13]).

The observation of an association between a disease and a
disease gene does not simply point to the causative genetic
locus within the gene. Genotyping of several markers or
SNPs and reconstructing their association, i.e. the construc-
tion of haplotypes, increases the chances to detect an asso-
ciation and to receive more reliable and stable results. SNPs
are selected based on haplotype information in public data-
bases, localization within the gene and locus heterogeneity.
Recently, several haplotype analyses have been published on
COMT polymorphisms, which show that genetic variations
beside theV al158Met polymorphism are of functional rele-
vance ([14]). There was also a significant association between
a certain COMT haplotype and nicotine dependence ([15]).

By combining Magnetic Resonance Imaging (MRI) with
human genome analysis, often datasets are created which
are characterized by containing many variables and having
a rather small sample size. Potential relations between volu-
metric data and a certain SNP might be rather complex and
involve multiple morphometric variables. Furthermore, itis
quite likely that on a small and noisy dataset random correla-
tions arise between variables which are in fact independent.

Here, we consider a dataset consisting of detoxified
alcohol-dependent patients and healthy control subjects
which contains clinical data, eight COMT SNPs, and MRI-



based brain structure volume measurements from 75 subjects.
The question of interest is whether the dataset provides
evidence for any association between COMT haplotypes and
hippocampal, amygdala and mammilary body atrophy.

We apply the novel variable selection and ranking method
based on the Potential Support Vector Machine (P-SVM)
to this task. In this case, the set of input variablesX are
the clinical and volumetric variables and the class labely
corresponds a specific allele configuration of a SNP.

III. M ETHODS

A. Genetic Methods

Genomic DNA was extracted from 75 individuals (34
alcohol dependent patients, 41 healthy controls). SNPs were
selected based on HapMap data and other publications,
localization within the gene and locus heterogeneity avail-
able from public databases. Oligonucleotide primers were
designed for each SNP (primer information available on
request), amplification was performed by polymerase chain
reaction (PCR) according to general procedures. PCR prod-
ucts were incubated with suitable restriction enzymes (infor-
mation from NEB-cutter). Restriction products were run on
agarose gel electrophoresis to separate potential restriction
products.

B. MRI Acquisition

The MRI scans were acquired using a 1.5T clinical
whole-body MRI (Magnetom VISION; Siemens, Erlangen,
Germany) equipped with a standard quadrature head coil.
The automatic Siemens MAP shim was used for shimming.
A morphological 3D T1-weighted MPRAGE (magnetization
prepared rapid gradient echo) image dataset (1x1x1 mm
voxel size, FOV 256 mm, 162 slices, TR=11.4 ms, TE=4.4
ms, α = 12◦) covering the whole head was acquired for
anatomical study.

C. Morphometric Measurements

The morphometric measurements were based on the
anatomical MRI scans. Several regions of interest (amygdala,
hippocampal, and mammillary body) were segmented and
their total volumes were measured. Volumes, calculated in
cubic centimeters, for each individual structure were derived
by multiplying the number of voxels assigned to that struc-
ture on each slice by the slice thickness and summing across
all slices in which the structure appeared ([16]). To rule
out gross volumetric effects contributing to the differences
in local anatomic measures, total head circumference was
measured in each subject and used as a subject-wise correc-
tion for total amygdala, hippocampal, and mammillary body
volumes.

Moreover, a symmetry index (SI) was determined for each
of the three brain regions ([17]):

SI = 1/100 ·
LV − RV

0.5(LV + RV )

whereRV andLV denote the volumes of the same anatomic
region in the right and left hemisphere. Positive values

indicate that the anatomic region of concern is larger in the
left hemisphere. This symmetry index is a unitless quantity.

D. Pre-Processing of the Nominal SNP Variables

In order to make the nominal SNP variables compatible to
a machine learning algorithm requiring vectorial data, they
are transformed into three new binary variables, each indicat-
ing a specific allele configuration. This is necessary, because
there is no a priori order to the three allele configurations
which would justify the transformation into a single, discrete
ordered variable.

The described data analysis problem can be cast in the
form of a classification problem. The aim in the analysis
was to predict a SNP configuration from brain imaging and
clinical data. For a given SNP, each of the created binary
SNP variables can serve as class label.

E. Variable Selection and Ranking Method

In terms of machine learning, the final goal of our analysis
is to determine whether a dataset provides sufficient evidence
that there is a dependency between the set of input variables
and the class label. Moreover, we would like to determine
the subset of the input variables which is responsible for
the dependency. In this section we describe a method to
solve this problem for small, noisy datasets with nominal
and continuous variables.

For a given training dataset, the P-SVM variable selection,
which will be described in section III-F, provides a compact,
set of variables, which are suspected to be “informative”
about the class label. Using this set of selected variables,
a k-NN classifier ([18]) performs the actual prediction of
the class label for a given test data point. In order to
render the selection method robust against outlier samples,
the P-SVM variable selection is run within a 5-fold cross
validation1(CV). This results in a ranking of the Variables
according to how often they were chosen.

While any predictor (even the P-SVM itself) could be used
as a classifier, we here chose a weighted k-NN classifier,
which is described in more detail in section III-G. The hyper-
parameters of this classifier are (1) the number of variables
which are used from the ranking and (2) the number of
neighbors of the k-NN algorithm. The optimal values are
determined via leave-one-out cross validation (CV) on the
training set. In the following we refer to the classifier using
the optimal hyper-parameters as the “optimal classifier”.

To get an estimate of the generalization performance of
the predictor, a second (outer) leave-one-out CV loop is
used. This provides a Jackknife estimate ([18]) of the correct
classification rate per class. This performance measure is
defined as the percentage of correctly classified data pointsin
a class averaged over both classes, and is usually chosen in

1Theq-fold cross validation method makes use of all available data, by
splitting a dataset containingm examples intoq disjoint subsets (folds) of
the same size≡ m/q. The algorithm is trainedq times, each time using a
different fold as hold-out test set and the remainingq−1 subsets as training
set. If q is equal to the number of data points, this method is called leave-
one-out cross validation. Because of the repeated training, cross validation
is a computational intensive method



classification problems where the classes are of unequal size.
Classifying all data points as belonging to the larger class
would trivially result in a high total correct classification rate,
whereas the correct classification rate per class yields a value
of exactly 50%. The final variable ranking is calculated by
combining the results from the single cross-validation folds.
First, the variables are ranked according to how often they
appear on the firsth positions of the variable ranking of the
optimal classifier (we usedh = 4 in the experiments). Then,
all other variables which were used in an optimal classifier
are ranked according to their number of appearances.

The Jackknife estimate of generalization performance tells
us how much the predictor (consisting of variable selector
and classifier) is expected to be able to “learn” possible
dependencies between the input variables and the class
variable. A value of more than50% means that this was
done successfully. However, dependencies between input and
class variables might arise due to noise-induced “correlations
by chance”, an effect which is stronger the smaller the
sample and the noisier the data. It can never be totally
ruled out that a dependency found by the predictor is in
fact a result of such “correlations by chance”. This fact
is a basic principle of statistics, and is independent of the
specific statistical method. Therefore, in section III-H we
suggest a numerical procedure to estimate the probability
that, given the input variables are in fact independent of
the class label, “correlations by chance” lead to a correct
classification rate per class which is at least equal to the one
achieved on the true dataset. The lower this probability, the
more evidence for a detected dependency is found in the
dataset. The pseudocode of the whole variable selection and
ranking algorithm is shown in Algorithm 1.

F. The P-SVM Algorithm

The P-SVM is a recently introduced ([1], [2], [3]) large-
margin method for classification, regression and variable
selection. It uses a novel objective function, which minimizes
a scale-invariant capacity measure, and novel constraints,
which enforce a low empirical error. In contrast to standard
support vector machine approaches ([19], [20], [21], [22]),
the P-SVM can also handle negative definite and non-square
kernel matrices. A standard support vector machine expresses
the classification or regression function via a subset of the
data points, the so-called “support vectors”. The basic idea
behind P-SVM variable selection is to interpret the data
matrix as a kernel matrix and to exchange the role of
variables and data points. The weight vectorw is expanded
into a sparse set of “support variables”, thus extracting a
small number of ”informative” variables from the set of all
variables. The P-SVM as a filter method for variable selection
was proposed in [3], where it was also bench-marked against
other variable selection methods on the NIPS 2003 feature
selection challenge and was shown to be one of the best
methods for selecting a compact set of variables. Once a
set of ”support variables” was determined, it can be used as
input to an arbitrary predictor.

Algorithm 1 Variable Selection and Ranking Algorithm
BEGIN PROCEDURE

for all leave-one-out CV folds i do
training setTrain(i)
test pointTest(i)
P-SVM variable selection (5-fold CV) onTrain(i)
⇒ variable ranking (containsR(i) variables)
for all leave-one-out CV folds t do

training setTrain(i, t)
test pointTest(i, t)
for r = 1 to R(i) do

for k = 1 to Kmax do
training of k-NN classifier onTrain(i, t)

using ther leading variables from the variable
ranking

test with k-NN classifier on theTest(i, t)
remember test errore(t, r, k)

end for
end for

end for
[ropt(i), kopt(i)] = min(e(t, r, k)).
Feat(i) = {the ropt first variables from the

variable ranking}
training of thekopt-NN classifier onTrain(i) using

variablesFeat(i)
test withkopt-NN-classifier on the test

data pointTest(i)
remember test errorE(i)

end for
V ariables=Rank(Feat)

END PROCEDURE

In the following, we will briefly outline the mathematical
formulation of P-SVM variable selection (for further details,
see [1]).

We consider a two class classification task, where them
(d-dimensional) input vectors and class labels are summa-
rized in the matrixX = (x1, . . . ,xm) and the vectory. The
learning task is to select a classifierg with minimal risk,
R(g) = min, from the set of classifiers

g(x) = sign (w · x + b) , (1)

which are parameterized by the weight vectorw and the
offset b. Standardization (mean subtraction and dividing by
the standard deviation) of the data leads toXT1 = 0. The
primal P-SVM optimization problem for variable selection
can then be formulated as

min
w

1

2
‖XTw‖2 (2)

subject to

XT
(

XTw − y
)

+ ε1 ≥ 0

XT
(

XTw − y
)

− ε1 ≤ 0.
(3)



The corresponding dual problem can be derived as

min
α

+,α−

1

2

(

α
+ − α

−
)T

XTX
(

α
+ − α

−
)

(4)

−yT X
(

α
+ − α

−
)

+ ε1T
(

α
+ + α

−
)

subject to 0 ≤ α
+,0 ≤ α

−.

whereε is a parameter to determine the number of variables
(a largerε will result in fewer variables). The vectorsα+

andα
− are the Lagrange multipliers for the constraints. The

non-zero componentsαj mark the support variables. Theα+

j

correspond to variables relevant for the positive class, while
variables with non-zeroα−

j are indicative for the negative
class. Eqs. (4) can be solved using a new sequential minimal
optimization (SMO) technique [2]. Usingα = α

+ − α
−,

the weight vectorw and the offsetb are given by

w = α andb =
1

m

m
∑

i=1

yi. (5)

The resulting classifier is then given by

g(x) = sign(w · x + b)

= sign(

d
∑

j=1

αj(x · ej) + b).

G. The k-NN Classifier

We use a weighted k-NN classifier as predictor. It evaluates
the Euclidean distance of a test data pointx to all points
of the training dataset. It then determines the k nearest
neighbors, and orders them according to their distance from
x. Then it assigns a weighting factor to each neighbor, which
depends linearly on the Euclidean distance. A distance of
zero gets assigned a value of five, while the most remote
neighbor gets assigned a value of one. If the choice of the k-
th nearest datapoint is not uniquely possible because multiple
data points possess exactly the same distance, all candidates
are included. Finally, the datapointx gets assigned the sign
of the weighted sum of the class labels of the k nearest
neighbors as a class label.

H. Assessing the Effect of “Correlations by Chance”

It is assumed that the dataset is sampled independently
and identically distributed (i.i.d.) from an underlying distri-
bution P (y,x). In case there is a dependency between the
input variables and the class label, this distribution willnot
factorize, and it is possible to predict the class label fromthe
conditional probability distributionP (y|x). In this section,
we describe a numerical method which allows to assess
the probability that a sample drawn from the factorizing
distributionP (y,x) = P (y)·P (x), where input variables and
class label are statistically independent, achieves a correct
classification rate per class equal or higher that the one
achieved on the actual dataset.

For this, many new datasets are randomly sampled from
the factorizing distribution. This is done by randomly per-
muting the class labels of the examples from the original

Fig. 2. Scheme of the catechol-O-methyltransferase (COMT)gene. Red
boxes depict exons (i.e. the coding sequence) which is translated into
amino acids. SNPs (marked in blue) are scattered throughoutthe gene, i.e.
the promoter region (expression regulating sequence), exons and introns
(sequence between exons, some might have regulatory functions, others are
functionally inactive).

dataset, while keeping the input vectors. The random permu-
tations destroy any existing correlation betweenx andy, but
leave the distributionsP (x) andP (y) unchanged. However,
“correlations by chance” betweenx andy might appear. For
each of these randomly sampled new datasets, the whole
variable selection procedure as described in section III-Eis
run. The resulting correct classification rates per class are
compared to the one achieved on the true data. The relative
percentage of equal or higher values achieved under random
label permutation is an estimate of the desired probability.

IV. EXPERIMENTS

A. Dataset

The dataset this analysis is based on contained 75 subjects
(22 female, 53 male, age: 25-61 years, 41 healthy controls
and 34 alcohol dependent patients). For the analysis we used
the following variables:

1) Clinical Variables: Clinical variables used were the
Age (in years) the sex (male/female) and the status (pa-
tient/control). The first is an positive integer number, the
latter two are binary variables.

2) Genetic Variables:The genetic variables (see section
III-A) consist of 9 different COMT-SNPs, each of which
can be considered as nominal variable with three levels,
each of which corresponds to a certain configuration of the
two alleles: rs2097603, rs737865, rs740603, rs6269, rs4633,
rs17850822, rs4680, rs9306234 and rs165599. For details see
Figure 2.

3) Morphometric Variables:The morphometric variables
(see section III-C) are summarized in Table I

B. Experimental Set-Up

The first experiment used the status as class label, and the
SNPs, age and sex as input variables. The second experiment
again used the status as class label, and the volumetric data,
age and sex as input variables. The remaining experiments
were an explorative search: Each of the three allele config-
urations of the eight SNPs was taken as target value, while



Variable Description
r hppcps volume of right hippocampus
l hppcps volume of left hippocampus
t hppcps total volume of hippocampus
r amyg volume of right amygdala
l amyg volume of left amygdala
t amyg total volume of amygdala
r mambdy volume of right mammillary body
l mambdy volume of left mammillary body
t mambdy total volume of mammillary body
si hippo SI for hippocampus
si amygd SI for amygdala
si mam SI for mammillary body

TABLE I

Name and description of the morphometric variables used in the experiments

the input variables always consisted of the 12 morphometric
variables, sex and age.

In each case, the feature selection method described in
section III-E was applied. Subjects with missing values in
eitherx or y were left out. On the remaining examples the
Jackknife estimate of the correct classification rate per class
was calculated. In case it exceeded a value of 50 percent, the
method for assessing the effect of “correlations by chance”,
which is described in section III-H, was applied using 100
runs on datasets generated under random permutations of the
labels. In case the resulting probability estimate was lower
than10%, additional2000 runs were conducted to improve
the numerical accuracy of the estimate. This two-step strategy
was used, because the computational demands of the estima-
tion procedure were rather high. The strategy is very conser-
vative, since in case the initial runs are not representative for
the whole distribution, some true dependencies might not be
detected, whereas a detected dependency is always verified
by the following more accurate numerical estimation. Since
the label permutations are conducted independently of each
other, the task can be split in several calculations which are
run in parallel.

C. Results

In the first two experiments, no evidence for a dependency
neither between SNPs and status, nor between volumetric
data and status was found. In the other experiments, 18 allele
configurations had a generalization performance of more than
50%. However, only for five allele configurations of four
of the SNPs the probability that “correlations by chance”
achieve equally good prediction was smaller than10%. These
results are listed in Table II and in each case the selected
variables are ranked with decreasing importance from top to
bottom. In the experiments, the initial estimates from 100
runs were always close to the final results, so they seem
suitable to judge whether it is worthwhile to conduct further
runs in order to increase the numerical accuracy.

How should the results be interpreted? A value over 50%
for the correct classification rate per class (CCRPC) indicates
at least a small dependency which was detected on the
dataset. Note that this fact is based on the generalization
properties of the learned predictor on unseen data, estimated

Name m+/m
−

CCR CCRPC Ranking P
rs20976032 37 / 36 66% 66% r hppcps

l hppcps
si hippo
l amyg
si mam

1.95%

rs7406032 42 / 31 62% 63% l amyg
r hppcps
r amyg

7.33%

rs7406033 15 / 58 79% 87% l mambdy
r mambdy
si hippo

1.52%

rs46333 15 / 59 80% 87% l hppcps
l mambdy
r hppcps
r mambdy

1.00%

rs46802 39 / 33 61% 62% l hppcps
l mambdy
r amyg
r mambdy
si amygd
r hppcps

9.95%

TABLE II

Results from the experiments. The name of the SNP is followedby an
underscore and the allele configuration.m+ andm

−
denote the number of

examples in the positive and negative class, respectively.“CCR” denotes the
total correct classification rate, independent of the class, whereas “CCRPC”
denotes the correct classification rate per class, which is the performance
measure one is interested in. “Ranking” lists the variable names in the order
in which they were ranked. “P” gives the probability that “correlations by
chance” achieved a CCRPC equal to or better than the one foundon the
dataset, based on 2100 random permutations of the labels. Only the results
with P ≤ 10% are listed.

via leave-one-out CV. The size of the dependency is indicated
by the value of the CCRPC, which amounts to the estimated
probability per class that an unseen data point will be
correctly classified. The value needed in order to assess how
likely such a prediction performance could be produced by
“correlations by chance” is shown in the last column of Table
II. This value indicates how much confidence one can place
in the dependency given the dataset.

D. Discussion

This study provides an interesting and alternative view
on the involvement of COMT in the limbic system. Asso-
ciations between several SNPs of COMT and volume of
hippocampus, amygdala and mammillary body have been
found. The limbic system is the center of emotion, motivation
and emotional association with memory, features affected
in patients with alcoholism. COMT is one of the main
dopamine degrading enzymes, that partly controls dopamine
brain level. Dopamine is one of the main actors within
the limbic system. It was previously shown that one SNP
of COMT, the V al158Met is associated with reactivity to
unpleasant stimuli in the limbic system ([8]), however, other
genetic variations in the COMT gene were not investigated.

Our data indicate that the genetic constitution of the
COMT gene affects the volume of certain limbic struc-
tures. This might be not surprising since dopamine and
norepinephrine activity can affect the underlying morphology
of brain tissue, e.g. via stimulation of cyclic AMP (cAMP),
which gates synaptic actions of brain derived neurotrophic



factor (BDNF) ([23]), which is involved in neuronal plas-
ticity. Carriers with the less activeMet allele have higher
extracellular dopamine and norepinephrine levels. This might
activate the BDNF receptor Trk B via cAMP-dependent
phosphorylation and its translocation to spines in mature
hippocampal neurons ([23]). These effects may modulate the
neurotoxic effects of alcohol on brain tissue and contribute
to the processing of affective cues in the hippocampus and
potentially also in other limbic brain areas.

Our data implicate that the genetic constitution of the
COMT gene not only as an impact on functional activity of
the limbic system but also affects volume of certain limbic
structures. This might not be surprising, since dopamine
activity could affect underlying morphology of brain tis-
sue. Carriers with the less activeMet allele have high
dopamine brain level, thereby receiving permanent dopamine
input. This might activate plasticity of neurons, synapses
are spouting and further interneuronal connections might be
established. This would also fit to the functional highly active
areas in the limbic system in subjects with one or twoMet
alleles.

No association was found between diagnosis of alcoholism
and any genetic variations within the COMT gene. This
finding is not surprising, since COMT may interact with the
effects of excessive alcohol intake once it was established,
rather than contribute to the risk of excessive alcohol intake.
Also, since alcoholism is a complex disorder with several
genetic loci affected, very large patient samples are needed to
detect genetic associations with behaviourally heterogeneous
disease categories. Smaller sample sizes might be sufficient
to detect gene effects on closer related intermediate pheno-
types.

Altogether, this pilot study illustrates the use of the pro-
posed machine learning method in elucidating the interaction
between several genetic polymorphisms and a complex clin-
ical dataset. However, further studies willbe needed to gain
more information: Replications have to be performed with
a new dataset to control for results of this study and other
statistical methods have to be used to receive information
concerning the causality of the observed relations.

V. CONCLUSIONS ANDOUTLOOK

In this paper, we proposed a method for variable selection
and ranking based on the P-SVM and a k-NN classifier and
applied it to the task of determining statistical dependencies
between a group of variables and a class label. The Jackknife
estimate of the correct classification rate per class was used
to detect dependencies, while the estimated probability that
“correlations by chance” achieve equally good performance
is used to provide a measure of confidence. The application
of two layers of leave-one-out cross-validation loops allows
to extract robust estimates of existing dependencies. For large
sample sizesm, however, the computational demands would
be too high, therefore one would useq-fold cross validation
with q < m instead. While in the current paper we employed
a k-NN classifier, in principle any predictor could be used.

The method was applied to a clinically relevant question
on a real-world dataset containing SNPs and volumetric
MRI measurements. However, the proposed method is not
restricted to this specific application. Determining dependen-
cies between a set of variables and a class label on datasets
of small sample size is a task often encountered in clinical
resarch. Future applications will include the joint analysis of
genetic and functional brain data (fMRI).
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