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Abstract— We investigate the optimal kernel for sample-based
model selection in unsupervised learning if maximum likelihood
approaches are intractable. Given a set of training data and a set
of data generated by the model, two kernel density estimators
are constructed. A model is selected through gradient descent
w.r.t. the model parameters on the integrated squared difference
between the density estimators. Firstly we prove that convergence
is optimal, i.e. that the cost function has only one global minimum
w.r.t. the locations of the model samples, if and only if the
kernel in the reparametrized cost function is a Coulomb kernel.
As a consequence, Gaussian kernels commonly used for density
estimators are suboptimal. Secondly we show that the absolute
value of the difference between model and reference density
convergences at least with 1/t. Finally, we apply the new methods
to distribution free ICA and to nonlinear ICA.

I. I NTRODUCTION

Unsupervised learning methods are often based on the
so-called generative model approach. In this approach, one
usually considers a parameterized family of probability distri-
butions for the observable data. Model selection is typically
performed using the likelihood of the training data or the
Bayes posterior as a selection criterion. Examples for gen-
erative approaches are abundant, ranging from factor analysis
[6], ICA [5], mixture models [8], and Boltzmann machines
[3].

Here we consider classes of generative models, where a
set z of hidden causes is responsible for the generation
of an observationx (Fig. 1). The hidden causes assume
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Fig. 1. The generative model framework.

valuesz according to a probability distributionPz(z). Every
cause vectorz is then transformed via a nonlinear function
f(z, w), parameterized by a weight vectorw, to generate an
observationx. For the following we denote the distribution

of the generated observations byPx(x). If a model has been
selected, then its most common application is inference, i.e.
the reconstruction of the source valuesz which have generated
an observationx. In order to unambiguously infer the source
values, however, the inverse functionf−1(z, w) must exist
and must be computable.

Model selection is often performed using a maximum likeli-
hood method. In order to select the optimal set of parameters,
the likelihood of an observationx,

Px(x) =

∫

dz δ (x − f(z, w)) Pz(z) , (1)

is calculated and the likelihood of the full set{xi}, i =
1, ..., N of observations,L =

∏N

i=1 Px(xi, is maximized. If
an inverse function exists and can be analytically calculated,
then the integral in eq. (1) can be evaluated and one obtains

Px(x) =

∣

∣

∣

∣

df−1

dx

∣

∣

∣

∣

Pz

(

f−1(x)
)

. (2)

The straightforward application of the maximum likelihood
(ML) method therefore requires the knowledge of the in-
verse functionf−1(x, w). Since the inverse function is also
necessary for inference one may argue that it may be more
adequate to parameterize the inverse functionf−1 rather than
the functionf which describes the data generation process.
This is, for example, done in many ICA applications. However,
there exist problems(i) for which the inverse function does not
exist (many-to-one mappings, e.g. in the case of incomplete
measurements) or(ii) for which prior knowledge exists only
for the generation process. For those cases, ML methods either
fail or may be computationally intractable. There is another
potential pitfall for the ML methods. Even if the inverse
function is given, evaluation of eq. (2) requires knowledge
of the cause densitiesPz(z). If they are not known or only
partially known one has to resort to approximations (as in
ICA).

In order to overcome above mentioned problems we suggest
to use a sample based method for model selection. Let us first
consider the case that the source densities are known but that
the generative functionf cannot easily be inverted. In this
case we suggest to generate a sample{z} of causes, and to
adjust the parametersw of the generative functionf such that
the location of the corresponding sample{x} of observations
aligns with the observed data as good as possible. For the



case that the source densities are only partially known, but
an inverse functionf−1 can be constructed, we suggest to
generate a set{z} of sources by application of the inverse
function f−1 to the set{x} observations. The parameters of
the inverse function must then be adjusted in a way, that the
set of sources aligns with a set of reference sources as good
as possible. These two scenarios are depicted in Fig. 2.
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Fig. 2. Sample based methods for model selection. Top: The source densities
are given, butf cannot be inverted. Model samplesx are generated through
cause samplesz. Bottom: f−1 can be computed and used for inference, but
Pz is not fully known.

But what is the optimal way of doing the alignment? Here
we suggest to endow the data points of the two sets with
positive and negative electric charges, and to use a learning
dynamics driven by Coulomb forces to move the generated
data points to their correct position. Note, that movement is
not “free” but constrained by the underlying changes in the
model parametersw and v. We show that this procedure
corresponds to the minimization of the quadratic difference
between two kernel density estimators for the densitiesPz(z)
andPx(x), which are constructed from the sample locations.
We then prove, that the choice of Coulomb’s law is optimal
in the sense, that the quadratic difference has only one global
minimum w.r.t. the locations of the model samples. We finally
show that the method provides excellent results when applied
to ICA problems. Note that due to above mentioned optimality
properties the Coulomb interaction is way superior compared
to interactions derived from a standard Gaussian kernel.

II. COST FUNCTIONS AND OPTIMIZATION

Let us consider two sets of samplesxi, i = 1...Nx, drawn
from px(.), and yi, i = 1...Ny, drawn from py(.). We
construct kernel density estimators (KDE)p̂y and p̂x using
a kernelkd(., .), because we assume that the true distributions
are unknown or cannot be evaluated. Model selection, i.e. the
selection of the parametersw, is then performed minimizing
the integrated squared difference (ISD)F̃ between both esti-
mators:

F̃ (kd) = F̃ (p̂y(.; kd), p̂x(.; kd)) =

∫

T

Φ2(a; kd)da, (3)

where

Φ(a; kd) := p̂y(a; kd) − p̂x(a; kd) = (4)

1
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In the following, we will call Φ the potential function. If
F̃ = 0 then the estimate of the model output distribution is
equal to the estimate of the reference distribution, and our goal
of learning is reached.

Minimization of eq. (3), however, requires the evaluation
of an integral which could be computationally expensive. We,
therefore, define another kernelk(., .),

k (a, b) =

∫

T

kd (a, c)kd (b, c) dc, (5)

for which we obtain a simpler expressionF (k) = F̃ (kd),

F (k) = F (p̂y(.; k), p̂x(.; k)) := (6)

1

2





1

Ny

Ny
∑

i=1

Φ(yi; k) −
1

Nx

Nx
∑

i=1

Φ(xi; k)



 =

1

2





1

N2
y

Ny
∑

i=1

Ny
∑

j=1

k
(

yi, yj
)

−
2

NyNx

Ny
∑

i=1

Nx
∑

j=1

k
(

yi, xj
)

+

1

N2
x

Nx
∑

i=1

Nx
∑

j=1

k
(

xi, xj
)



 .

In the following we will call F (k) the energy function. We
now define the positive (semi)definiteness of a kernel:

Definition 1: A kernel k : T 2 → R is called positive
semidefinite, if for all Nx ∈ N and x1, . . . ,xNx ∈ T the
matrix K : Kij = k(xi, xj) is positive semidefinite.
If k is positive semidefinite thenF ≥ 0, and we obtain the
following theorem:

Theorem 1 (Equivalence of energy and ISD):Suppose the
data is contained in a subsetT ⊆ R

d. Let kd, k : T ×T → R

be kernels for which (*)k (a, b) =
∫

T
kd (a, c)kd (b, c) dc.

Then the equalityF̃ (kd) = F (k) holds if

(A) kd given: (*) converges.
(B) k given: T is compact;k is symmetric, continuous, and
positive semidefinite.

Proof (sketch). (A) is straightforward and for (B) we
use Mercers theorem:∀a, b ∈ T there exists an expansion
k(a, b) =

∑∞
n=1 λn en(a) en(b), ∀n : λn ≥ 0, for

which convergence is absolute and uniform.λn and en are
the eigenvalues and eigenfunctions of thek-induced Hilbert-
Schmidt operator. We define∀a, b ∈ T : kd(a, b) :=
∑∞

n=1 (λn)
1

2 en(a) en(b). kd ∈ L2(T × T ) becausek
induces a trace class (nuclear) operator with trace

∑∞
n=1 λn =

∫

T
k(a, a)da (cf. [9], p. 267).�

Theorem 1 offers a big advantage. It says that for every
symmetric, continuous, and positive semidefinite kernelk(., .)



there exist a kernelkd for the density estimate. Therefore, it
suffices to selectk(., .), and there is no need for performing
the integration in eq. (3). But what kernelk(., .) should be
selected? We will provide an answer to this question in Section
III.

The cost functionF can be minimized by gradient descent.
We obtain

∆w = −ǫ ∇wF = − ǫ
1

Nx

Nx
∑

i=1

(

∂xi

∂w

)T

E
(

xi
)

, (7)

where ǫ is the learning rate,∂xi/∂w is the Jacobian of
xi = f(zi; w), and −∇xiF = −1/Nx E(xi) = =
1/Nx ∇xiΦ

(

xi
)

(Φ(.) ≡ Φ (.; k)). We will call E(a) :=
− ∇aΦ (a) the field at a.

III. O PTIMAL KERNELS AND CONVERGENCEPROPERTIES

In order to perform the analysis of the learning rule we
consider the continuous case, i.e. the case where the number
of samples goes to infinity. Letρ(a) := py(a) − px(a)
be the difference between the distributionspy(.) and px(.)
from which the samples are drawn. Then the potential and the
energy is given by

Φ(a) :=

∫

ρ(b) k (a, b) db ,

F (ρ) :=
1

2

∫

ρ(a) Φ(a) da =

1

2

∫ ∫

ρ(a) ρ(b) k (a, b) db da .

We now consider a simpler optimization problem than stated
in eq. (7). Let us consider the optimization ofF as a function
of the sample locationsx under the assumption, that samples
x can move freely and are not constrained by the underlying
modelf(.; w). Using the continuity equation [7]

ρ̇ = −∇ · (ρ v) (8)

for particle densities, with particles moving with “velocity”
v = − ∇aF = sign(ρ(a)) E, we obtain

ρ̇(a) = − sign(ρ(a)) ∇ · (ρ(a) E(a)) = (9)

− ∇ · (|ρ(a)| E(a)) .

Let ‖ρ‖∞ = maxa |ρ(a)| be the maximum norm. In order
to analyze the convergence properties we define:

Definition 2 (Uniform learning convergence):Learning
converges uniformly if ‖ρ‖∞(t) ≤ U(t) for 0 ≤ t, where
U is a positive strictly monotonous decreasing function of
time t with limt→∞ U(t) = 0.
At the global maximumamax of |ρ|: ∇aρ(amax) = 0 and
eq. (10) reduces to

|ρ̇(amax)| = − ρ(amax) ∇ · (E(amax)) . (10)

Uniform learning convergence requires that at the global
maximumamax sign(ρ̇(amax)) = − sign(ρ(amax)) and,
therefore, sign(∇ · (E(amax))) = sign(ρ(amax)). The next

theorem characterizes the kernels for which uniform learning
convergence is obtained.

Theorem 2 (Poisson Equation):Assume that the kernel
k(a, b) : T ×T → R is continuously differentiable, symmet-
ric, and positive definite and that∇2

a
k (a, b) ∈ L2(T × T ).

Assume further that forces are symmetric:∇ak(a, b) =
− ∇bk(a, b).

If uniform convergence holds for eachρ then k must be
of the following form: k can be partitioned into kernels
k =

∑

l kU(λl), where theU(λl) form a partition ofT and
the kU(λl) obey the following Dirichlet problems onU(λl)
(Poisson equation):

∇
2
a
(− kU(λl)(a, b)) = λl δU(λl)(a − b) , (11)

whereδU(λl) is the delta function restricted toU(λl) and0 ≤
λl.

Proof. 
ijcnnsupplementary.pdf provides the proof.
�

The most important outcome of Theorem 2 is that uniform
convergence implies (under weak assumption on the kernel
k) that k must obey eq. (11). Other kernels do not allow
uniform convergence for arbitraryρ. If a kernel is chosen,
which does not fulfill eq. (11), additional local optima may be
introduced, and gradient based optimization methods lead to
inferior optimization results. Clearly, those kernels should be
avoided. If a proper kernel is chosen it follows from uniform
convergence, that the cost functionF has only one global
minimum w.r.t. the particle locationsx. All local optima of
the cost functionF w.r.t. the model parametersw are then
only a property of the model classf(.; w).

We now solve the Dirichlet problem eq. (11). For simplicity
we setU(λl) = U(λ) = T . In order to obtain an unique
solution we setk(a, b) = 0 for a ∈ ∂T , where ∂T
is the boundary. LetS (SR) denote the surface area of thed-
dimensional sphereSR at0 with radiusR. Then the following
corollary holds:

Corollary 1 (Coulomb Kernel):If (1) U(λ) = T , (2) for
all a ∈ ∂T the kernel isk(a, b) = 0, (3) ∂T is smooth, and
(4) T ∪ ∂T is simple connected then there exists an unique
solution k for the Dirichlet problem eq. (11). ForT = R

d

this solution is given by

k(a, b) = λ

{

− S (S1) ln(‖a − b‖) d = 2
1

S(S1) (d−2)
1

‖a−b‖d−2 d > 2 .

Proof (sketch). The corollary follows from Theorem 2 and
the properties of the Dirichlet boundary problem.kU(λl) is
up to a constant factor the Green’s function of the Laplace
operator. The constraint “T∪ ∂T is simple connected” assures
that for any unboundedT we obtainT = R

d, otherwise, we
can enclose a region ofRd \T by a curve inT ∪ ∂T through
∞. �

The kernelk is is the basis of electrostatic and gives rise to
forces between charged particles which obey Coulomb’s law.



Therefore we will callk a Coulomb kernel. The next theorem
addresses the speed of learning convergence, still under the
assumption that there are no constraints on the motion of
data points (which is true for models which are sufficiently
complex). Remember, that the goal of learning was to push
ρ, the difference between the model output and the reference
distribution, towards zero.

Theorem 3:For the Coulomb kernel defined above the
following equation holds (t denotes the time starting att = 0):

‖ρ‖∞(t) =
1

λ t + (‖ρ‖∞(0))
−1 . (12)

Proof (sketch). At the extremal pointsa: |ρ̇(a)| =
ρ(a) ∇ · (E(a)) = − λ ρ(a)2 = − λ |ρ(a)|

2. This
differential equation finishes the proof.�

The Coulomb kernel and the kernelkR possess a weak
singularity and are not positive definite. A positive definite
kernel, however, can be constructed if‖a− b‖ is replaced by
√

‖a − b‖2 + ǫ, whereǫ is a smoothing parameter. This ker-
nels are called Plummer kernelskP . They are widely used in
computational physics, but have recently also been introduced
as a useful kernel for support vector learning [4]. Because
kP

(

xi, xi
)

does not depend onxi, i.e.∇xikP

(

xi, xi
)

= 0,
the learning dynamics does hardly change for smallǫ.

IV. EXPERIMENTS: INDEPENDENTCOMPONENT ANALYSIS

Here we apply our new sample-based method to indepen-
dent component analysis (ICA [5], [1], [2]) in a framework
depicted in Fig. 2, bottom. ICA is a method that builds a
representation of the observed data in which the statistical
dependence between the components is minimal. ICA methods
assume that the observed data have been generated by alinear
mixing process of source signals which are assumed to be
statistically independent from one another. The source signals
should then be recovered by the ICA method. Linear ICA
approaches estimate the inverse of the mixing matrix where
an independence criterion serves as objective.

Standard ICA algorithms rely on certain properties of the
source densities, e.g. that they are unimodal, super-Gaussian or
that they have mean zero. Our approach, however, generalizes
these ICA approaches because it is distribution independent.
It thus extends the application of ICA methods to a broader
range of real world problems.

In the new ICA method we repeat following steps: (1.) Com-
pute model outputz from observationsx. (2.) Draw the target
source samplesy. (3.) Compute electric fieldE. (4.) Use field
E and eq. (7) to compute∆w. (5.) update the weights. Step 2.
draws a sample from a distribution where the components are
statistically independent. This reference (target) distribution
is constructed to be the product of the marginal distributions
of the model’s causesz. In our numerical simulations we
randomly recombine components ofz to generate samplesy
from the reference distribution, i.e. each component ofy was
obtained from an independently, randomly chosenz. Because
the choice of one component ofy is independent from the
choice of the other components we generate a proper reference
distribution.

A. Sub-Gaussian Source Distribution

Standard independent component analysis methods work
well for super-Gaussian (peaky) source distributions. Our
distribution free algorithm, however, is also suited for sub-
Gaussian source distributions, like the multimodal source
distributions used in two experiments of this section.

1) 3-D Sub-Gaussian sources:The source distributions
are x1 ∼ 1

2 N(1.4, 0.05) + 1
2 N(−0.8, 0.05), x2 ∼

1
3 N(1.5, 0.05) + 2

3 N(−1.5, 0.05), x3 ∼ 1
3 N(1.8, 0.05) +

1
3 N(0.4, 0.05) + 1

3 N(−1.1, 0.05). These source distribution
are mixed through a linear, randomly generated mixing matrix
(matrix entries are from a uniform distribution on [-1,1]). We
then trained a linear demixing model with 1000 fixed examples
and a learning rate of 0.00001 for 1000 epochs. Figure 3 shows
the sources, mixtures, and recovered sources. The demixing
result was almost perfect which is indicated by the product of
the mixing matrix with the demixing matrix which is close to
a identity matrix subject to permutation and scaling.
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Fig. 3. Demixing a 3-D mixture of sub-Gaussian distributions. Sources (first
row), mixtures (second row), and recovered sources (third row) are projected
on a 2-D plane for visualization.

The fixed demixing matrix multiplied with the mixing
matrix gives:

0.0010 -0.0008 0.3117
-0.0003 0.3024 -0.0007
0.4039 0.0002 -0.0005

2) 4-D Sub-Gaussian sources:In another experiment
we mixed multimodal normal distributions with super-
Gaussians. The demixing model and the parameters of the
learning rule were exactly as in the previous experiment.
The sources are:x1 ∼ 1

2 N(0.4, 0.2) + 1
2 N(−0.8, 0.2),

x2 ∼ 1
3 N(0.4, 0.1) + 2

3 N(−0.3, 0.1), x3 =
sign(y1)y

4
1 ; y1 ∼ N(1, 2); x4 = y3

2 ; y2 ∼ N(0, 1).



-0.0129 -0.0130 -0.0123 -0.1473
0.4325 0.0050 0.0124 0.0123
0.0078 0.6470 0.0125 0.0046
-0.0123 -0.0133 -0.1521 -0.0146

The mixing matrix multiplied by the demixing matrix
(left) is almost a permutation matrix. Standard ICA
algorithms fail at this ICA task due to the multimodal
source densities.
B. Nonlinear Mixing and De-mixing
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Fig. 4. Demixing a 3-D nonlinear superimposure of 3 sources. The figure
shows projected sources (top row), mixtures (center row), and recovered
sources (bottom row).

To demonstrate that our approach also works for nonlinear
mixing problems we applied it to a 3-D mixture task. Here
our goal was to extract the sources. The sources arex1 ∼
1
2 N(1.4, 0.2) + 1

2 N(−0.8, 0.2); x2 ∼ N(1.0, 0.2), x3 ∼
1
3 N(1.5, 0.1) + 2

3 N(−1.5, 0.1).

The mixing functionsf1 to f3 are highly nonlinear:
f1(x) = log (3 + x1) (3x1 + 5x2 + 2x3),
f2(x) =

(

2 + exp
(

− 1
2x2

2

))

(−8x1 + 4x2 + 6x3),

f3(x) =
(

5 + 1
2x3

)2
(3x1 − 7x2 + 5x3).

For demixing we used a sigmoid 3-layered neural network
with 50 hidden units. We trained 100000 epochs with a
learning rate of 0.0001. The results depicted in Figure 4 are
good given the fact that nonlinear ICA may not have a unique
solution, and the results are much better than results obtained
by simple linear models if the independence is measured by
the entropy. The improved performance compared to the linear
model results from large weights in the nonlinear neural net-
work, which produce useful nonlinearities for approximating
the inverse mixing function.
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