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Abstract— We investigate the optimal kernel for sample-based
model selection in unsupervised learning if maximum likelihood
approaches are intractable. Given a set of training data and a set
of data generated by the model, two kernel density estimators
are constructed. A model is selected through gradient descent
w.r.t. the model parameters on the integrated squared difference
between the density estimators. Firstly we prove that convergence
is optimal, i.e. that the cost function has only one global minimum
w.r.t. the locations of the model samples, if and only if the
kernel in the reparametrized cost function is a Coulomb kernel.
As a consequence, Gaussian kernels commonly used for density
estimators are suboptimal. Secondly we show that the absolute
value of the difference between model and reference density
convergences at least with 1/t. Finally, we apply the new methods
to distribution free ICA and to nonlinear ICA.

I. INTRODUCTION

Unsupervised learning methods are often based on

of the generated observations By (x). If a model has been
selected, then its most common application is inference, i.e.
the reconstruction of the source valuewhich have generated
an observatiorx. In order to unambiguously infer the source
values, however, the inverse functigit!(z,w) must exist
and must be computable.

Model selection is often performed using a maximum likeli-
hood method. In order to select the optimal set of parameters,
the likelihood of an observation,

Pie) = [dzd(@- fzw) Pu(z).
is calculated and the likelihood of the full sétc’}, i =

1,..., N of observationsL = vazl P,(x*, is maximized. If
an inverse function exists and can be analytically calculated,

1)

©en the integral in eg. (1) can be evaluated and one obtains

so-called generative model approach. In this approach, one

usually considers a parameterized family of probability distri-
butions for the observable data. Model selection is typically

P.(f'(z)) .

df—!
e )

Pi(e) = |

performed using the likelihood of the training data or th¢pe gyraightforward application of the maximum likelihood

Bayes posterior as a selection criterion. Examples for g
erative approaches are abundant, ranging from factor anaIX%%e functionf —(

&MNIL) method therefore requires the knowledge of the in-

x,w). Since the inverse function is also

[6], ICA [5], mixture models [8], and Boltzmann machines,qcessary for inference one may argue that it may be more

[3].

adequate to parameterize the inverse funcfion rather than

Here we consider classes of generative models, wherg,a nction ¢ which describes the data generation process.
set z of hidden causes is responsible for the generatigiis s for example, done in many ICA applications. However,

of an observatione (Fig. 1). The hidden causes assUM,are exist problem@)

causes observations
V4 x=f(z,w) X
B(z) B(Xx)
generation
>
<
inference

Fig. 1. The generative model framework.

valuesz according to a probability distributio, (z). Every

for which the inverse function does not
exist (many-to-one mappings, e.g. in the case of incomplete
measurements) drs) for which prior knowledge exists only

for the generation process. For those cases, ML methods either
fail or may be computationally intractable. There is another
potential pitfall for the ML methods. Even if the inverse
function is given, evaluation of eq. (2) requires knowledge
of the cause densitieB,(z). If they are not known or only
partially known one has to resort to approximations (as in
ICA).

In order to overcome above mentioned problems we suggest
to use a sample based method for model selection. Let us first
consider the case that the source densities are known but that
the generative functiorf cannot easily be inverted. In this
case we suggest to generate a sanplg of causes, and to

cause vector is then transformed via a nonlinear functioradjust the parametets of the generative functioii such that
f(z,w), parameterized by a weight vectar, to generate an the location of the corresponding samgle} of observations
observationz. For the following we denote the distributionaligns with the observed data as good as possible. For the



case that the source densities are only partially known, hubere
an inverse functionf~! can be constructed, we suggest to
generate a sefz} of sources by application of the inverse
function f~! to the set{x} observations. The parameters of 1 ; 1 X ;

the inverse function must then be adjusted in a way, that the N de (a,y") — N de (a.2').

set of sources aligns with a set of reference sources as good =1 Ti=1

as possible. These two scenarios are depicted in Fig. 2. In the following, we will call & the potential function. If

F = 0 then the estimate of the model output distribution is
equal to the estimate of the reference distribution, and our goal

z X R of learning is reached.
@ Fx=tew) ﬁw\ fln"de' data Minimization of eq. (3), however, requires the evaluation
B R = of an integral which could be computationally expensive. We,
sources /" observations  h€refore, define another kerniel., .),

Q(a;ka) = pylasks) — pu(a;kq) = 4)

y
target |-

blab) = [ kalacba(b,e)de ©)
T
R for which we obtain a simpler expressidf(k) = F(kq),

sources Z model X .
/@‘-z#'](x,v)@ F(k) = F(py(;k),pu(k)) = (6)

observations

|
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Fig. 2. Sample based methods for model selection. Top: The source densitiei
are given, butf cannot be inverted. Model samplesare generated through 9
cause samples. Bottom: f~1 can be computed and used for inference, but

P, is not fully known.
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But what is the optimal way of doing the alignment? Here NZ Pl
we suggest to endow the data points of the two sets with
positive and negative electric charges, and to use a learnlAghe following we will call (k) the energy function. We
dynamics driven by Coulomb forces to move the generaté@w define the positive (semi)definiteness of a kernel:
data points to their correct position. Note, that movement is Definition 1: A kernel k£ : T2 — R is called positive
not “free” but constrained by the underlying changes in trgmidefinite, if for all N, € N and',..., 2"+ € T the
model parametersv and v. We show that this procedurematrix K : K;; = k(z*,x’) is positive semidefinite.
corresponds to the minimization of the quadratic differendé k is positive semidefinite thed > 0, and we obtain the
between two kernel density estimators for the densifigg) following theorem:
and P, (), which are constructed from the sample locations. Theorem 1 (Equivalence of energy and IS[3uppose the
We then prove, that the choice of Coulomb’s law is optim&lata is contained in a subsBtC R?. Letkq,k: TxT — R
in the sense, that the quadratic difference has only one globgl kernels for which (*)k (a,b) = [ k4 (a,¢)kq (b, c) de.
minimum w.r.t. the locations of the model samples. We finallfhen the equality¥'(k;) = F(k) holds if
show that the method provides excellent resu_lts when _appl_igg) kq given: (*) converges.
to ICA problems. Note thgt due t_o apove mennongd optlmah% k given: T is compactk is symmetric, continuous, and
properties the Coulomb interaction is way superior compargdgitive semidefinite.
to interactions derived from a standard Gaussian kernel.

k(mi,mj)

Il
<
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A

Il CoSTEUNCTIONS AND OPTIMIZATION Proof (sketch). (A) is straightforward and for (B) we
o , use Mercers theoren¥a,b € T there exists an expansion

Let us consider two sets of samples i = 1...N,, drawn k(a,b) = %\, en(a) en(b), Yn: A, > 0, for

from p,(), andy’, i = 1..N,, drawn fromp,(.). We hich convergence is absolute and uniforky, and e, are

construct kernel density estimators (KDE) and p, using the eigenvalues and eigenfunctions of fhinduced Hilbert-

a kernelkq4(., .), because we assume that the true distributioRgnmidt operator. We definéa,b € T : kq(a,b) :=

arelz upknown or cannot be eyaluated. Model selec_tlpn., i.e. S > ()\nﬁ en(@) en(b). kg € LT x T) becausek

selection of the parametets, is then performed minimizing ;4 ces a trace class (nuclear) operator with B | A, =

the integrated squared difference (ISB)between both esti- [ k(a,a)da (cf. [9], p. 267).W =1

mators: T e '

Theorem 1 offers a big advantage. It says that for every

> B (A (- _ 2 .
F(ka) = F(py(ska),po(ka)) = /T(I) (a;ka)da, 3) gy mmetric, continuous, and positive semidefinite ketrfel.)



there exist a kernet, for the density estimate. Therefore, itheorem characterizes the kernels for which uniform learning
suffices to seleck(.,.), and there is no need for performingconvergence is obtained.
the integration in eq. (3). But what kerng(.,.) should be = Theorem 2 (Poisson Equationfissume that the kernel
selected? We will provide an answer to this question in Sectiéfa,b) : T x T'— R is continuously differentiable, symmet-
1l ric, and positive definite and thaT2k (a,b) € L*(T x T).

The cost functionF” can be minimized by gradient descentAssume further that forces are symmetrK.,k(a,b) =

We obtain — Vik(a,b).
N, N T If uniform convergence holds for eagh then k£ must be
Aw = —e Vol = — ELZ <8m) E(z) , (7) of the following form: k£ can be partitione_q into kernels
Ny = \ 0w k = 3, ku(n,), where thel/(\;) form a partition of 7" and

the ky(y,) obey the following Dirichlet problems oV ()\;)

where ¢ is the learning rategz'/O0w is the Jacobian of (Poisson equation):

z! = f(z%w), and -V,F = -1/N, E(z') = = )

1/N, Vai® (z7) (®(.) = @ (;;k)). We will call E(a) := Val=kupy(a,b)) = XNidppyla—b) . (11)

— Va® (a) thefield at a. wheredy(y,) is the delta function restricted ©@(\;) and0 <
Al

I11. OPTIMAL KERNELS AND CONVERGENCEPROPERTIES

In order to perform the analysis of the learning rule we Proof.
consider the continuous case, i.e. the case where the numbérjcnnsupplementary . pdf provides the proof.
of samples goes to infinity. Let(a) := py(a) — p(a) [
be the difference between the distributiopng(.) and p,(.)

from which the samples are drawn. Then the potential and the The most |mpo|r_tant ougcome ofkTheoremt2 IS tha:humlzorm
energy is given by convergence implies (under weak assumption on the kerne

k) that £k must obey eq. (11). Other kernels do not allow
o uniform convergence for arbitrary. If a kernel is chosen,
®(a) = /p(b> k(a,b) db, which does not fulfill eq. (11), additional local optima may be
Flp) = 1/ p(a) B(a) da — introduced, and gradient based optimization methods lead tc
T2 inferior optimization results. Clearly, those kernels should be
1 avoided. If a proper kernel is chosen it follows from uniform
5// p(a) p(b) k(a,b) db da . convergence, that the cost functidgh has only one global
minimum w.r.t. the particle locations. All local optima of
the cost functionF” w.r.t. the model parameters are then
only a property of the model clas§.; w).
We now solve the Dirichlet problem eq. (11). For simplicity

We now consider a simpler optimization problem than stated
in eqg. (7). Let us consider the optimization Bfas a function
of the sample locations under the assumption, that samples
x can move freely and are not constrained by the underlying

. ; o . we setU(\;) = U(A) = T. In order to obtain an unique
model f(.; w). Using the continuity equation [7] solution we setk(a,b) — 0 fora € OT, wheredT
p=—-V-(pv) (8) is the boundary. Le§ (Sr) denote the surface area of the

dimensional spher8y at 0 with radiusR. Then the following
for particle densities, with particles moving with “velocity” corollary holds:
v = — VoF = sign(p(a)) E, we obtain Corollary 1 (Coulomb Kernel):If (1) U()\) = T, (2) for
) . alla € 9T the kernelisk(a,b) = 0, (3) 9T is smooth, and
pla) = —signip(a)) V- (p(a) E(a)) =  (9) (4) T U 9T is simple connec)ted then there exists an unique
= V- (lp(a)| E(a)) . solution k for the Dirichlet problem eq. (11). F&F = R¢
this solution is given by

Let ||p]loc = maxg |p(a)| be the maximum norm. In order
to analyze the convergence properties we define: - S(8) In(Jla—23l) d=2
" ; ) . . k(a,b) = X 1 1
Definition 2 (Uniform learning convergencel:earning tsEo @y e 4> 2

converges uniformly if ||p||(t) < U(t) for 0 <, where

U is a positive strictly monotonous decreasing function of
time ¢ with lim; ., U(t) = 0.

At the global maximuma, ... of |p|: Vap(@maz) = 0 and
eg. (10) reduces to

Proof (sketch). The corollary follows from Theorem 2 and
the properties of the Dirichlet boundary problefy; ,, is
up to a constant factor the Green’s function of the Laplace
operator. The constraint “D 97 is simple connected” assures
19(@maz)| = — plamaz) V - (E(@maz)) (10) that for any unbou_ndeﬂwae obtainT = _Rd, otherwise, we
can enclose a region @&\ T by a curve inT" U 9T through
Uniform learning convergence requires that at the globalco. B
Maximum @maz SIGNA(Amaz)) = — SigN(p(@maz)) and, The kernelk is is the basis of electrostatic and gives rise to
therefore, sigtV - (E(@maz))) = SIgN(p(@maz)). The next forces between charged particles which obey Coulomb’s law.



Therefore we will callk a Coulomb kernel. The next theoremA. Sub-Gaussian Source Distribution
addresses the speed of learning convergence, still under the . ]
assumption that there are no constraints on the motion ofStandard independent component analysis methods work
data points (which is true for models which are suﬁicientlwe"_for_ super-Gaussian (peaky) source d|str|_but|ons. Our
complex). Remember, that the goal of learning was to pufstribution free algorithm, however, is also suited for sub-
p, the difference between the model output and the refererfé@ussian source distributions, like the multimodal source
distribution, towards zero. distributions used in two experiments of this section.
Theorem 3:For the Coulomb kernel defined above the 1) 3-D Sub-Gaussian sourcesThe source distributions
following equation holdst(denotes the time starting &= 0): arexz; ~ 3 N(1.4,0.05) + 2 N(—0.8,0.05), zo ~
1 £ N(1.5,0.05) + 2 N(—=1.5,0.05), z3 ~ 3 N(1.8,0.05) +
lplloc(t) = — - (12) % N(0.4,0.05) + % N(—1.1,0.05). These source distribution
Proof (sketch). At )t\hte J;xgilaprugl(ogz)intsa: |p_(a2| _ are mixed through a linear, randomly generated mixing matrix
pla) V- (E(@) = — Ap@? = — A |pla)f. This (matrix _entrles.are from g_unlform d|stlr|but|on on [-1,1]). We
differential equation finishes the prodl then tralneq a linear demixing model with 1000 f|x§d examples
The Coulomb kernel and the kerngk possess a weak and a learning rate of 0.00001 for 1000 epochs. Figure 3 shows

singularity and are not positive definite. A positive definitd€ Sources, mixtures, and recovered sources. The demixing
kernel, however, can be constructed|é — b|| is replaced by result was almost perfect which is indicated by the product of

Ja — B2 + ¢, wheree is a smoothing parameter. This kerihe mixing matrix with the demixing matrix which is close to
nels are called Plummer kerndls. They are widely used in a identity matrix subject to permutation and scaling.
computational physics, but have recently also been introduced

as a useful kernel for support vector learning [4]. Because Sources ]
kp (x',x') does not depend api, i.e. Vikp (', x') = 0, = » e * 4 * *
the learning dynamics does hardly change for small e - 4 - -
IV. EXPERIMENTS INDEPENDENTCOMPONENTANALYSIS
. oo - - E S E 3 *

Here we apply our new sample-based method to indepen=— 5 s + e
dent component analysis (ICA [5], [1], [2]) in a framework
depicted in Fig. 2, bottom. ICA is a method that builds a Mixtures
representation of the observed data in which the statisticaL v L R . - .
dependence between the components is minimal. ICA methgds *  * . P ) - -
assume that the observed data have been generatelihegia . Yeooa ‘. ~ 4T .
mixing process of source signals which are assumed to ‘be . . ‘I, - -

statistically independent from one another. The source signals”
should then be recovered by the ICA method. Linear ICA
approaches estimate the inverse of the mixing matrix wherew——w %
an independence criterion serves as objective. .

Standard ICA algorithms rely on certain properties of the
source densities, e.g. that they are unimodal, super-Gaussian or
that they have mean zero. Our approach, however, generalize4 _ *  *| [* * «| |« = %
these ICA approaches because it is distribution independent.

It thus extends the application of ICA methods to a broadEi®- 3. Demixing a 3-D mixture of sub-Gaussian distributions. Sources (first
. hi .
range of real world problems. row), mixtures (second row), and recovered sources (third row) are projected

. on a 2-D plane for visualization.
In the new ICA method we repeat following steps: (1.) Com-

pute model output from observations:. (2.) Draw the target
source sampleg. (3.) Compute electric field. (4.) Use field o
E and eq. (7) to computAw. (5.) update the weights. Step o matrix gives:
AT 0.0010 -0.0008 0.3117
draws a sample from a distribution where the components arg,

e : . oo . ~-0.0003 0.3024 -0.0007
statistically independent. This reference (target) dlstnbutlon0 4039 00002 -0.0005
is constructed to be the product of the marginal distributions™ ' ’
of the model's causeg. In our numerical simulations we 2) 4-D Sub-Gaussian sourcesln another experiment
randomly recombine components ofto generate samplag we mixed multimodal normal distributions with super-
from the reference distribution, i.e. each componenyafas Gaussians. The demixing model and the parameters of the
obtained from an independently, randomly choseBecause learning rule were exactly as in the previous experiment.
the choice of one component gf is independent from the The sources arer; ~ 3 N(0.4,0.2) + 1 N(—0.8,0.2),

2

choice of the other components we generate a proper referenge ~ & N(0.4,0.1) + 2 N(-0.3,0.1), z3

distribution. signy )yl 1~ N(1,2); x4 = u3; y2 ~ N(0,1).

Recovered Sources
B - » |- -

The fixed demixing matrix multiplied with the mixing



-0.0129 -0.0130 -0.0123-0.1473 The mixing functionsf; to f3 are highly nonlinear:
0.4325 0.0050 0.0124 0.0123 file) = log(3 + 1) Bz + dry + 2a3),

0.0078 0.6470 0.0125 0.0046 o
) = (2 + exp(—z2 —8xr1 + 4xs + 6x3),
-0.0123 -0.0133 -0.1521 -0.0146 fa(@) = p(;-398)) (-8 2 )

_ 1 2
The mixing matrix multiplied by the demixing matrix fs(@) = (5 + gus)” (Bwr — Twz + 5ug),

(left) is almost a permutation matrix. Standard ICA For demixing we used a sigmoid 3-layered neural network
algorithms fail at this ICA task due to the multimodal  with 50 hidden units. We trained 100000 epochs with a
source densities. learning rate of 0.0001. The results depicted in Figure 4 are
B. Nonlinear Mixing and De-mixing good given the fact that nonlinear ICA may not have a unique
solution, and the results are much better than results obtained
Sources by simple linear models if the independence is measured by
. o JEEve) N B e, the entropy. The improved performance compared to the linear
model results from large weights in the nonlinear neural net-
,> ), work, which produce useful nonlinearities for approximating
'giﬁ“ii‘; - e PR PP the inverse mixing function.
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