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Chapter 1

Introduction

1.1 Machine Learning Introduction

This course is part of the curriculum of the master in computer science (in particular the majors
“Computational Engineering” and “Intelligent Information Systems”) and part of the master in
bioinformatics at the Johannes Kepler University Linz.

Machine learning is currently a major research topic at companies like Google, Microsoft,
Amazon, Facebook, AltaVista, Zalando, and many more. Applications are found in computer
vision (image recognition), speech recognition, recommender systems, analysis of Big Data, in-
formation retrieval. Companies that try to mine the world wide web are offering search engines,
social networks, videos, music, information, or connecting people use machine learning tech-
niques. Machine learning methods are used to classify and label web pages, images, videos, and
sound recordings in web data. They can find specific objects in images and detect a particular mu-
sic style if only given the raw data. Therefore Google, Microsoft, Facebook are highly interested
in machine learning methods. Machine learning methods attracted the interest of companies of-
fering products via the web. These methods are able to identify groups of similar users, to predict
future behavior of customers, and can give recommendation of products in which customers will
be interested based previous costumer data.

Machine learning has major applications in biology and medicine. Modern measurement tech-
niques in both biology and medicine create a huge demand for new machine learning approaches.
One such technique is the measurement of mRNA concentrations with microarrays and sequenc-
ing techniques. The measurement data are first preprocessed, then genes of interest are identified,
and finally predictions made. Further machine learning methods are used to detect alternative
splicing, nucleosome positions, gene regulation, etc. Alongside neural networks the most promi-
nent machine learning techniques relate to support vector machines, kernel approaches, projection
method and probabilistic models like latent variable models. These methods provide noise re-
duction, feature selection, structure extraction, classification / regression, and assist modeling.
In the biomedical context, machine learning algorithms categorize the disease subtype or predict
treatment outcomes based on DNA characteristics, gene expression profiles. Machine learning
approaches classify novel protein sequences into structural or functional classes. For analyzing
data of association studies, machine learning methods extract new dependencies between DNA
markers (SNP - single nucleotide polymorphisms, SNV - single nucleotide variants, CNV - copy
number variations) and diseases (Alzheimer, Parkinson, cancer, multiples sclerosis, schizophrenia
or alcohol dependence).

The machine learning course series comprises:

1



2 Chapter 1. Introduction

“Basic Methods of Data Analysis”: this course gives a smooth introduction to machine
learning with examples in R ; it covers summary statistics (mean, variance), data sum-
mary plots (boxplot, violin plot, scatter plot), principal component analysis, independent
component analysis, multidimensional scaling (Kruskal’s or Sammon’s map), locally lin-
ear embedding, Isomap, hierarchical clustering, mixture models, k-means, similarity based
clustering (affinity propagation), biclustering

“Machine Learning: Supervised Methods”: classification and regression techniques, time
series prediction, kernel methods, support vector machines, neural networks, deep learning,
deep neural and belief networks, ARMA and ARIMA models, recurrent neural networks,
LSTM

“Machine Learning: Unsupervised Methods”: maximum likelihood estimation, maximum
a posterior estimation, maximum entropy, expectation maximization, principal component
analysis, statistical independence, independent component analysis, factor analysis, mix-
ture models, sparse codes, population codes, kernel PCA, hidden Markov models (factorial
HMMs and input-output HMMs), Markov networks and random fields, clustering, biclus-
tering, restricted Boltzmann machines, auto-associators, unsupervised deep neural networks

“Theoretical Concepts of Machine Learning”: estimation theory (unbiased and efficient
estimator, Cramer-Rao lower bound, Fisher information matrix), consistent estimator, com-
plexity of model classes (VC-dimension, growth, annealed entropy), bounds on the gen-
eralization error, Vapnik and worst case bounds on the generalization error, optimization
(gradient based methods and convex optimization), Bayes theory (posterior estimation, er-
ror bounds, hyperparameter optimization, evidence framework), theory on linear functions
(statistical tests, intervals, ANOVA, generalized linear functions, mixed models)

In this course the most prominent machine learning techniques are introduced and their math-
ematical basis and derivatives are explained. If the student understands these techniques, then the
student can select the methods which best fit to the problem at hand, the student is able to optimize
the parameter settings for the methods, the student can adapt and improve the machine learning
methods, and the student can develop new machine learning methods.

Most importantly, students should learn how to chose appropriate methods from a given pool
of approaches for solving a specific problem. To this end, they must understand and evaluate the
different approaches, know their advantages and disadvantages as well as where to obtain and how
to use them. In a step further, the students should be able to adapt standard algorithms for their own
purposes or to modify those algorithms for particular applications with certain prior knowledge or
problem-specific constraints.

1.2 Course Specific Introduction

This course introduces unsupervised machine learning methods. If data has to be processed by
machine learning methods, where the desired output is not given, then the learning task is called
unsupervised. In contrast to supervised problems, the quality of models on unsupervised prob-
lems is mostly measured on the cumulative output on all objects. Typically measurements for
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unsupervised methods include the information contents, the orthogonality of the constructed com-
ponents, the statistical independence, the variation explained by the model, the probability that the
observed data can be produced by the model (later introduced as likelihood), distances between
and within clusters, etc. Supervised methods are used for performing prediction of future data
while unsupervised methods allow to explore the data, find structure in the data, visualize the data,
or compress the data. Unsupervised methods help to understand and explore the data and generate
new knowledge but also compress the data for transmission or storage.

Objectives and theoretical concepts of unsupervised learning are maximum likelihood, maxi-
mum a posteriori, maximum entropy, expectation maximization, maximal variance, independence,
non-Gaussianity, sub- and super-Gaussian distributions, sparse and population codes.

Methods of unsupervised machine learning are projection methods like “principal compo-
nent analysis”, “independent component analysis”, “factor analysis”, or “projection pursuit”. Fur-
ther clustering methods include “k-means”, “hierarchical clustering”, “mixture models”, or “self-
organizing maps”. Generative unsupervised methods are density estimation (“kernel density es-
timation”, “Gaussian mixtures”), “hidden Markov models” including factorial HMMs and input-
output HMMs, or “belief networks”. The latter are subsumed into “Markov networks” or “Markov
random fields”. Other and more advanced methods include “restricted Boltzmann machines”,
“neural network auto-associators”, and “unsupervised deep neural networks”. Unsupervised meth-
ods try to extract structure in the data, represent the data in a more compact or more useful way,
or build a model of the data generating process or parts thereof.

Projection methods generate a new representation of objects given a representation of them as a
feature vector. In most cases, they down-project feature vectors of objects into a lower-dimensional
space in order to remove redundancies and components which are not relevant. “Principal Com-
ponent Analysis” (PCA) represents the object through feature vectors which components give the
extension of the data in certain orthogonal directions. The directions are ordered so that the first
direction gives the direction of maximal data variance, the second the maximal data variance or-
thogonal to the first component, and so on. “Independent Component Analysis” (ICA) goes a
step further than PCA and represents the objects through feature components which are statis-
tically mutually independent. “Factor Analysis” extends PCA by introducing a Gaussian noise
at each original component and assumes Gaussian distribution of the components. “Projection
Pursuit” searches for components which are non-Gaussian, therefore, may contain interesting in-
formation. Clustering methods are looking for data clusters and, therefore, finding structure in
the data. Clustering has been extended to “biclustering”, where both the features and the objects
are simultaneously clustered (objects are clustered only using features from a particular cluster).
“Self-Organizing Maps” (SOMs) are a special kind of clustering methods which also perform a
down-projection in order to visualize the data. The down-projection keeps the neighborhood of
clusters. Density estimation methods attempt at producing the density from which the data was
drawn. In contrast to density estimation methods generative models try to build a model which
represents the density of the observed data. Goal is to obtain a world model for which the density
of the data points produced by the model matches the observed data density.
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Figure 1.1: Example of a clustering algorithm. Ozone was measured and four clusters with similar
ozone were found.

Figure 1.2: Example of a clustering algorithm where the clusters have different shape.
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Figure 1.3: Example of a clustering where the clusters have a non-elliptical shape and clustering
methods fail to extract the clusters.

Figure 1.4: Two speakers recorded by two microphones. The speaker produce independent acous-
tic signals which can be separated by ICA (here called Blind Source Separation) algorithms.
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Figure 1.5: On top the data points where the components are correlated: knowing the x-coordinate
helps to guess were the y-coordinate is located. The components are statistically dependent. After
ICA the components are statistically independent.

1.3 Generative vs. Descriptive Models

In the previous section we mentioned the the kernel density estimator, where the model produces
for a location the estimated density. And also for a training data point the density of its location is
estimated, i.e. this data point has a new characteristic through the density at its location. We call
this a descriptive model. Descriptive models supply an additional description of the data point or
another representation. Therefore projection methods (PCA, ICA) are descriptive models as the
data points are described by certain features (components).

Another machine learning approach to model selection is to model the data generating process.
Such models are called generative models. Models are selected which produce the distribution
observed for the real world data, therefore these models are describing or representing the data
generation process. The data generation process may have also input components or random
components which drive the process. Such input or random components may be included into the
model. Important for the generative approach is to include as much prior knowledge about the
world or desired model properties into the model as possible in order to restrict the number of
models which can explain the observed data.

A generative model can be used to predict the data generation process for unobserved inputs,
to predict the behavior of the data generation process if its parameters are externally changed, to
generate artificial training data, or to predict unlikely events. Especially the modeling approaches
can give new insights into the working of complex systems of the world like the brain or the cell.



Chapter 2

Basic Terms and Concepts

2.1 Unsupervised Learning in Bioinformatics

One important topic in bioinformatics is to analyze microarray measurements with unsupervised
techniques. Goals are to figure out which genes are expressed simultaneously (are part of the same
pathway), what metabolic stages are present, etc. Also time series of microarray data must be
analyzed e.g. by cluster analysis (e.g. [Eisen et al., 1998]). Fig. 2.1 and Fig. 2.2 show microarray
dendrograms obtained through hierarchical clustering.

Often unsupervised methods are used in bioinformatics to visualize dependencies and clusters
like the use of principal component analysis for Spellman’s cell-cycle data in Fig. 2.3.

For visualization the data must be in general down-projected to show the data in a 2-dimensional
or 3-dimensional space.

Dimension reduction is an important step in preprocessing biological data. For example [Lilien
et al., 2003] achieved best results on classification of healthy and cancerous persons of prostate
cancer on the basis surface-enhanced laser desorption/ionization time-of-flight mass spectrometry
(SELDI TOF MS) date if PCA was used.

2.2 Unsupervised Learning Categories

Many unsupervised learning procedures can be viewed as trying to bring two probability distribu-
tions into alignment. Two well known classes of unsupervised procedures that can be cast in this
manner are generative and recoding models.

2.2.1 Generative Framework

In a generative unsupervised framework (see Fig. 2.4), the environment generates training exam-
ples – which we will refer to as observations or training data – by sampling from one distribution;
the other distribution is embodied in the model. In the generative framework we want to model or
to simulate the real world by generating samples with the same underlying distribution as the real
world samples.

The hidden Markov models from previous Chapter 9 fall into the generative framework. Other
examples of the generative framework are factor analysis [Jöreskog, 1967, Everitt, 1984, Neal

7



8 Chapter 2. Basic Terms and Concepts

Figure 2.1: A microarray dendrogram obtained by hierarchical clustering.

and Dayan, 1997], Boltzmann machines [Hinton and Sejnowski, 1986], or mixture models. In
the generative framework we have to bring two distributions to match: the fixed distribution of
observations and the model output distribution.

2.2.2 Recoding Framework

In the recoding unsupervised framework (see Fig. 2.5), the model transforms observations to an
output space. The distribution of the transformed observations (the outputs) is compared either to a
reference (target) distribution or whether target distribution features are present. These features are
measured by an objective function which must be optimized. Target features are used to represent
a whole class of target distributions. In many cases the objective function can be replaced by the
distribution from the target distribution set which is closest to the output distribution.

Goal of the recoding framework is to represent the observations in an appropriate way, e.g.
desired data density, low dimensional representation, high variance (large information), non-
Gaussianity, or independent components.
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Figure 2.2: Another example of a microarray dendrogram obtained by hierarchical clustering.
Representative portions of the tumor specific gene clusters. The spectrum of green to red spots rep-
resents the relative centered expression for each gene (sidebar shows fold difference from mean);
selected gene names are shown on the right. Correlation coefficient bar shown to the right side of
the dendrogram indicates the degree of relatedness between branches of the dendrogram.
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Figure 2.3: Spellman’s cell-cycle data represented through the first principal components (Land-
grebe et al., Genome Biology, 2002).

world

modelsource
noise

Figure 2.4: The generative framework is depicted. A noise source "drives" the model and produces
an output distribution which should match the distribution observed in the world. Separation of
model and noise source means that all adjustable parameters are contained in the model.
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target

world

model

Figure 2.5: The recoding framework is depicted. The data from the world is mapped through a
model to a model output distributions which should match a specified target distribution.

Recoding Example: Density Estimation.
Another special case of the recoding unsupervised framework is density estimation, where the

reference (target) distribution is easy to calculate like a uniform distribution or a Gaussian distri-
bution. A well known example is the mixtures of Gaussians (MoG) model [Pearson, 1894, Hassel-
blad, 1966, Duda and Hart, 1973]. The observation transformation must be locally invertible that
is the Jacobian determinant must exist for the observation. That allows us to compute the density
of the observation. Note that these constraints are weaker than assuming to know the inverse of
the transformation. For example with neural networks the Jacobian can be computed [Flake and
Pearlmutter, 2000] and, therefore, it is local invertible but the inverse model is unknown.

Other Recoding Approaches.

Projection Pursuit and PCA. Other examples within the recoding framework are projection
methods such as projection pursuit (e.g., [Friedman and Tukey, 1974, Friedman and Stuetzle,
1981, Huber, 1985, Friedman, 1987, Jones, 1987, Jones and Sibson, 1987, Zhao and Atkeson,
1996, Intrator, 1993]), principal component analysis (PCA) (e.g. [Oja, 1982, 1989, Jolliffe, 1986,
Jackson, 1991]. Projection pursuit aims at an output distribution which is as non-Gaussian as
possible where the non-Gaussianity is measured by the entropy. Note, that for a given variance the
Gaussian distribution maximizes the entropy. PCA’s objective for a one-dimensional projection
is maximal variance. The projection is constrained to a linear mapping, the coefficient vector has
unit length, and is orthogonal to previous projections.

Clustering and Coincidence Detection. An objective function can be given for Clustering
methods and Coincidence detection approaches. Clustering methods can be interpreted as mixture
models and describe the data by a multimodal distribution. Coincidence detection is based on
the fact that the multidimensional distribution of observations has high density regions indicating
correlated components in the observations. Therefore coincidence detection is closely related to
independent component analysis.
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Self-organizing maps (SOMs). For self-organizing maps (SOMs) [Kohonen, 1982, 1988, 1990,
1995a, Ritter et al., 1992, 1991, Obermayer et al., 1992, Erwin et al., 1992] the objective function
cannot always be expressed as a single scalar function (like an energy or error function). Scalar
objectives are important to derive learning algorithms based on optimizing this function and to
compare models. The objective of SOMs is a scalar function for discrete input spaces and for
discrete neighborhood functions otherwise the objective function must be expressed as a vector
valued potential function [Kohonen, 1995a, Cottrell et al., 1995, Ritter et al., 1992, 1991, Erwin
et al., 1992]. The lack of a scalar objective function is one of the major drawbacks of SOMs
because models cannot be compared, overfitting not detected, and stopping of training is difficult
to determine.

2.2.3 Recoding and Generative Framework Unified

If the recoding model has a unique inverse then the generative framework can be applied in the
recoding context. The inverse model can use the observations as training examples which must
be produced from some target distribution. Then the model maps the training examples to target
distributions.

If the inverse model is obtained from the generative approach, then the recoding model is also
available.

The objective function of principal component analysis (PCA) and independent component
analysis (ICA) [Hinton and Sejnowski, 1999, Attias, 1999] attempt at keeping maximal informa-
tion about the observations in the code while fulfilling certain constraints. In the generative view
they are treated as generative models, which try to produce the data, whereas the constraints are
coded into the model e.g. by using specific target distributions.

Most recoding methods have higher input dimensionality than output dimensionality because
the goal is to represent the input compactly and non-redundantly for visualization or for features
extraction.

However, it is sometimes possible to formulate the recoding approach as a generative model
even for a non-bijective model. The target distribution has to produce the observations by first
generating a code which in turn generates the observations. Computing the likelihood requires the
computation of the probabilities of the codes corresponding to the observations. Density estima-
tion, projection pursuit and vector quantization can be treated is such a way [Hinton and Sejnowski,
1999, Attias, 1999]. The probabilities of the codes are the posterior of the code given the data,
where we assume that an observation can be produced by different codes. For example, recod-
ing methods which do not have bijective functions are principal curves [Mulier and Cherkassky,
1995, Ritter et al., 1992], which are a nonlinear generalization of principal components [Hastie
and Stuetzle, 1989].

Example: Independent Component Analysis. An example for a recoding model treated as gen-
erative model and using objective functions is independent component analysis (ICA) [Schmid-
huber, 1992, Bell and Sejnowski, 1995, Deco and Brauer, 1995, Pearlmutter and Parra, 1997,
Cardoso and Laheld, 1996, Cichocki et al., 1994, Jutten and Herault, 1991, Comon, 1994, Yang
and Amari, 1997, Yang et al., 1996, Cardoso and Souloumiac, 1993, Hyvärinen, 1999], a method
that discovers a representation of vector-valued observations in which the statistical dependence
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among the vector elements in the output space is minimized. With ICA, the model de-mixes ob-
servation vectors and the output should consist of statistically independent components. Towards
this end the output distribution can be compared against a given factorial distribution. The gen-
erative approach assumes that the observations are produced by a model with independent hidden
units [Cardoso, 1997, Moulines et al., 1997, Yang and Amari, 1997, Pearlmutter and Parra, 1997].
Alternatively, an objective or contrast function indicating statistically independent model output
components can be used (see e.g. [Hyvärinen, 1999]).

Example: Density Estimation. The traditional density estimation framework supplies the in-
verse model and, therefore, can be viewed as a generative framework. For example in the mixture
of Gaussians model each mixture component can be viewed as being generated by a Gaussian dis-
tribution with identity matrix as covariance matrix and thereafter transformed by a non-singular
linear mapping. The posterior can be easily computed thus the model can serve as data generation
model.

2.3 Quality of Parameter Estimation

Generative models estimate the optimal parameter given a parametrized model class. The given
data is generated from a model of the model class. Goal is to find this model or approximate it
closely in terms of the parameters (a model with similar parameters).

We consider the quality of parameter estimation in the generative framework. The true param-
eter is assumed to be known and an estimation method aims to estimate the true parameter from
given training data. The difference between true parameter and estimated parameter determines
the quality of the estimation technique.

The training data is {x} =
{
x1, . . . ,xl

}
for which we will often simply writeX (the matrix

of training data). The true parameter vector is denoted by w and its estimate by ŵ.

An estimator is unbiased if

EX(ŵ) = w , (2.1)

i.e. on the average the estimator will yield the true parameter.

The bias is

b(ŵ) = EX(ŵ) − w . (2.2)

The variance of the estimator is defined as

var(ŵ) = EX

(
(ŵ − EX(ŵ))T (ŵ − EX(ŵ))

)
. (2.3)

An evaluation criterion for supervised methods is the mean squared error (MSE) which is
an expectation over future data points. Here we define the MSE as expectation over the training
set, because we deal with unsupervised learning and evaluate the estimator. The MSE gives the
expected error as squared distance between the estimated parameter and the true parameter.

mse(ŵ) = EX

(
(ŵ − w)T (ŵ − w)

)
. (2.4)
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We can reformulate the MSE:

mse(ŵ) = EX

(
(ŵ − w)T (ŵ − w)

)
= (2.5)

EX

(
((ŵ − EX(ŵ)) + (EX(ŵ) − w))T

((ŵ − EX(ŵ)) + (EX(ŵ) − w))
))

=

EX

(
(ŵ − EX(ŵ))T (ŵ − EX(ŵ)) −

2 (ŵ − EX(ŵ))T (EX(ŵ) − w) +

(EX(ŵ) − w)T (EX(ŵ) − w)
)

=

EX

(
(ŵ − EX(ŵ))T (ŵ − EX(ŵ))

)
+

(EX(ŵ) − w)T (EX(ŵ) − w) =

var(ŵ) + b2(ŵ) .

where the last but one equality comes from the fact that only ŵ depends onX and therefore

EX

(
(ŵ − EX(ŵ))T (EX(ŵ) − w)

)
= (2.6)

(EX(ŵ) − EX(ŵ))T (EX(ŵ) − w) = 0 .

The MSE is decomposed into a variance term var(ŵ) and a bias term b2(ŵ). The variance
has high impact on the performance because large deviations from the true parameter have strong
influence on the MSE through the quadratic error term.

Note that averaging linearly reduces the variance. The average is

ŵaN =
1

N

N∑

i=1

ŵi , (2.7)

where

ŵi = ŵi (Xi) (2.8)

Xi =
{
x(i−1) l/N + 1, . . . ,xi l/N

}
,

i.e.Xi is the i-th subset ofX and contains l/N elements. The size of the data is l and the examples
ofXi range from (i− 1) l/N + 1 to i l/N .

The average is unbiased:

EX (ŵaN ) =
1

N

N∑

i=1

EXiŵi =
1

N

N∑

i=1

w = w . (2.9)

The variance is linearly reduced

covarX (ŵaN ) =
1

N2

N∑

i=1

covarXi (ŵi) = (2.10)

1

N2

N∑

i=1

covarX,l/N (ŵ) =
1

N
covarX,l/N (ŵ) ,
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where covarX,l/N (ŵ) is the estimator with l/N training points.

We used the facts:

covarX(a + b) = (2.11)

covarX(a) + covarX(b) + 2 covarX(a, b)

covarX(λ a) = λ2 covarX(a) .

For averaging it is important that the training sets Xi are independent from each other and
do not overlap. Otherwise the estimators are dependent and the covariance terms between the
estimators do not vanish.

2.4 Maximum Likelihood Estimator

A very popular parameter estimator for generative models is the Maximum Likelihood Estimator
(MLE). The popularity stems from the fact that it can be applied to a broad range of problems and
that the MLE is asymptotically efficient and unbiased. That means the MLE does everything right
and efficiently extracts information from the data.

The likelihood L of the data set {x} = {x1, . . . ,xl} is

L({x};w) = p({x};w) , (2.12)

i.e. the probability of the model p(x;w) to produce the data set. However the set {x} has zero
measure and therefore the density at the data set {x} must be used.

For identical and independently distributed (iid) data the likelihood is

L({x};w) = p({x};w) =
l∏

i=1

p(xi;w) . (2.13)

Instead of maximizing the likelihood L the log-likelihood lnL is maximized or the negative
log-likelihood− lnL is minimized. The logarithm transforms the product of the iid data sampling
into a sum:

− lnL({x};w) = −
l∑

i=1

ln p(xi;w) . (2.14)

Problem with the likelihood is that it is a product of densities at finite many points, therefore,
it is a set with zero measure. In statistics, sets with zero measures are ignored as they vanish in
all integrals, that is, in expectations. To motivate the use of the likelihood one can assume that
if point p(xi;w) is considered actually p(xi;w) dx is meant, which gives the probability mass
and a probability of observing x in a region of volume dx around xi. In this case the likelihood
gives the probability of the model to produce similar data points as {x}, where similar means data
points in a volume dx around the actual observed data points.

However the fact that the MLE is so popular is based on its simple use and its properties
especially that it is optimal for the number of training points going to infinity.
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An unbiased estimator is said to be efficient if it reaches the Cramer-Rao Lower Bound (CRLB):

covar(ŵ) − I−1
F (w) (2.15)

is positive definite:

covar(ŵ) − I−1
F (w) ≥ 0 , (2.16)

IF is the Fisher information matrix. An efficient estimator has the minimal variance of all unbi-
ased estimators. It is efficient in that it efficiently makes use of the data and extracts information
to estimate the parameter.

A estimator is said to be consistent if

ŵ
l→∞→ w , (2.17)

i.e. for large training sets the estimator approaches the true value. Consistency is important to
ensure that more training examples lead to better models. How fast the estimator converges to the
best model with more training examples may be different for each consistent estimator.

Properties of maximum likelihood estimator:

the MLE is invariant under parameter change,

the MLE is asymptotically unbiased,

the MLE is asymptotically efficient, i.e. asymptotically optimal,

the MLE is consistent for zero Cramer-Rao lower bound (CRLB).

2.5 Expectation Maximization

The likelihood can be maximized by gradient descent methods. However the likelihood must
be expressed analytically to obtain the derivatives. For some models the likelihood cannot be
computed analytically because of hidden states of the model, of a many-to-one output mapping of
the model, or of non-linearities. Often the model has unobserved variables u, i.e. hidden variables
or latent variables. For models with hidden variables the likelihood is determined by all possible
values of the hidden variables which can produce output x.

For many models the joint probability p({x},u;w) of the hidden variablesu and observations
{x} is easier to compute than the likelihood of the observations. If we can also estimate p(u |
{x};w) of the hidden variables u using the parameters w and given the observations {x} then
we can apply the Expectation Maximization (EM) algorithm.

Let us assume we have an estimation Q(u | {x}) for p(u | {x};w), which is some density
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with respect to u. The following inequality is the basis for the EM algorithm:

lnL({x};w) = ln p({x};w) = (2.18)

ln

∫

U
p({x},u;w) du =

ln

∫

U

Q(u | {x})
Q(u | {x})p({x},u;w) du ≥

∫

U
Q(u | {x}) ln

p({x},u;w)

Q(u | {x}) du =

∫

U
Q(u | {x}) ln p({x},u;w) du −

∫

U
Q(u | {x}) lnQ(u | {x}) du =

F(Q,w) .

where the “≥” is the application of Jensen’s inequality. Above inequality states that F(Q,w) is a
lower bound to the log-likelihood lnL({x};w).

The EM algorithm is an iteration between two steps, the “E”-step and the “M”-step:

E-step: (2.19)

Qk+1 = arg max
Q
F(Q,wk)

M-step:
wk+1 = arg max

w
F(Qk+1,w) .

It is important to note that in the E-step the maximal Q is

Qk+1(u | {x}) = p(u | {x};wk) (2.20)

F(Qk+1,wk) = lnL({x};wk) .

This means that the maximal Q is the posterior or the hidden variables p(u | {x};wk) using the
current parameters wk. Furthermore, the lower bound F is equal to the log-likelihood with the
current parameters wk. The bound is thight and reaches the log-likelihood.

To see the last statement:

p(u, {x};wk) = p(u | {x};wk) p({x};wk) , (2.21)

therefore

F(Q,w) =

∫

U
Q(u | {x}) ln

p({x},u;w)

Q(u | {x}) du = (2.22)
∫

U
Q(u | {x}) ln

p(u | {x};w)

Q(u | {x}) du + ln p({x};w) =

−
∫

U
Q(u | {x}) ln

Q(u | {x})
p(u | {x};w)

du + lnL({x};w)
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The expression
∫
U Q(u | {x}) ln Q(u|{x})

p(u|{x};w) du is the Kullback-Leibler divergence DKL(Q ‖ p)
between Q(u | {x}) and p(u | {x};w). The Kullback-Leibler divergence KL(p1, p2) is defined
as

DKL(p1 ‖ p2) =

∫

U
p1(u) ln

p1(u)

p2(u)
du (2.23)

and the cross entropy as

−
∫

U
p1(u) ln p2(u) du . (2.24)

The entropy of a distribution p1 is defined as

−
∫

U
p1(u) ln p1(u) du . (2.25)

The Kullback-Leibler divergence is always greater than or equal to zero:

DKL(p1 ‖ p2) ≥ 0 (2.26)

because

0 = ln 1 = ln

∫

U
p2(u) du = (2.27)

ln

∫

U
p1(u)

p2(u)

p1(u)
du ≥

∫

U
p1(u) ln

p2(u)

p1(u)
du = − DKL(p1 ‖ p2) .

Thus, ifDKL(Q ‖ p) = 0 thenF(Q,wk) is maximized because the Kullback-Leibler divergence,
which enters the equation with a negative sign, is minimal. We have Q(u | {x}) = p(u |
{x};w) and obtain

F(Q,w) = lnL({x};w) . (2.28)

In the M-step only the cross-entropy
∫
U Qk+1(u | {x}) ln p({x},u;w) du must be consid-

ered because the other term (the entropy of Qk+1) is independent of the parameters w. The EM
algorithm can be interpreted as:

E-step: Tighten the lower bound to equality: F(Q,w) = lnL({x};w) .

M-step: Maximize the lower bound which is at the equality and therefore increase the like-
lihood. This might lead to a lower bound which is no longer tight.

The EM algorithm increases the lower bound because in both steps the lower bound is max-
imized. Can it happen that maximizing the lower bound may decrease the likelihood? No! At
the beginning of the M-step we have F(Qk+1,wk) = lnL({x};wk), and the E-step does not
change the parameters w:

lnL({x};wk) = F(Qk+1,wk) ≤ (2.29)

F(Qk+1,wk+1) ≤ F(Qk+2,wk+1) = lnL({x};wk+1) ,

where the first “≤” is from the M-step which gives wk+1 and the second “≤” from the E-step
which gives Qk+2.
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2.6 Maximum Entropy

A maximum entropy probability distribution is the distribution with maximal entropy given a class
of distributions. If any prior knowledge is missing except that a distribution a certain class, then
maximum entropy distribution should be chosen because

it has minimal prior assumptions on the distribution and

physical systems converge over time to maximal entropy configurations which makes it the
most likely observed solution.

The principle of maximum entropy was first expounded by E.T. Jaynes in 1957, where he empha-
sized a natural correspondence between statistical mechanics and information theory.

For discrete random variables pk = p(x = xk), the entropy of is defined as

H = −
∑

k≥1

pk log pk . (2.30)

We assume pklogpk = 0 for pk = 0. For continuous random variables x with probability density
p(x), the entropy is

H = −
∫ ∞

−∞
p(x) log p(x) dx , (2.31)

where we set p(x)logp(x) = 0 for p(x) = 0.

The normal distribution N(µ, σ2) has maximum entropy among all real-valued distributions
with mean µ and standard deviation σ. Normality imposes the minimal prior assumptions given
the first two moments. The uniform distribution on the interval [a, b] is the maximum entropy
distribution among all continuous distributions which are supported in the interval [a, b]. The ex-
ponential distribution with mean 1/λ is the maximum entropy distribution among all continuous
distributions supported in [0,∞] that have a mean 1/λ.

Discrete random variables X which satisfy the n conditions:

E(fj(X)) = aj for j = 1, . . . , n (2.32)

Maximum entropy distribution has the following shape:

Pr(X = xk) = c exp




n∑

j=1

λj fj(xk)


 for k = 1, 2, . . . , (2.33)

where the constants c and λj have to be determined so that the sum of the probabilities is 1 and the
above conditions for the expected values are satisfied. Conversely, if constants c and λj as above
can be found, then the above distribution is the maximum entropy distribution.

Not all classes of distributions contain a maximum entropy distribution. A class may contain
distributions of arbitrarily large entropy (e.g. the class of all continuous distributions on R with
mean 0 but arbitrary standard deviation). Or the entropies of distributions from a class are bounded
from above but there is no distribution which attains the maximal entropy (e.g. the class of all
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continuous distributions X on R with E(X) = 0 and E(X2) = E(X3) = 1. The expected value
restrictions for the class C may force the probability distribution to be zero in certain subsets of
S. In that case Boltzmann’s theorem does not apply, but S can be shrinked.

SOLUTION
We require our probability distribution p to satisfy

n∑

i=1

p(xi) fk(xi) = Fk k = 1, . . . ,m . (2.34)

Furthermore, the probability must sum to one:

n∑

i=1

p(xi) = 1 . (2.35)

The probability distribution with maximum information entropy subject to these constraints is

p(xi) =
1

Z(λ1, . . . , λm)
exp (λ1f1(xi) + · · · + λmfm(xi)) . (2.36)

This distribution is called the Gibbs distribution in statistical mechanics. The normalization con-
stant Z is determined by

Z(λ1, . . . , λm) =

n∑

i=1

exp (λ1f1(xi) + · · · + λmfm(xi)) , (2.37)

and is called the partition function. The value of the Lagrange multipliers λk are determined by

Fk =
∂

∂λk
logZ(λ1, . . . , λm) . (2.38)

These m simultaneous equations may not have a closed form solution but can be solved numeri-
cally.

The derivatives are:

∂

∂λk
logZ(λ1, . . . , λm) =

1

Z(λ1, . . . , λm)

n∑

i=1

fk(xi) exp (λ1f1(xi) + · · · + λmfm(xi))

(2.39)

=
n∑

i=1

p(xi) fk(xi) ,

which leads to the orgiginal contraints.
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Principal Component Analysis

Principal Component Analysis (PCA) Jöreskog [1967], Everitt [1984], Neal and Dayan [1997] also
known as Karhunen-Loéve transform (KTL) or as Hotelling transform makes a transformation of
the coordinate system so that the data has largest variance along the first coordinate, the second
largest data variance is along the second coordinate, etc. The coordinates, that are vectors, are
called principal components. Fig. 3.1 shows the principal components of a two-dimensional data
set and Fig. 3.2 shows how the projection onto the first principal component is extracted from data
points.

Figure 3.1: Principal component analysis for a two-dimensional data set. Left: the original data
set. Right: The first principal component is shown as the line from lower left to upper right. The
second principal component is orthogonal to the first component.

PCA is a very useful tool to summarize multivariate data because the first principal components
capture most of the variation in the data. Therefore, they capture the most prominent structures in
the data. Plotting observations by their projection onto the first two principal components often
gives a first insight into the nature of the data.

Instead of a single scalar x, an observation is now represented as a vector x ofm features: x =
(x1, x2, . . . , xm). The data consisting of n observations {x1,x2, . . . ,xn} can be summarized in
a data matrix X of size n ×m which means n rows and m columns. The rows of X contain the
n observations (each row contains one observation), while the columns contain the m features.
We assume that the columns of X , that are the features, have zero sample mean. Otherwise, the
feature mean must be subtracted from each feature of each observation.

21
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Figure 3.2: Principal component analysis for a two-dimensional data set. The projection onto
the first principal component is extracted for data points. The points are projected onto the first
component and then the distance to the origin is measured.

3.1 The Method

The m×m sample covariance matrix C of the features across the observations is defines as

Cst =
1

n

n∑

i=1

xis xit , (3.1)

where xis = (xi)s and xit = (xi)t. For an unbiased estimate of the covariance matrix a factor
1

n−1 instead of 1
n should be used. The covariance matrix C can be expressed as

C =
1

n
XTX =

1

n
UDm U

T , (3.2)

where U is an orthogonal m × m matrix and Dm is an m × m diagonal matrix. This decom-
position of C into U and Dm is the eigendecomposition or spectral decomposition of C. This
decomposition exists because C is a symmetric positive definite matrix. The diagonal entries of
Dm are called eigenvalues and the column vectors ui = [U ]i are called eigenvectors. We assume
that the eigenvalues ofDm are sorted decreasingly, so that the first value is the largest eigenvalue.
C as a symmetric real matrix is always diagonalizable and, since it is positive definite, its eigen-
values are larger than or equal to zero. In the context of PCA, the eigenvectors ui are called the
principal components, where the first principal component corresponds to the largest eigenvalue.

We assume that n ≥ m and that at least m linear independent observations exist, in order
to ensure that C has full rang. To ensure n ≥ m, typically feature selection is performed prior
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to a PCA analysis. Unsupervised feature selection may be based on variability, signal strength
measured by the range, correlation between features (only one feature is kept if two features are
highly correlated), non-Gaussianity, etc.

The singular value decomposition (SVD) of an n×m matrixX is

X = V D UT , (3.3)

where U is an orthogonal m × m matrix, V an orthogonal n × n matrix, and D is a diagonal
(diagonal for the first m rows) n × m matrix with positive entries, the singular values. The
diagonal values ofD are sorted decreasingly, so that the first value is the largest value (the largest
singular value), the second value is the second largest value, etc. Computing XTX , we see that
Dm = DT D (the eigenvalues are the singular values squared) and U is the same orthogonal
matrix as in the eigendecomposition. SVD is often used to perform PCA.

For performing PCA, it is sufficient to know U , because the projection of feature vector x
onto the principal directions is given by UTx. Therefore, the data X is projected onto U , which
gives Y :

Y = X U = V D . (3.4)

We see that the SVD automatically provides the PCA projections viaV D. For single observations
x that is

y = UTx . (3.5)

In principle, PCA is a matrix decomposition problem:

X = Y UT , (3.6)

where U is orthogonal, Y T Y = Dm (the y are orthogonal, that is they are decorrelated), and
the eigenvalues ofDm are sorted decreasingly. For single observations that is

x = U y . (3.7)

The SVD allows an outer product representation of the matrixX:

X =

m∑

i=1

Dii viu
T
i = (3.8)

m∑

i=1

yiu
T
i ,

where ui is the i-th orthogonal column vector of U , vi is the i-th orthogonal column vector of V ,
and yi = Dii vi.

Iterative methods for PCA are sometimes to prefer if the dimension m is large or if on-line
methods should be implemented. Most famous is Oja’s rule Oja [1982]. If the current projection
is

t = uTx (3.9)
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then Oja’s rule is

unew = u + η
(
t x − t2 u

)
, (3.10)

where η is the learning rate.

The eigenvectors of C are the fixed points of Oja’s rule and only the eigenvector with largest
eigenvalue is a stable fixed point.

Ex(unew) = u + η Ex
(
x(xTu) − (uTx)(xTu) u

)
(3.11)

= u + η
(
Ex(xxT )u −

(
uTEx(xxT )u

)
u
)

= u + η
(
Cu − (uTCu) u

)
.

If u is and eigenvector of C with eigenvalue λ then

Ex(unew) = u + η (λu − λ u) = u . (3.12)

Therefore each eigenvector of C is a fixed point of Oja’s rule.

3.2 Variance Maximization

The first principal component u1 is the direction of the maximum possible data variance:

u1 = arg max
‖u‖=1

n∑

i=1

(
uT xi

)2
. (3.13)

This can easily be seen because

n∑

i=1

(
uTxi

)2
=

n∑

i=1

(
uTxi

) (
xTi u

)
= (3.14)

uT
n∑

i=1

xix
T
i u = n uTCu .

With C =
∑m

i=1 λiuiu
T
i , u =

∑m
i=1 aiui, and

∑m
i=1 a

2
i = 1 we have

uTCu =
m∑

i=1

λia
2
i (3.15)

and
∑m

i=1 a
2
i = 1. The value

∑m
i=1 λia

2
i is maximal for a1 = 1 and all other ai = 0, because all

λi > 0 and λ1 is the largest eigenvalue.

Furthermore, principal components correspond to the direction of the maximum possible vari-
ance orthogonal to all previous components. If we remove the subspace of all previous components
1, . . . , k:

xki = xi −
k−1∑

t=1

(
uTt xi

)
ut (3.16)
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then the k-th principal component is the direction of the maximum data variance:

uk = arg max
‖u‖=1

n∑

i=1

(
uT xki

)2
. (3.17)

This can inductively been proved analog to the first principal component. Since the components
are sorted, the first l components span the l-dimensional subspace with maximal data variance.

3.3 Uniqueness

Is PCA unique or not, that is, is there only one PCA solution. Multiple solutions may fulfill the
PCA criteria. We consider the decomposition

X = Y UT , (3.18)

where U is orthogonal, Y T Y = Dm with Dm as m-dimensional diagonal matrix, and the
eigenvalues ofDm are sorted decreasingly.

PCA is unique up to signs, if the eigenvalues of the covariance matrix are different from
each other.

Begin proof
To prove this statement, assume another representation

X = Y ′U ′T , (3.19)

where U ′ is orthogonal, (Y ′)TY ′ = D′m with D′m as m-dimensional diagonal matrix, and the
eigenvalues ofD′m are sorted decreasingly.

If eigenvalues of Dm are different from each other, then at most one eigenvalue can be zero.
If one eigenvalue of Dm is zero, the observations do not have any variance in the direction of the
according eigenvector. This direction is unique, becomes principal component um, and can be
removed from the data. Subsequent, we can perform PCA on the remaining (m− 1)-dimensional
space, where all eigenvalues are larger than zero.

We assume that all eigenvalues of Dm (therefore also of Y ) are larger than zero. Therefore a
matrixA = Y −1Y ′ exists with

Y ′ = Y A . (3.20)

We obtain

X = Y UT = Y ′ U ′T = Y A U ′T (3.21)

after multiplying with Y −1 from the left we get

UT = AU ′T . (3.22)

Since U and U ′ are orthogonal, we obtain

I = UTU = AU ′U ′TAT = AAT . (3.23)
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Therefore A is an orthogonal matrix and

U ′ = U A . (3.24)

We obtain

D′m = (Y ′)T Y ′ = AT Y T Y A = AT DmA . (3.25)

Thus, the eigenvalues of D′m match the diagonal elements of Dm. Further the i-th eigenvalue λi
of the covariance matrix C is λi = Dii. According to our assumption, the eigenvalues are sorted
in both D′m and Dm. The sorting is unique, because we assumed mutually different eigenvalues.
Therefore we have

D′m = Dm . (3.26)

It follows that

ADm = Dm A (3.27)

and

[ADm]ij = aij Djj = aij dii = [Dm A]ij (3.28)

which gives

aij (Djj − Dii) = 0 . (3.29)

For i 6= j our assumption is that Djj 6= Dii (λj = Djj), therefore we deduce aij = 0 . Hence,
A is diagonal and orthogonal. Consequently, A is diagonal and contains only ones and minus
ones on its diagonal. Thus, PCA is unique up to signs, if the eigenvalues are mutually different.
End proof

3.4 Properties of PCA

The projection of the data on the first principal component (PC) has maximal variance of all
possible one-dimensional projections. That means u1 maximizes

uT C u s.t. ‖u‖ = 1 . (3.30)

The first l PCs maximize

l∑

i=1

uTi C ui s.t. uTi uj = δij . (3.31)

The projections onto PCs have zero means:

1

n

n∑

i=1

uTk xi = uTk

(
1

n

n∑

i=1

xi

)
= uTk 0 = 0 . (3.32)
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The projections onto PCs are mutually uncorrelated (second moment), that is, they are or-
thogonal to each other. We already expressed this by Y TY = I but it can also be seen
at

1

n

n∑

i=1

(uTt xi) (uTs xi) =
1

n

n∑

i=1

(uTt xi) (xTi us) (3.33)

=
1

n

n∑

i=1

uTt (xi x
T
i ) us

= uTt

(
1

n

n∑

i=1

xi x
T
i

)
us

= uTt C us = λs u
T
t us = 0 .

For the last equation we used C =
∑m

j=1 λjuju
T
j . Therefore correlation coefficients be-

tween projections of the observations onto PCs are zero.

The sample variance of the k-th projection is equal to the k-th eigenvalue of the sample
covariance matrix C

1

n

n∑

i=1

(
uTk xi

)2
=

1

n

n∑

i=1

uTk
(
xix

T
i

)
uk (3.34)

= uTk

(
1

n

n∑

i=1

xi x
T
i

)
uk

= uTk C uk = λk u
T
k uk = λk .

where λk is the k-th eigenvalue of the covariance matrix C.

PCs are ranked decreasingly according to their eigenvalues which are the variances in the
PC directions.

The first l PCs minimize the mean-squared error.

The representation of x by x̂ with the first l PCs is

x̂ =
l∑

k=1

uk u
T
k x , (3.35)

where

C =
m∑

k=1

λk uk u
T
k . (3.36)
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For the approximation of x by x̂, the mean-squared error is

E
(
‖x − x̂‖2

)
= E

(
xTx − 2 xT x̂ + x̂T x̂

)
(3.37)

= E

(
Tr
(
xxT

)
− 2 Tr

(
l∑

k=1

uk u
T
k xx

T

)
+ Tr

(
l∑

k=1

uk u
T
k xx

T

))

= Tr

(
E
(
xxT

)
− 2

l∑

k=1

uk u
T
k E
(
xxT

)
+

l∑

k=1

uk u
T
k E
(
xxT

)
)

= Tr

(
C −

l∑

k=1

uk u
T
kC

)

= Tr

(
C −

l∑

k=1

uk u
T
k

m∑

k=1

λkuk u
T
k

)

= Tr

(
m∑

k=1

λk uk u
T
k −

l∑

k=1

λkuk u
T
k

)

= Tr

(
m∑

k=l+1

λk uk u
T
k

)

=
m∑

k=l+1

λk Tr
(
uk u

T
k

)

=
m∑

k=l+1

λk Tr
(
uTk uk

)

=

m∑

k=l+1

λk .

where λk is the square root of the k-th eigenvalue of C or the k-th singular value ofX .

Each representation of the data by projections to other l vectors (u′)k will have a larger
mean squared error. Using the transformations of the last equation, we obtain for the mean
squared error

Tr

(
C −

l∑

k=1

(u′)k(u
′)TkC

)
. (3.38)

If (u′)k =
∑m

i=1 bkiui with
∑m

i=1 b
2
ki = 1.
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The mean squared error for projection onto the l vectors (u′)k is

Tr

(
C −

l∑

k=1

(u′)k(u
′)TkC

)
(3.39)

=

m∑

i=1

λi −
l∑

k=1

m∑

i=1

b2kiλi

=

m∑

i=1

λi

(
1 −

l∑

k=1

b2ki

)
.

The Hessian matrix of this objective with respect to the parameters bki has negative eigen-
values, therefore this is a strict concave function. The maximum principle states that the
minimum of this objective is found on the boundary. That means bki = 0 or bki = 1. There-
fore the (u′)k are a permutation of uk.

∑m
k=l+1 λ

′
k ≥

∑m
k=l+1 λk where equality is only

achieved if the λ′k is a permutation of λk for l + 1 ≤ k ≤ m. Therefore the first l vectors
(u′)k are a permutation of the first l uk. If we assume that the eigenvectors are sorted ac-
cording to the eigenvalues, then (u′)k = Buk for 1 ≤ k ≤ l. Thus, a projection onto other
l vectors than the principal components leads to a larger mean squared error than those of
PCA.

3.5 Examples

3.5.1 Iris Data Set

The Iris flower data set or Fisher’s Iris data set is a multivariate data set introduced by Sir Ronald
Fisher (1936) as an example of discriminant analysis Fisher [1936]. Iris is a genus of 260–300
species of flowering plants with showy flowers (see Fig. 3.3). The name stems from the Greek
word for a rainbow, as the flower colors have a broad variety. The three species of the data set
are Iris setosa (Beachhead Iris), Iris versicolor (Larger Blue Flag, Harlequin Blueflag), and Iris
virginica (Virginia Iris). This data set is sometimes called Anderson’s Iris data set because Edgar
Anderson collected the data to quantify the morphologic variation of Iris flowers of three related
species Anderson [1935]. Two of the three species were collected in the Gaspe Peninsula “all from
the same pasture, and picked on the same day and measured at the same time by the same person
with the same apparatus” Anderson [1935].

Four features were measured from each sample: the length and the width of the sepals and
petals, in centimeters(see Fig. 3.4). For each of the three species 50 flowers were measured (see
part of the data in Tab. 3.1). Based on these four features, Fisher developed a linear discriminant
model to distinguish the species from each other.

We perform PCA on this iris data set:

Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 2.0494032 0.49097143 0.27872586 0.153870700
Proportion of Variance 0.9246187 0.05306648 0.01710261 0.005212184
Cumulative Proportion 0.9246187 0.97768521 0.99478782 1.000000000



30 Chapter 3. Principal Component Analysis

Figure 3.3: Examples of Iris flowers.

Figure 3.4: Flowerparts petal and septal are depicted and marked.
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Table 3.1: Part of the iris data set with features sepal length, sepal width, petal length, and petal
width.

No. Sepal Petal Species

Length Width Length Width

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
54 5.5 2.3 4.0 1.3 versicolor
55 6.5 2.8 4.6 1.5 versicolor

101 6.3 3.3 6.0 2.5 virginica
102 5.8 2.7 5.1 1.9 virginica
103 7.1 3.0 5.9 2.1 virginica
104 6.3 2.9 5.6 1.8 virginica
105 6.5 3.0 5.8 2.2 virginica

We see that the first principal component explains 92% of the variance in the data. This means that
the features are correlated and the variance driving this correlation is captured by principal com-
ponent 1. Probably PC1 expresses the size of the blossom which is reflected in all four features.

Fig. 3.5 shows scatter plots for pairs of principal components, more precisely, scatter plots of
the projection of the observations to pairs of PCs. Only PC1 helps to separate the species.

3.5.2 Multiple Tissue Data Set

This data set consists of microarray data from the Broad Institute “Cancer Program Data Sets”
which was produced by Su et al. [2002]. The data contains gene expression profiles from human
and mouse samples across a diverse set of tissues, organs, and cell lines. The goal was to have a
reference for the normal mammalian transcriptome. The microarray platforms were Affymetrix
human (U95A) or mouse (U74A) high-density oligonucleotide arrays. The authors profiled the
gene expression level from 102 human and mouse samples and selected 5,565 genes. Gene selec-
tion is an important first step when analyzing microarray data Hochreiter and Obermayer [2004,
2005], Talloen et al. [2007], Kasim et al. [2010], Talloen et al. [2010].

The samples predominantly come from a normal physiological state in the human and the
mouse. The data set represents a preliminary, but substantial, description of the normal mam-
malian transcriptome. Mining these data may reveal insights into molecular and physiological
gene function, mechanisms of transcriptional regulation, disease etiology, and comparative ge-
nomics. Hoshida et al. [2007] used this data set to identify subgroups in the samples by using
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Figure 3.5: PCA applied to Anderson’s iris data. The matrix shows scatter plots for pairs of
principal components.
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additional data of the same kind. The four distinct tissue types are:

breast (Br),

prostate (Pr),

lung (Lu),

and colon (Co).

These tissue types are indicated in the data set.

We apply PCA to the multiple tissue microarray data set. Gene expression values for different
tissue types for human and mouse are measured. The data set contains 102 samples for each of
which expression values of 5,565 genes are available. Four distinct tissue types are indicated in
the data: breast (Br), prostate (Pr), lung (Lu), and colon (Co). We want to see if PCA allows to
identify these tissue types.

Fig. 3.6 shows scatter plots for pairs of principal components, i.e. the projections of the obser-
vations to pairs of PCs. PC1 separates the prostate samples (green) from the rest. PC2 separates
the colon samples (orange) but also breast samples (red). PC3 separates some lung samples (blue).

Next we perform variance filtering before PCA. For microarray data, variance filtering is jus-
tified because genes that are differentially expressed across the samples have higher variance. For
such genes the noise variance and the variance due to the signal add up. Therefore, genes with
largest variance are assumed to contain a signal and to have higher signal-to-noise ratio. The
following filtered data sets are considered:

XMultiF1: 101 genes with the highest variance
XMultiF2: 13 genes with the highest variance
XMultiF3: 5 genes with the highest variance

For the 101 genes with the highest variance, Fig. 3.7 shows scatter plots for pairs of principal
components, i.e. the projections of the observations to pairs of PCs. Principal component 1 sepa-
rates the prostate samples (green) from the rest. PC2 separates the colon samples (orange) from
the rest. PC3 separates the breast samples (red) from the rest and at the same time lung samples
(blue) from the rest. PCA on the filtered data set separates the tissues better than PCA on the
whole data set.

PCA on the multiple tissue data with 13 genes that have largest variance is shown in Fig. 3.8.
PC1 separates the prostate samples (green) from the rest. PC2 separates the colon samples (orange)
from the rest. PC3 separates the breast samples (red) from the rest at one side but at the other side
time lung samples (blue).

PCA on the multiple tissue data with 5 genes that have largest variance is shown in Fig. 3.9.
Still PC1 separates the prostate samples (green) from the rest. However other tissues are difficult
to separate. Four out of the 5 genes are highly correlated and give the same signal. Probably this
signal is indicative for the prostate tissue.

ACPP KLK2 KRT5 MSMB TRGC2
ACPP 1.000000000 0.97567890 -0.004106762 0.90707887 0.947433227
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KLK2 0.975678903 1.00000000 -0.029900946 0.89265825 0.951841913
KRT5 -0.004106762 -0.02990095 1.000000000 -0.05565599 0.008877815
MSMB 0.907078869 0.89265825 -0.055655985 1.00000000 0.870922667
TRGC2 0.947433227 0.95184191 0.008877815 0.87092267 1.000000000

In the GeneCards database http://www.genecards.org we find:

ACPP “is synthesized under androgen regulation and is secreted by the epithelial cells
of the prostate gland.”

further we find

KLK2 “is primarily expressed in prostatic tissue and is responsible for cleaving pro-
prostate-specific antigen into its enzymatically active form.”

and

MSMB “is synthesized by the epithelial cells of the prostate gland and secreted into
the seminal plasma.”

We now select genes which are not so closely correlated to each other. Toward this end we first
cluster (see later in the course) the genes and then select one prototype from each cluster. These
10 genes are not as closely related as the genes which are selected based on variance alone:

ABP1 ACPP AKR1C1 ALDH1A3 ANXA8 APOD
ABP1 1.00000000 -0.1947766 -0.04224634 -0.21577195 -0.2618053 -0.3791812658
ACPP -0.19477662 1.0000000 -0.22929893 0.88190657 -0.2978638 0.4964638048
AKR1C1 -0.04224634 -0.2292989 1.00000000 -0.07536066 0.4697886 -0.1793466620
ALDH1A3 -0.21577195 0.8819066 -0.07536066 1.00000000 -0.1727669 0.4113925823
ANXA8 -0.26180526 -0.2978638 0.46978864 -0.17276688 1.0000000 -0.1863923785
APOD -0.37918127 0.4964638 -0.17934666 0.41139258 -0.1863924 1.0000000000
BST2 -0.02752210 -0.1858633 0.03341592 -0.18706898 0.1672327 0.0001475666
CA12 -0.03390577 -0.5266892 0.20825388 -0.55430511 0.1535930 -0.0861446268
CLDN3 0.33206818 0.3547601 -0.52997065 0.24516720 -0.6819272 0.2272871855
IGHA1 -0.14341643 -0.2835074 0.45479347 -0.08918854 0.2726503 -0.1157383141

BST2 CA12 CLDN3 IGHA1
ABP1 -0.0275221025 -0.03390577 0.3320682 -0.14341643
ACPP -0.1858633000 -0.52668918 0.3547601 -0.28350737
AKR1C1 0.0334159199 0.20825388 -0.5299707 0.45479347
ALDH1A3 -0.1870689799 -0.55430511 0.2451672 -0.08918854
ANXA8 0.1672327418 0.15359297 -0.6819272 0.27265032
APOD 0.0001475666 -0.08614463 0.2272872 -0.11573831
BST2 1.0000000000 0.08971880 -0.1918497 0.16460367
CA12 0.0897187966 1.00000000 -0.3170681 0.17639489
CLDN3 -0.1918497331 -0.31706813 1.0000000 -0.39690211
IGHA1 0.1646036701 0.17639489 -0.3969021 1.00000000

http://www.genecards.org
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Fig. 3.10 shows the PCA result. The tissues are not as well separated as with maximizing the
variance of the genes because some highly variable genes are missed. Tissues can be separated
but not with the same quality as with more genes.

Next we did feature selection based on hierarchical clustering and variance maximization
within one cluster. For each cluster the gene with maximal variance is selected. Fig. 3.11 shows
the PCA result for feature selection based on hierarchical clustering, which gave 92 genes. Re-
sults are very similar to variance based feature selection. However one improvement is visible.
PC3 separates breast samples (red) from lung samples (blue) which was not achieved by the other
projections.

Next we do feature selection based on hierarchical clustering but now the distance between
genes is based on their correlation. Fig. 3.12 shows the PCA result for feature selection based on
hierarchical clustering based on the correlation coefficient matrix. For each of the 95 clusters the
gene with maximal variance was selected. Again, the results are very similar to variance based
feature selection. PC3 separates breast samples (red) from lung samples (blue) almost as good as
in previous example.
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Figure 3.6: PCA applied to multiple tissue data. PC1 separates the prostate samples (green) from
the rest. PC2 separates the colon samples (orange) from the rest. PC3 separates some lung samples
(blue).
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Figure 3.7: PCA applied to multiple tissue data with 101 most variable genes. PC1 separates the
prostate samples (green) from the rest. PC2 separates the colon samples (orange) from the rest.
To the left, PC3 separates the breast samples (red) from the rest but, to the right, it also separates
lung samples (blue).
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Figure 3.8: PCA applied to multiple tissue data with 13 most variable genes. Again PC1 separates
the prostate samples (green) from the rest. However, the separation of colon samples (orange)
by PC2 is worse than with 101 genes. Also the separation of the breast samples (red) and lung
samples (blue) by PC3 is worse that with 101 genes.



3.5. Examples 39

●

● ●●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
● ● ●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

● ● ●

●

● ●● ●● ●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●● ●●●●
●

●●● ●●● ●● ●●●● ●●

●

−4 −2 0 2 4 6 8

−
5

−
3

−
1

0
1

2

PC1 and PC2

Comp.1(77%)

C
om

p.
2(

18
%

)

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●
● ●● ●●

●

●
●

●

●

●

●●

●

●
●

●●
● ●

●

●
●

●

●

●

●
●

●

●

●●●
●●

●●

●
●

●

●

● ●●

●
●

●

●
●●

●

●
●●●●

●

●

●

●

●●
●

●
●

●●
● ●●●

−4 −2 0 2 4 6 8

−
4

−
2

0
1

2
3 PC1 and PC3

Comp.1(77%)

C
om

p.
3(

3%
)

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●
●

●
●

●

●●

●●

●

●

●

●

● ●

●

●
●

●

●
●●●

●

●

●
●

●
●

●

●

●

●

●
●●
●

●
●

−4 −2 0 2 4 6 8

−
2

−
1

0
1

2
3

PC1 and PC4

Comp.1(77%)

C
om

p.
4(

1%
)

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●
● ●● ●●

●

●
●

●

●

●

● ●

●

●
●

● ●
●●

●

●
●
●

●

●

●
●

●

●

● ● ●
●●

● ●

●
●

●

●

●●●

●
●

●

●
●●
●

●
●●●●
●

●

●

●

●●
●
●
●
●●
●●●

●

−5 −4 −3 −2 −1 0 1 2

−
4

−
2

0
1

2
3 PC2 and PC3

Comp.2(18%)

C
om

p.
3(

3%
)

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ● ●
●

●
●

●

● ●

● ●

●

●

●

●

● ●

●

●
●

●

●
●●●

●

●

●
●
●
●

●

●

●

●

●
●●
●
●

●

−5 −4 −3 −2 −1 0 1 2

−
2

−
1

0
1

2
3

PC2 and PC4

Comp.2(18%)

C
om

p.
4(

1%
)

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●
●
●

●
●

● ●

● ●

●

●

●

●

●●

●

●
●

●

●
●●●

●

●

●
●

●
●

●

●

●

●

●
●●

●
●
●

−4 −3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

PC3 and PC4

Comp.3(3%)

C
om

p.
4(

1%
)

Figure 3.9: PCA applied to multiple tissue data with 5 most variable genes. Still PC1 separates
the prostate samples (green) from the rest. However other tissues were not separated.
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Figure 3.10: PCA applied to multiple tissue data with 10 genes which are not too closely corre-
lated.
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Figure 3.11: PCA applied to multiple tissue data with 92 genes selected by hierarchical clustering.
PC3 separates breast samples (red) from lung samples (blue) which was not achieved by the other
projections.
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Figure 3.12: PCA applied to multiple tissue data with 95 genes selected by hierarchical clustering
on the correlation coefficient matrix. PC3 separates breast samples (red) from lung samples (blue)
almost as good as in previous example.
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3.6 Kernel Principal Component Analysis

3.6.1 The Method

Kernel Principal Component Analysis or kernel PCA (KPCA) extends PCA to nonlinear pro-
jections using kernel techniques. Using a kernel, the originally linear operations of PCA are
performed in a reproducing kernel Hilbert space to which the original vectors are non-linearly
mapped.

We assume that the data is projected into the feature space by

x 7→ Φ(x) . (3.40)

Let us for the moment assume that the data is centered in the feature space, that is
n∑

i=1

Φ(xi) = 0 . (3.41)

The covariance matrix in feature space is given by

C =
1

n

n∑

i=1

Φ(xi) ΦT (xi) . (3.42)

Note, that the Gram matrix isK =
∑n

i=1 ΦT (xi)Φ(xi).

For PCA the eigenvectors of C should be identified, i.e. the vectors fulfilling

C w = λ w . (3.43)

As PCA maximizes the variance, only solutions in directions, where the data has variance,
are of interest. Consequently, we restrict the solutions w to the span of {Φ(x1), . . . ,Φ(xn)}.
Therefore we are searching for vectors w which fulfill

∀1 ≤ s ≤ n : (λ w)TΦ(xs) = λ wTΦ(xs) = (3.44)

(C w)TΦ(xs) = wTC Φ(xs) .

The solutions of these equations are unique in the span of the mapped data vectors and correspond
to eigenvectors of C in the span.

As w is in the span of the mapped data vectors, w can be represented by

w =
n∑

i=1

αi Φ(xi) . (3.45)

Inserting this equation together with the definition of C in Eq. (3.42) into Eq. (3.44) gives

λ

n∑

i=1

αi ΦT (xi)Φ(xs) = (3.46)

1

n




n∑

i=1

αi

n∑

j=1

ΦT (xi)
(
Φ(xj) ΦT (xj)

)

Φ(xs) .
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We use the Gram matrix K with Kij = ΦT (xj)Φ(xi). This equation holds for 1 ≤ i ≤ n
and the vectors Φ(xi) span the whole space, therefore we reformulate Eq. (3.46) as follows:

n λK α = K2 α . (3.47)

To solve this equation we solve the eigenvalue problem

n λ α = K α . (3.48)

The α describes the eigenvector w which must have the length 1, resulting in

1 = wTw =

(n,n)∑

ij=(1,1)

αi αj ΦT (xj)Φ(xi) = (3.49)

(n,n)∑

ij=(1,1)

αi αj Kij = αTKα = n λ αTα .

The vector α has to be normalized to fulfill

n λ ‖α‖2 = 1 (3.50)

‖α‖ =
1√
n λ

(3.51)

by

αnew
i =

αi

‖α‖
√
n λ

. (3.52)

The projection onto w can be computed as

wTΦ(x) =

n∑

i=1

αi ΦT (xi)Φ(x) =

n∑

i=1

αi k(xi,x) . (3.53)

It can be seen that the explicit representation Φ(x) is not necessary.

We made the assumption that the data are centered in feature space. Now we consider how
this requirement can be fulfilled. We see that

(
Φ(xi) −

1

n

n∑

t=1

Φ(xt)

)T (
Φ(xj) −

1

n

n∑

t=1

Φ(xt)

)
= (3.54)

ΦT (xi)Φ(xj) −
1

n

n∑

t=1

ΦT (xt)Φ(xj) −
1

n

n∑

t=1

ΦT (xi)Φ(xt) +

1

n2

(n,n)∑

(s,t)=(1,1)

ΦT (xs)Φ(xt)
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and that

1

n

n∑

t=1

ΦT (xt)Φ(xi) =

[
1

n
K 1

]

i

(3.55)

1

n

n∑

t=1

ΦT (xi)Φ(xt) =

[
1

n
1TK

]

i

1

n2

(n,n)∑

(s,t)=(1,1)

ΦT (xs)Φ(xt) =
1

n2
1TK 1 .

Therefore the following equation produces a centered kernel matrix:

K − 1

n
K 1 1T − 1

n
1 1TK +

1

n2

(
1TK 1

)
1 1T . (3.56)

A new data point x can be centered by first computing

k(x, .) = (k(x,x1), . . . , k(x,xl))
T (3.57)

and then

k(x, .) − 1

n
K 1 − 1

n
1Tk(x, .) 1 +

1

n2

(
1TK 1

)
1 . (3.58)

A pseudo code for kernel PCA is given in Alg. 3.1.

Algorithm 3.1 Kernel PCA

Given: gram matrixK with Kij = k(xi,xj)
Centering

center the Gram matrixK according to Eq. (3.56)
Eigenvalues

compute eigenvectors α and eigenvalues λ of the Gram matrixK
Normalization

normalize eigenvectors α according to Eq. (3.52)
Projection of a new vector

project a new vector x onto eigenvectors by first centering it using Eq. (3.58) and then project
it according to Eq. (3.53)

3.6.2 Examples

Kernel PCA toy examples are shown in Figures 3.13 and 3.16.
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Figure 3.13: Kernel PCA example. Top left: original data. From top middle to upper right the
8 first principal components are depicted. The first two separate the clusters, the next 3 (middle
panel) split the clusters, and the next 3 (bottom panel) split them orthogonal to the previous 3
components. An RBF-kernel with k(xi,xj) = exp

(
− 10 ‖xi − xj‖2

)
was used. Figure is

from Schölkopf et al. [1998].
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Figure 3.14: Kernel PCA example. Reconstruction by projection onto the eigenvectors. Figure is
from Schölkopf et al. [1998].
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Figure 3.15: Kernel PCA example. Error or “move” avert reconstruction by projection onto eigen-
vectors. Figure is from Schölkopf et al. [1998].
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Figure 3.16: Another kernel PCA example. Each column corresponds to one method based on
PCA. Each column gives the three largest eigenvalues with the according eigenvectors depicted as
contour lines. In the first column linear PCA, and in the second, third and last column polynomial
kernel with degree 2,3, and 4, respectively, is shown. Figure is from Schölkopf and Smola [2002].
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Chapter 4

Independent Component Analysis

Independent component analysis (ICA) goes beyond PCA, which decorrelated the components, by
requiring statistically independent components Schmidhuber [1992], Bell and Sejnowski [1995],
Deco and Brauer [1995], Pearlmutter and Parra [1997], Cardoso and Laheld [1996], Cichocki
et al. [1994], Jutten and Herault [1991], Comon [1994], Yang and Amari [1997], Yang et al.
[1996], Cardoso and Souloumiac [1993], Hyvärinen et al. [2001], Hyvärinen [1999], Hochreiter
and Schmidhuber [1997a,b, 1999f,b,d], Hochreiter and Mozer [2000, 2001a,c]. ICA decomposes
a multivariate observation into additive components, where the components are non-Gaussian and
statistically independent from each other. ICA differs from PCA in four major issues:

1. ICA does not maximize the variance,

2. ICA does not enforce orthogonal projection or demixing matrices,

3. ICA aims at statistically independent components,

4. ICA components are not ranked.

For a comparison of ICA and PCA see Hochreiter and Schmidhuber [1998, 1999g,c,e,a] and for
an overview of ICA see Hyvärinen et al. [2001, 2009], Hyvärinen [1999].

ICA assumes that the observations x are generated by mixing the sources y, where both x and
y are m-dimensional vectors:

x = U y . (4.1)

The independence assumption states that the sources y are statistically independent:

p(y) =

l∏

j=1

p(yj) . (4.2)

Goal is to find a matrixW with

y = W x , (4.3)

where for full rank matricesW = U−1 holds.

51
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Figure 4.1: Two speakers recorded by two microphones. The speakers produce independent acous-
tic signals which can be separated by ICA.

Independent component analysis can be considered as a matrix decomposition. The matrix
decomposition problem for ICA is:

X = Y UT , (4.4)

where Y T Y = Dm, that is, independent components are decorrelated. In contrast to PCA, the
components yj must be statistically independent from each other, while U is not required to be
orthogonal. ICA also works if the number of sources is l with l ≤ m, that means the number of
sources is smaller or equal the number of observations.

The outer product representation is

X =
l∑

j=1

yj u
T
j , (4.5)

where uj and yj are the j-th column vector of U and Y , respectively.

Fig. 4.1 shows how two speakers (the sources y) speak independently from each other. The
microphones record the acoustic signals that are the observations x.

Fig. 4.2 shows the ICA solution of the data set of Fig. 3.1 and Fig. 4.3 compares the PCA and
the ICA solution.
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Figure 4.2: Independent component analysis on the data set of Fig. 3.1. Left sub-figures show the
original data and the right sub-figures the transformed data by ICA. The figures in the lower panels
show the same figures as in the upper panels but only the ICA components are added (red lines).

Figure 4.3: Comparison of PCA and ICA on the data set of Fig. 3.1. Top panel: original data set.
Bottom left panel: PCA solution. Bottom right panel: ICA solution.
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4.1 Identifiability and Uniqueness

In an optimal situation, we obtainW = U−1. However the ICA solution is not unique because

x = U P−1 P y (4.6)

holds true for all full rank matrices P . For another solution Y ′ we have

Y ′ = P Y (4.7)

with

Y ′TY ′ = D′m . (4.8)

Next we report a central theorem for identifiability and uniqueness of ICA.

Theorem 4.1 (Darmois’ theorem (1953))
Define the two random variables x1 and x2 as

x1 =
m∑

j=1

ajyj and x2 =
m∑

j=1

bjyj , (4.9)

where yi are independent random variables. Then if x1 and x2 are independent, all variables yj
for which ajbj 6= 0 are Gaussian.

This theorem can be found in Darmois [195] but is also reported in [Comon, 1994, THEOREM
19], [Kagan et al., 1973, p. 89], and [Rao, 1973, p. 218].

This theorem states that if two variables are independent from each other and they are a
weighted sum of independent variables, then they are constructed by mutually different variables.
If we have m variables xi and m independent variables yi from which the xi are constructed as a
weighted sum, then mutual independence of the xi implies xi = aijyj and xk 6= byj for k 6= i and
some b.

The exception in the theorem are Gaussian distributions. This can also be seen by the fact that
Gaussian mixtures may still factorize, that is, their components are independent. If the Gaussian
variable y factorizes, then the covariance matrix is diagonal. If the covariance matrix is even σ2

times the identity, then an orthogonal transformation x = Uy of the variables gives again σ2

times the identity as covariance matrix, therefore, the distribution of the Gaussian x factorizes.

Since we exclude Gaussian sources, P cannot mix the statistically independent components
of y when calculating Y ′. Otherwise the components of Y ′ would be statistically dependent.
Therefore P is a permutation matrix multiplied with a diagonal scaling matrix. The ICA solution
is for non-Gaussian sources unique up to permutation and scaling Hyvärinen and Pajunen
[1999].

Following assumptions ensure the ICA solution to be unique up to permutations and scalings:

the source components yi are non-Gaussian (except for at most one component),

observation dimension m must be at least as large as the number of sources l: m ≥ l,
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the mixing matrix U must have full rank l.

We will combine the last two assumptions by assuming that the observations x and the sources
y live in an m-dimensional space and U−1 ∈ Rm×m exists. Since W = U−1 states that the
model in invertible, a generative framework can be used to find a descriptive model (see beginning
of this chapter). However for complete the generative framework we have to make assumptions
on the densities p(yi). These densities are often approximated, e.g. by super-Gaussians, where it
turned out that different unimodal super-Gaussian distributions work well (approximate the true
distribution well enough). Thus, a generative framework based on maximum likelihood can be
used to infer both the mixing and demixing matrix.

4.2 Measuring Independence

Similar to a goodness of fit for linear regression we require an objective for measuring indepen-
dence. We have to measure independence of the components yi of y in order to assess the quality
of an ICA solution. The yi should not only be pairwise independent but for each i the following
should hold:

p(yi | y1, . . . , yi−1, yi+1, . . . , yl) = p(yi) . (4.10)

Independence of the components yi are in most ICA methods measured by one of following two
criteria:

mutual information between the yi, or

non-Gaussianity of the yi.

4.2.1 Mutual Information

The entropy of a factorial code is larger than the entropy of the joint distribution. The difference
of the two expressions is the mutual information I between the variables yj :

I(y1, . . . , yl) =
l∑

j=1

H(yj) − H(y) , (4.11)

where H denotes the entropy

H(a) = −
∫
p(a) ln p(a) da . (4.12)

If we set

y = W x (4.13)

then

I(y1, . . . , ym) =
m∑

j=1

H(yj) − H(x) − ln |W | , (4.14)
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where |W | is the absolute value of the determinant of the matrix W . This equation stems from
the fact that

p(y) =
p(x)

|W | . (4.15)

4.2.2 Non-Gaussianity

The negentropy is defined as

J(y) = H(ygauss) − H(y) , (4.16)

where ygauss is a Gaussian random vector with the same covariance matrix as y. The negentropy
is an affine invariant version of the entropy.

The maximal negentropy is equivalent to representations where the mutual information be-
tween the components is minimized. Here the connection between ICA and projection pursuit is
clear because both can be expressed through maximizing the distance to Gaussian distributions.
The Gaussian is the distribution with the largest entropy given the mean and the variance. There-
fore negentropy maximization is closely related to entropy maximization.

Unfortunately, the negentropy cannot be used easily because its estimation is difficult. The
non-Gaussianity can be measured through other parameters for example by cummulants.

For zero mean variables the cummulants are defined as

κ1 = E(x) = 0 (4.17)

κ2 = E(x2) (4.18)

κ3 = E(x3) (4.19)

κ4 = E(x4) − 3
(
E(x2)

)2
. (4.20)

κ4
κ22

is called kurtosis or the excess kurtosis. For normal distributions we have κ3 = κ4 = 0.
Therefore, the fourth cummulant and the kurtosis are common measures for non-Gaussianity.
Positive kurtosis indicates super-Gaussians, the tails are smaller than for Gaussians, and negative
kurtosis indicates sub-Gaussians the tails are larger than for Gaussians.

For x1 and x2 independent, the 4th cummulant is a linear function:

κ4(x1 + x2) = κ4(x1) + κ4(x2) (4.21)

κ4(α x) = α4 κ4(x) . (4.22)

For super-Gaussians yi the kurtosis should be maximized because mixtures have a smaller kurtosis
than the original sources. In Section 4.11, we show that maximizing the kurtosis of a mixture of
super-Gaussian signals recovers one of the signals up to scaling and permutation.

Instead of maximizing the kurtosis, the sparseness (see Földiák [1990], Young and Yamane
[1992], Rolls and Tovee [1995], Olshausen and Field [1996], Hinton and Ghahramani [1997],
Girolami [2001]) of yi can be maximized to make the yi independent from each other. Sparseness
means that a variable is in most cases zero and rarely deviates from zero (see Fig. 4.4). If it deviates
from zero the values may be relatively large (compared to Gaussian with the same variance).
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Therefore, sparseness does not mean small variance. If the variance is fixed: the more values
are zero, the larger are the non-zero values as the variance must be kept. Maximal kurtosis and
maximal sparseness are equivalent, because kurtosis is a measure of sparseness [Hyvärinen et al.,
2009, p. 133, Sec. 6.2.2]. Maximizing the kurtosis of the y components finds independent, zero
centered, symmetric super-Gaussian signals. On the other hand, super-Gaussians at zero produce
many zero values, thus they are sparse. However kurtosis is not a robust measure as it is based on
the fourth moment which is easily affected by outliers.

Figure 4.4: Sparse data. Most points are on the axis which means that the according component is
zero. At the same time the components have a large kurtosis.

Many ICA algorithms use contrast functions which measure the independence of the variables
and are used as objective functions. Common contrast functions are

κ4(y) or the kurtosis κ4(y)
κ22(y)

(see above),

1
12 κ

2
3(y) + 1

48 κ
2
4(y), where the variable y is normalized to zero mean and unit variance,

|Ey(G(y)) − Eν(G(ν))|p, where ν is a standardized Gaussian, p = 1, 2, and y is normal-
ized to zero mean and unit variance. Here G can be the kurtosis for which G(ν) = 0 would
hold. Other choices for G are G(x) = log cosh(ax) and G(x) = exp(−ax2/2) with a ≥ 1.

4.3 Whitening and Rotation Algorithms

Whitening and rotation algorithms measure independence by non-Gaussianity, e.g. via the kurto-
sis. A well known algorithm of this kind is FastICA Hyvärinen and Oja [1999], Hyvärinen et al.
[2001] which we present later.
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ICA requires Y T Y = Dl, but as the sources cannot be determined up to scaling, we can
require Y T Y = I , that is whitened data or sphered data Y . Consequently, for both ICA and
PCA, we require Y T Y = I . Therefore, as a first step in ICA, PCA is performed for whitening
(sphering) the data. The matrix decompositions for ICA is

X = Y UT (4.23)

which gives

Y = X U−T . (4.24)

Using the co-variance matrix C we have

I = C−1/2 1

n
XTX

︸ ︷︷ ︸
C

C−1/2 (4.25)

=
1

n
C−1/2U Y T Y UT C−1/2 =

1

n
C−1/2 U UT C−1/2 .

Thus, the matrix Û = 1√
n
C−1/2 U is orthogonal (C−1/2 is symmetric and ÛT is orthogonal).

We have

Y =

√
n√
n
X C−1/2 C1/2U−T =

1√
n
X C−1/2 Û−T =

1√
n
X C−1/2 Û , (4.26)

because Û is orthogonal.

Subsequent to whiteningX C−1/2, we have to determine the orthogonal matrix Û in order to
obtainY . This is just a rotation of the whitened data, because ICA is not unique up to permutations
and changing signs. To find a proper rotation, we assume that

the components of y are super-Gaussian OR

the components of y are sparse that is most components are zero.

For both assumptions we have a heavy-tailed distribution with a sharp peak at zero. The kurtosis
is larger than zero (the kurtosis of a Gaussian). ICA is looking for a rotation matrix which ei-
ther maximizes the kurtosis or supplies sparse projections. Instead of the kurtosis other contrast
functions can be used to identify super-Gaussians (see above).

In Subsection 4.9.1 whitening and rotation is demonstrated on a toy data set.

4.4 INFOMAX Algorithm

The INFOMAX algorithm Bell and Sejnowski [1995] is based on achieving independent compo-
nents by minimizing the mutual information. The mutual information is minimized by maximizing
the entropy H(g(y)), where g(y) is the vector g(y) = (g(y1), g(y2), . . . , g(yl)) with some func-
tion g. The vector y is computed by

y = W x . (4.27)
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If the entropy is maximized then

I(g(y1), . . . , g(yl)) =
l∑

j=1

H(g(yj)) − H(g(y)) = 0 (4.28)

and the components (g(y1), . . . , g(yl)) are statistically independent. A very common choice for g
is

g(yi) = tanh(yi) . (4.29)

We have

p(g(y)) = p(x)

∣∣∣∣
∂g(y)

∂y

∂y

∂x

∣∣∣∣
−1

= p(x)

∣∣∣∣
∂g(y)

∂y
W

∣∣∣∣
−1

(4.30)

where

∣∣∣∣
∂g(y)

∂y
W

∣∣∣∣ =

∣∣∣∣∣∣

l∏

j=1

g′(yj)

∣∣∣∣∣∣
|W | . (4.31)

Here we see the connection of g′ and the density p of the sources from Subsection 4.2.1: g′(yi) =
p(yi). Thus, the function g can be considered as an affine transformed probability function.

The entropy is

H(g(y)) = E (− ln p(g(y))) (4.32)

= H(x) + E




l∑

j=1

∣∣ln g′(yj)
∣∣

 + ln |W |

≈ H(x) +
1

n

n∑

i=1

l∑

j=1

∣∣ln g′(yij)
∣∣ + ln |W | ,

where

yi = W xi . (4.33)

Now we can maximize the entropy using

g(yj) = tanh(yj) (4.34)

which gives

∂

∂wj
ln g′(yj) =

g′′(yj)

g′(yj)
xT = − 2 g(yj) x

T . (4.35)

If we use instead of tanh a sigmoid activation function

g(yj) =
1

1 + e−yj
, (4.36)
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then this formula becomes
∂

∂wj
ln g′(yj) = (1 − 2 g(yj)) x

T . (4.37)

Further we have
∂

∂W
ln |W | =

(
W T

)−1
. (4.38)

Since H(x) does not depend onW , we obtain

∂

∂W
H(g(y)) =

(
W T

)−1 − 2 g(y) xT (4.39)

for tanh and for the sigmoid activation function

∂

∂W
H(g(y)) =

(
W T

)−1
+ (1 − 2 g(y)) xT (4.40)

for the derivatives.

The update rules are for the tanh activation function

∆W ∝
(
W T

)−1 − 2 g(y) xT (4.41)

and for the sigmoid activation function

∆W ∝
(
W T

)−1
+ (1 − 2 g(y)) xT . (4.42)

For this update rule, the natural gradient can be applied which takes the geometrical structure
of the parameter space into account. In this case the update rule is multiplied with W TW . The
update rule is now for the tanh activation function

∆W ∝
(
I − 2 g(y) yT

)
W (4.43)

and for the sigmoid activation function

∆W ∝
(
I + (1 − 2 g(y)) yT

)
W . (4.44)

In the last equations we used yT = xTW T .

INFOMAX is equivalent to a generative approach using maximum likelihood, when g′i(yi) =
p(yi). In this case ICA is viewed as a generative approach. The generative approach assumes that
the observations are produced by a model with independent factors or latent variables Cardoso
[1997], Moulines et al. [1997], Yang and Amari [1997], Pearlmutter and Parra [1997]. Alterna-
tively, an objective or contrast function indicating statistically independent components can be
used (see e.g. Hyvärinen [1999]).

4.5 EASI Algorithm

The Equivariant Adaptive Separation via Independence (EASI) algorithm Cardoso and Laheld
[1996] uses the following update rule to adjustW :

∆W ∝
(
I − y yT − g(y)yT + y gT (y)

)
W . (4.45)

The nonlinear functions g are the same contrast functions as used by the INFOMAX algorithm.
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4.6 FastICA Algorithm

The FastICA algorithm Hyvärinen and Oja [1999], Hyvärinen et al. [2001] is probably the most
popular ICA algorithm and an example for a whitening and rotation algorithm as previously men-
tioned. FastICA is a fixed point algorithm (like Oja’s rule for PCA) which extracts one weight
vectorw. Originally FastICA was based on the kurtosis maximization but it was extended to other
contrast functions.

The iteration step of the FastICA algorithm is

wnew = E
(
x g(wT x)

)
− E

(
g′(wT x)

)
w , (4.46)

where g′ is the derivative of the contrast function g, which has been discussed previously. Instead
of the expectation E the empirical mean over the training examples is used. The FastICA algorithm
has been extended to extract multiple components simultaneously.

4.7 ICA Extensions

Following extensions to the ICA algorithm have been proposed:

generative approach assuming specific sparse distributions like see g′i(yi) = p(yi) to derive
the INFOMAX algorithm,

sub-Gaussian distributions with specific assumptions,

non-linear extensions which are often not unique Hochreiter and Schmidhuber [1997a,b,
1998, 1999a,f,b,d], Hochreiter and Mozer [2000],

overcomplete basis: more observations x ∈ Rm than sources y ∈ Rl, l > m; most ap-
proaches use sparseness of y as the criterion Lewicki and Sejnowski [1998], Lewicki and
Olshausen [1998], Zibulevsky and Pearlmutter [2001],

fewer sources y ∈ Rl than observations x ∈ Rm with l < m, fewer components than
dimension of the observations; standard ICA can be used if only l components of the obser-
vations are selected from the m available components.

4.8 ICA vs. PCA

Major differences between ICA and PCA are:
independent component analysis principal component analysis
causes of the data geometrical abstractions
statistical independent decorrelated (orthogonal)
explain super-Gaussians explain all variance
scale invariant not scale invariant
unique up to scale and permutation unique
assume super-Gauss no assumptions
no ranking ranked by eigenvalues
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4.9 Artificial ICA Examples

We present some ICA examples including toy and real world data sets. First we apply ICA to
artificial data sets and then move on to real world data sets.

4.9.1 Whitening and Rotation

We demonstrate the principle of the whitening and rotation algorithm on artificial data. 1,000
data points drawn from uniform distributions. Fig. 4.5 shows the scatter plot of the two random
variables which serve as sources.

The two independently drawn sets of data points (the sources) are now mixed. The resulting
mixed components are dependent because they are constructed from the same sources. Fig. 4.6
shows the scatter plot of these linearly mixed components, that is, a linear transformation of the
sources from Fig. 4.5.

We apply independent component analysis (ICA) to the mixed data. ICA decorrelates the data
like PCA does, that is the covariance is the identity. Exactly that is the first step of ICA: to whiten
the data, that is to transform the data to obtain data with the identity as covariance matrix. Before
whitening the data has to be centered. Fig. 4.7 shows a scatter plot of the data after whitening.

Orthogonal transformations do not affect the covariance structure of the data. Therefore we
rotate the data until the components are maximally independent. Fig. 4.8 shows the whitened data
rotated.

We do the same steps again but now for for super-Gaussians. We first generate super-Gaussian
data. Fig. 4.9 shows the scatter plot for super-Gaussian components.

Fig. 4.10 shows the mixture of the super-Gaussians.

We whiten these data. Fig. 4.11 shows the super-Gaussians mixture after whitening.

Again the final step is to rotate the data. Here the data is rotated until the kurtosis of the
components is maximized. Fig. 4.12 shows the result of ICA on super-Gaussian mixtures.

We determined the rotation directly from the mixing matrix which is cheating. ICA has to
determine the rotation based on maximizing the kurtosis or other contrast functions. This is an
iterative update algorithm. Fig. 4.13 shows the result as a scatter plot.
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Figure 4.5: The original data. 1,000 two-dimensional data points where each component is inde-
pendently drawn from an uniform distribution.
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Figure 4.6: The mixed data. The original data are linearly mixed, that is, linearly transformed.
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Figure 4.7: The data after whitening. The covariance matrix is now the identity matrix.
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Figure 4.8: The whitened data rotated: this is the ICA solution.
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Figure 4.9: Original data with super-Gaussian components.
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Figure 4.10: Mixture of the super-Gaussians.
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Figure 4.11: The super-Gaussians mixture after whitening.
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Figure 4.12: Result of ICA on super-Gaussian mixtures.
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Figure 4.13: Result of fastICA on the super-Gaussian mixture.
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Figure 4.14: ICA applied to Anderson’s iris data. The matrix shows scatter plots for pairs of
independent components.

4.10 Real World ICA Examples

4.10.1 Iris Data Set

We revisit the iris data set and perform ICA on it. Fig. 4.14 shows scatter plots for pairs of
independent components (ICs), more precisely, scatter plots of the projection of the observations
to pairs of ICs. We ordered the ICs according to their impact on the observations, which is given by
the mixing matrix W . We see that the first independent component explains 90% of the variance
in the data. Probably IC1 expresses the size of the blossom which is reflected in all four features.

4.10.2 Multiple Tissue Data Set

We apply ICA with 4 components to the multiple tissue microarray data set. Fig. 4.15 shows scatter
plots for pairs of independent components, i.e. the projections of the observations to pairs of ICs.
IC1 separates the prostate samples (green) and the breast samples (red) from the colon samples
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(orange) and the lung samples (blue). Thus, IC1 separates internal organ tissues (colon and lung)
from secretory or reproductive organ samples. IC2 separates the prostate samples and the lung
samples from the breast samples and the colon samples. IC3 separates the prostate samples and
the colon samples from the breast samples and the lung samples. All combinations of the first 3
ICs lead to nice separations except for breast samples and lung samples for which some samples
cannot be clearly assigned to one of these two classes. Gene modules may be mutually shared
between pairs of tissues samples, which is detected by ICA.

We check which genes are correlated to IC1:

"SERPINA7" "LAMB3" "AR" "CCNG2" "KLF5" "CCL20"
"SLC39A14" "ATP1B1" "GSTP1" "LAD1"

Interestingly, the androgen receptor (AR) pops up as the 3rd most related gene to IC1. IC1 sepa-
rates the prostate samples and the breast samples from the other two tissue types. It is known that
growth and differentiation of the prostate gland is regulated by androgens. For breast the role of
androgens is not as well known, though androgens also regulate breast development. Garay and
Park [2012] write

“However, androgens are known to play a role in normal breast physiology and there-
fore androgen receptor (AR) signaling is becoming increasingly recognized as an
important contributor towards breast carcinogenesis.”

Fig. 4.16 shows scatter plots for pairs of independent components for ICA with 8 components.
The separation is worse than with 4 components, only the prostate samples (green) are separated
by IC1 and IC2. IC3 separates some of the colon samples (orange). The ICs now focus on smaller
subgroups. Fig. 4.17 shows scatter plots for pairs of independent components for ICA with 20
components. The result is very similar to the result with 8 components: the prostate samples
(green) are separated by IC1 and IC2; IC3 and IC4 separate some of the colon samples (orange).
If the data is viewed in more dimensions, then the groups may separate more clearly.
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Figure 4.15: fastICA applied to multiple tissue data with 4 components. IC1 separates the prostate
samples (green) and the breast samples (red) from the colon samples (orange) and the lung samples
(blue). IC2 separates the prostate samples and the lung samples from the breast samples and the
colon samples. IC3 separates the prostate samples and the colon samples from the breast samples
and the lung samples. All combinations of the first 3 ICs lead to nice separations except for breast
samples and lung samples for which some samples cannot be clearly assigned to one of these two
classes.
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Figure 4.16: fastICA applied to multiple tissue data with 8 components. The separation is worse
than with 4 components, only the prostate samples (green) are separated by IC1 and IC2. IC3
separates some of the colon samples (orange). The ICs now focus on smaller subgroups.
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Figure 4.17: fastICA applied to multiple tissue data with 20 components. The result is very similar
to the result with 8 components: the prostate samples (green) are separated by IC1 and IC2; IC3
and IC4 separate some of the colon samples (orange). Again, the ICs focus on smaller subgroups.



4.11. Kurtosis Maximization Results in Independent Components 77

4.11 Kurtosis Maximization Results in Independent Components

y1 and y2 are assumed to be independent from each other and to be super-Gaussian. We show that
a linear combination of these signal recovers one of both signals by maximizing the kurtosis.

We assume that y1 and y2 are zero centered, symmetric (not skewed), and independent of each
other. Therefore we obtain following moments:

E(y1) = 0 , (4.47)

E(y2) = 0 , (4.48)

E(y2
1) = v1 , (4.49)

E(y2
2) = v2 , (4.50)

E(y1 y2) = 0 , (4.51)

E(y3
1) = 0 , (4.52)

E(y3
2) = 0 , (4.53)

E(y1 y
2
2) = 0 , (4.54)

E(y2 y
2
1) = 0 , (4.55)

E(y4
1) = m1 , (4.56)

E(y4
2) = m2 , (4.57)

E(y1 y
3
2) = 0 , (4.58)

E(y2 y
3
1) = 0 , (4.59)

E(y2
1 y

2
2) = v1 v2 . (4.60)

We assume that our current reconstruction is a linear combination of these signals:

y = a y1 + b y2 . (4.61)

We show: If y1 and y2 are super-Gaussian (have heavy tails) then the maximal kurtosis of y
is obtained for a = 0 or b = 0 that is y is proportional to one yi.

The moments of y are:

E(y) = 0 , (4.62)

E(y2) = a2 v1 + b2 v2 , (4.63)

E(y3) = 0 , (4.64)

E(y4) = a4 m1 + 6 a2 b2 v1 v2 + b4 m2 . (4.65)

The kurtosis of y is

k =
a4 m1 + 6 a2 b2 v1 v2 + b4 m2

(a2 v1 + b2 v2)2 . (4.66)

The derivative of the kurtosis with respect to a is

∂k

∂a
=

4ab2
(
a2
(
m1 − 3v2

1

)
v2 − b2v1

(
m2 − 3v2

2

))

(a2v1 + b2v2)3 (4.67)
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The derivative of the kurtosis with respect to b is

∂k

∂b
=

4a2b
(
−a2

(
m1 − 3v2

1

)
v2 + b2v1

(
m2 − 3v2

2

))

(a2v1 + b2v2)3 (4.68)

The derivatives are zero for a = 0 or b = 0 or

a2v2

(
m1 − 3v2

1

)
= b2v1

(
m2 − 3v2

2

)
. (4.69)

The second order derivatives are:

∂2k

∂a2
=

1

(a2v1 + b2v2)4 4b2
(
−3a4v1

(
m1 − 3v2

1

)
v2+ (4.70)

b4v1v2

(
−m2 + 3v2

2

)
+ a2b2

(
5m2v

2
1 + 3

(
m1 − 8v2

1

)
v2

2

))
(4.71)

∂2k

∂a2
=

1

(a2v1 + b2v2)4 4a2
(
a4v1

(
−m1 + 3v2

1

)
v2+ (4.72)

3b4v1v2

(
−m2 + 3v2

2

)
+ a2b2

(
3m2v

2
1 +

(
5m1 − 24v2

1

)
v2

2

))
(4.73)

∂2k

∂a ∂b
=

1

(a2v1 + b2v2)4 8ab
(
a4v1

(
m1 − 3v2

1

)
v2+ (4.74)

b4v1v2

(
m2 − 3v2

2

)
− 2a2b2

(
m2v

2
1 +

(
m1 − 6v2

1

)
v2

2

))
(4.75)

∂2k

∂a2
(a, 0) = 0 (4.76)

∂2k

∂a2
(0, b) =

4v1

(
−m2 + 3v2

2

)

b2v3
2

(4.77)

∂2k

∂b2
(0, b) = 0 (4.78)

∂2k

∂b2
(a, 0) =

4
(
−m1 + 3v2

1

)
v2

a2v3
1

(4.79)

∂2k

∂a ∂b
(0, b) = 0 (4.80)

∂2k

∂a ∂b
(a, 0) = 0 (4.81)
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For the last root of the derivatives we get

â = b

√
v1(m2 − 3v2

2)

v2(m1 − 3v2
1)

(4.82)

and

∂2k

∂a2
(â, b) =

∂2k

∂b2
(â, b) = (4.83)

8v1

(
m1 − 3v2

1

)3
v3

2

(
m2 − 3v2

2

)

b2
(
m2v2

1 +
(
m1 − 6v2

1

)
v2

2

)3 =

8v1

(
m1 − 3v2

1

)3
v3

2

(
m2 − 3v2

2

)

b2
(
v2

1

(
m2 − 3v2

2

)
+ v2

2

(
m1 − 3v2

1

))3 .

This term contains only terms that are larger than zero because the sources are super-Gaussian
which means m1 > 3v2

1 and m2 > 3v2
2 .

The mixed second order derivatives are:

∂2k

∂a ∂b
(â, b) = −

8
(
m1 − 3v2

1

)4
v4

2

(
v1(m2−3v22)
(m1−3v21)v2

)3/2

b2
(
m2v2

1 +
(
m1 − 6v2

1

)
v2

2

)3 = (4.84)

−
((

m1 − 3v2
1

)
v2

v1

(
m2 − 3v2

2

)
)1/2

∂2k

∂a2
(â, b) (4.85)

Therefore these derivatives are smaller than zero.

The eigenvalues of the Hessian are proportional to

e1 ∝ 1 −
((

m1 − 3v2
1

)
v2

v1

(
m2 − 3v2

2

)
)1/2

(4.86)

e2 ∝ 1 +

((
m1 − 3v2

1

)
v2

v1

(
m2 − 3v2

2

)
)1/2

. (4.87)

It is impossible to make both eigenvalues negative as required for a maximum. Therefore this
solution is not a maximum. The maximal solutions are a = 0 or b = 0 for which the Hessian is
negative semidefinite.

In summary, if

k2 > k1 (4.88)

then a = 0 is the maximum of the kurtosis of y. Analogously, if

k1 > k2 (4.89)

then b = 0 is the maximum of the kurtosis of y. That means maximizing the kurtosis gives a unique
solution up to permutation and scaling if a linear representation by super-Gaussian distributions is
possible.
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Chapter 5

Factor Analysis

Factor analysis Jöreskog [1967], Everitt [1984], Neal and Dayan [1997] describes the variability
of observations in terms of unobserved latent variables called factors and noise. The factors ex-
plain correlation between the features or variables while the remaining variance is explained by
Gaussian noise. In contrast to the descriptive approach PCA, factor analysis is a generative ap-
proach and as such it models both the noise of the observations and their correlation — the latter
by factors. Disadvantage of factor analysis is that it has to make assumptions on the distribution
like that the factors are Gaussian and the noise is Gaussian. Factor analysis was very successfully
applied in bioinformatics, in particular for summarizing microarray data Hochreiter et al. [2006],
Talloen et al. [2007, 2010], Hochreiter et al. [2010], Clevert et al. [2011].

5.1 The Factor Analysis Model

We are given the data {x} = {x1, . . . ,xn} which is assumed to be centered, which can be done
by subtracting the mean µ from the data. The model is

x = Uy + ε , (5.1)

where

y ∼ N (0, I) and ε ∼ N (0,Ψ) . (5.2)

The observations x ∈ Rm, the noise ε ∈ Rm, the factors y ∈ Rl, the factor loading matrix
U ∈ Rm×l, and the noise covariance matrix Ψ is a diagonal matrix from Rm×m.

The data variance is explained through a signal part Uy and through a noise part ε. The
parameters of the model are U and Ψ. From the model assumption it follows that

x | y ∼ N (Uy,Ψ) . (5.3)

If y is given, then only the noise ε is a random variable.

The matrix decomposition problem for factor analysis is:

X = Y UT + Υ . (5.4)

81
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Above the model assumptions translate to
1

n
Y TY = I (5.5)

Y TΥ = 0 (5.6)
1

n
ΥTΥ = Ψ , (5.7)

where Ψ is a diagonal matrix. From these equations we obtain:
1

n
XTX =

1

n
(Y UT + Υ)T (Y UT + Υ) (5.8)

= U

(
1

n
Y TY

)
UT +

1

n
U Y T Υ +

1

n
ΥTY UT +

1

n
ΥTΥ

= U UT + Ψ .

Therefore, factor analysis is actually a decomposition of the covariance matrix C = 1
nX

TX .

In general the model has fewer factors l than the number m of features of the observations:
m ≥ l. The diagonal form of Ψ is reasonable if the measurements are taken independently and
the noise of the components is mutually independent. Therefore, the observations are mutually
independent if the factors are known (only the noise is the random component). Therefore, corre-
lations between observations can only be explained by factors. This can be seen in the decom-
position of the covariance matrix Eq. (5.8): if Ψ is diagonal, then only U can explain covariance
between different variables.

We assume that the noise ε and the factors y are independent which need not be true for all
applications, e.g. if the noise changes with the signal strength. The parameters U and Ψ can be
estimated by maximum likelihood (see Section 5.2). Both parameters explain the variance in the
observations x as can be seen at the decomposition of the covariance matrix Eq. (5.8). U explains
the dependent part, whereas Ψ explains the independent part of the variance. The factors are very
similar to principal components of PCA (see next subsection for a comparison of both methods).
Fig. 5.1 depicts the factor analysis model.

Section 5.2 presents the maximum likelihood approach to factor analysis, that is, model selec-
tion based on maximum likelihood Jöreskog [1967]. A local maximum of the likelihood is found
by the expectation maximization (EM) optimization technique Dempster et al. [1977].

For factor analysis (FA) the factor values are estimated, however, “projection of the data onto
the factors” is more complicated than with PCA. We start with a regression setting (see later linear
models):

Y = X A , (5.9)

whereA is a parameter. The least squares solution (see later linear models) is

Â =
(
XT X

)−1
XTY . (5.10)

The model assumptions (population covariances) and their empirical approximations (sample co-
variances) are:

UUT + Ψ = Var(x) ≈ 1

n
XT X (5.11)

U = Cov(x,y) ≈ 1

n
XT Y . (5.12)
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noise ε

z2

x1 x2 x3 x4

z1

λ42

λ22

ε2 ε3 ε4ε1

factor z

observations x

loading matrix Λ

Figure 5.1: The factor analysis model.

The parameterA is estimated using Var(x) and Cov(x,y):

Â = E
((
XT X

)−1
)

E
(
XTY

)
(5.13)

which gives

Â =
(
UUT + Ψ

)−1
U . (5.14)

The projection is therefore

Y = X
(
UUT + Ψ

)−1
U , (5.15)

or using the matrix inversion lemma

Y = X Ψ−1 U
(
I + U Ψ−1 UT

)−1
. (5.16)

The outer product representation for l factors is

X =

l∑

j=1

ujy
T
j + Υ , (5.17)

where uj is the j-th column vector of U and yj is the j-th row vector of Y .

We already mentioned that the data variance is explained through signal variance and through
noise. The communality cj of an observation variable xj (the j-th component of x) is

cj =
Var(xj) − Var(εj)

Var(xj)
=

∑l
k=1 λ

2
jk

Ψjj +
∑l

k=1 λ
2
jk

(5.18)

which is the proportion in xj explained by the factors. Here each factor yt contributes

λ2
jt

Ψjj +
∑l

k=1 λ
2
jk

. (5.19)
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Like with PCA, the projections onto l factors maximize the variance in the data which can be
explained by l factors. However that is only the signal variance but not the noise variance. Fur-
thermore, like with PCA, the factor projections are orthogonal to each other which we know from
1
nY

TY = I . However, the factors are not unique up to orthogonal transformations (rotations).
This can be seen by the fact that Y UT = Y V V TUT = Y ′U ′T with an orthogonal matrix V
and still Y ′TY ′ = V TY TY V = I holds. Therefore factor analysis is not unique with respect
to rotations. Consequently, the projections of the data can be rotated to make the factors more
interpretable or to find simpler structures in the data. The following rotations are most common
for factor analysis:

Varimax rotation: maximizes the squared loadings of a factor on all the variables; each
factor has either large or small loadings of any particular variable; each variable is assigned
to a factor.

Quartimax rotation: minimizes the number of factors needed to explain each variable; each
factor explains many variables; in most cases not interpretable.

Equimax rotation: compromise between Varimax and Quartimax.

Options for rotations:

Orthogonal rotations:
rotate="none"
rotate="varimax"
rotate="quartimax"
rotate="bentlerT"
rotate="geominT"
rotate="bifactor"

Non-orthogonal rotations:
rotate="promax"
rotate="oblimin"
rotate="simplimax"
rotate="bentlerQ"
rotate="geominQ"
rotate="biquartimin"
rotate="cluster"

5.2 Maximum Likelihood Factor Analysis

We focus on the maximum likelihood approach to factor analysis which is in most cases Jöreskog
[1967] based on the Expectation-Maximization (EM) optimization technique Dempster et al. [1977].

We will now consider the likelihood of the data. Let E denote the expectation of the data
(i.e. the factor distribution and the noise distribution is combined), then we obtain for the first two
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moments:

E(x) = E(Uy + ε) = UE(y) + E(ε) = 0 , (5.20)

E
(
x xT

)
= E

(
(Uy + ε)(Uy + ε)T

)
=

UE
(
y yT

)
UT + UE (y) E

(
εT
)

+ E (ε) E
(
yT
)
UT + E

(
ε εT

)
=

U UT + Ψ .

The variance can be computed as

var(x) = E
(
x xT

)
− (E(x))2 = U UT + Ψ . (5.21)

Therefore, the marginal distribution for x is

x ∼ N
(
0 , UUT + Ψ

)
. (5.22)

This means that the observations are Gaussian distributed. This is an assumption of the factor
analysis model which can be checked to see whether the model is applicable to a certain problem.

The log-likelihood of the data {x} under the model (U ,Ψ) is

log
n∏

i=1

(2π)−m/2
∣∣UUT + Ψ

∣∣−1/2
(5.23)

exp

(
−1

2

(
xTi
(
UUT + Ψ

)−1
xi

))
,

where |.| denotes the absolute value of the determinant of a matrix.

To maximize the likelihood is difficult because no closed form of directly maximizing the
likelihood with respect to the parameters is known.

We again apply the EM-algorithm. We introduce a distribution which estimates the hidden
states, here the factors.

Using

Qi(yi) = p (yi | xi;U ,Ψ) (5.24)

then

yi | xi ∼ N
(
µyi|xi

,Σyi|xi

)
(5.25)

µyi|xi
= (xi)

T (U UT + Ψ
)−1

U

Σyi|xi
= I − UT

(
U UT + Ψ

)−1
U ,

where we used the fact that

v ∼ N (µv,Σvv) , u ∼ N (µu,Σuu) , (5.26)

Σuv = Covar(u,v) and Σvu = Covar(v,u) :

v | u ∼ N
(
µv + ΣvuΣ−1

uu (u − µu) , Σvv − ΣvuΣ−1
uuΣuv

)
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and

E(yx) = U E(y yT ) = U . (5.27)

We obtain

Qi(yi) = (2π)−d/2
∣∣Σyi|xi

∣∣−1/2
exp

(
−1

2

(
yi − µyi|xi

)T
Σ−1
yi|xi

(
yi − µyi|xi

))
.

(5.28)

The EM algorithm for maximum likelihood maximizes in the M-step a lower bound for the
log-likelihood:

log (p(xi | U ,Ψ)) = log

(∫

Rp

Qi(yi) p(xi,yi | U ,Ψ)

Qi(yi)
dyi

)
≥ (5.29)

∫

Rp

Qi(yi) log

(
p(xi,yi | U ,Ψ)

Qi(yi)

)
dyi .

Using the expectation

Eyi|xi
(f(yi)) =

∫

Rp

Qi(yi) f(yi) dyi (5.30)

and neglecting all terms which are independent of U and Ψ, the M-step requires to maximize

logL = − m n

2
log (2π) − m

2
log |Ψ| − (5.31)

1

2

n∑

i=1

Eyi|xi

(
(xi − Uyi)

T Ψ−1 (xi − Uyi)
)
.

The optimality criteria are

1

n
∇U logL =

1

n

n∑

i=1

Ψ−1 U Eyi|xi

(
yi y

T
i

)
−

1

n

n∑

i=1

Ψ−1 xi Eyi|xi
(yi) = 0 (5.32)

and

∇Ψ logL = −m
2

Ψ−1 + (5.33)

1

2

n∑

i=1

Eyi|xi

(
Ψ−1 (xi − Uyi) (xi − Uyi)

T Ψ−1
)

= 0 .

Solving above equations gives:

Unew =

(
1

n

n∑

i=1

xi Eyi|xi
(yi)

) (
1

n

n∑

i=1

Eyi|xi

(
yi y

T
i

)
)−1

(5.34)
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and

Ψnew = diag

(
1

n

n∑

i=1

Eyi|xi

(
(xi − Unewyi) (xi − Unewyi)

T
))

= (5.35)

diag

(
1

n

n∑

i=1

xi x
T
i −

1

n

n∑

i=1

Eyi|xi
(yi)xi (Unew)T −

1

n

n∑

i=1

Eyi|xi
(yi)U

newxTi +
1

n

n∑

i=1

Eyi|xi

(
yi y

T
i

)
Unew (Unew)T

)
,

where “diag” makes a diagonal matrix from a matrix by setting all non-diagonal elements to zero.

From Eq. (5.34) we obtain

Unew

(
1

n

n∑

i=1

Eyi|xi

(
yi y

T
i

)
)

=

(
1

n

n∑

i=1

xi Eyi|xi
(yi)

)
. (5.36)

and can replace the last term of Eq. (5.35) with the left hand side of above equation which leads
to the fact that one term 1

n

∑n
i=1 Eyi|xi

(yi)U
newxTi cancels in Eq. (5.35). We obtain

Ψnew =
1

n
diag

(
n∑

i=1

xi x
T
i −

n∑

i=1

Eyi|xi
(yi)xi (Unew)T

)
. (5.37)

This leads to the following EM updates:

E-step: (5.38)

Eyi|xi
(yi) = µyi|xi

Eyi|xi

(
yi y

T
i

)
= µyi|xi

µTyi|xi
+ Σyi|xi

M-step: (5.39)

Unew =

(
1

n

n∑

i=1

xi Eyi|xi
(yi)

) (
1

n

n∑

i=1

Eyi|xi

(
yi y

T
i

)
)−1

Ψnew =
1

n
diag

(
n∑

i=1

xi x
T
i −

n∑

i=1

Eyi|xi
(yi)xi (Unew)T

)
. (5.40)

Speed Ups. To speed up the algorithm especially for m > l the matrix inversion lemma can
be used:

(
U UT + Ψ

)−1
= Ψ−1 − Ψ−1U

(
I + UTΨ−1U

)−1
UTΨ−1 , (5.41)

where Ψ−1 can be evaluated very fast because it is a diagonal matrix.

Another speed up is obtained by

1

n

n∑

i=1

xi Eyi|xi
(yi) =

(
1

n

n∑

i=1

xi (xi)
T

)
(
U UT + Ψ

)−1
U = (5.42)

C
(
U UT + Ψ

)−1
U = C

(
Ψ−1U − Ψ−1U

(
I + UTΨ−1U

)−1
UTΨ−1U

)
=

C
(
U − U (I + B)−1B

)
,
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where U = Ψ−1U , B = UTΨ−1U = UTU , and C is the empirical covariance matrix, which
has to be computed only once.

We can also compute

1

n

n∑

i=1

Σyi|xi
= I − UT

(
U UT + Ψ

)−1
U = (5.43)

I − UT Ψ−1U + UT Ψ−1U
(
I + UTΨ−1U

)−1
UTΨ−1U =

I − B + B (I + B)−1B =

I − B + BB (I + B)−1 =

(I − B) (I + B) (I + B)−1 + BB (I + B)−1 =

(I + B − B − BB + BB) (I + B)−1 =

(I + B)−1

where we used (I + B)−1 B = B (I + B)−1 [Lütkepohl, 1996, Section 3.5.2 (6) (a)] and

1

n

n∑

i=1

µyi|xi
µTyi|xi

= (5.44)

UT
(
U UT + Ψ

)−1

(
1

n

n∑

i=1

xi (xi)
T

)
(
U UT + Ψ

)−1
U =

UT
(
U UT + Ψ

)−1
C
(
U UT + Ψ

)−1
U =

(
U − U (I + B)−1B

)T
C
(
U − U (I + B)−1B

)
.

Using these equations the E-step and the M-step can be unified and all sums
∑n

i=1 are removed
and the matrix C can be computed once at the beginning of the iterative procedure.

MAP factor analysis. This algorithm can be generalized to a maximum a posteriori method
with posterior p(U ,Ψ | {x}) which is proportional to the product between the likelihood p({x} |
U ,Ψ) and the prior p(U):

p(U ,Ψ | {x}) ∝ p({x} | U ,Ψ) p(U) , (5.45)

therefore up to a constant independent of the parameters the log-posterior is

log (p(U ,Ψ | {x})) = log (p({x} | U ,Ψ)) + log (p(U)) . (5.46)

An example for the prior on λj is a rectified Gaussian Nrect (µΛ, σΛ) in order to allow only
positive factor loading values which assume that the factors are only additive:

yj ∼ N (µΛ, σΛ)λj = max{yj , 0} . (5.47)

MAP factors. The E-step gives also the most probable values for the factors y. This can be
important for analyzing data and extracting hidden causes.
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5.3 Factor Analysis vs. PCA and ICA

We consider factor analysis and compare it to PCA:
factor analysis principal component analysis
causes of the data geometrical abstractions
explain common variances explain all variance
variance shared first l with max. variance
scale invariant not scale invariant
additive noise (variance lost) no noise
solution not unique solution unique
model assumptions no assumptions
solution depends on l first l unique
projection uses noise no noise
no ranking ranked by eigenvalues

We now compare factor analysis to ICA:
factor analysis independent component analysis
additive noise no noise
solution not unique unique up to scale and permutation
assumption: Gauss assumption: super-Gauss
projection averaged over noise no noise
solution depends on l does not depend on l

5.4 Artificial Factor Analysis Examples

We compare factor analysis and ICA on a 50-dimensional data set with linearly mixed super-
Gaussians.

First we generate a 50-dimensional data set with super-Gaussians. Fig. 5.2 shows the first two
components of the original data of the 50-dimensional super-Gaussian.

Next the 50-dimensional super-Gaussian is mixed. Fig. 5.3 shows the first two components of
the linear mixing of 50 super-Gaussians.

First we apply factor analysis to this mixture of 50 super-Gaussians. Fig. 5.4 shows the first
two components of the results of ICA applied to the mixture of 50-dimensional super-Gaussian.

Next we apply factor analysis to this 50-dimensional data set. Fig. 5.5 shows the first two
components of the results of factor analysis applied to the mixture of 50 super-Gaussians. The
demixing does not work as well as with ICA. This was expected because factor analysis assumes
normally distributed factors while ICA assumes super-Gaussian components. Thus, the task is
suited for ICA but not for factor analysis. Factor analysis with subsequent rotations that maximize
some ICA contrast functions would lead to better results concerning separation of the sources.
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Figure 5.2: The first two components of the original data of the 50-dimensional super-Gaussian.
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Figure 5.3: First two components of the linear mixing of the 50-dimensional super-Gaussian.
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Figure 5.4: First two components of the results of fastICA applied to the mixture of the 50-
dimensional super-Gaussian.
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Figure 5.5: The first two components of the results of factor analysis applied to the mixture of 50
super-Gaussians.
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Figure 5.6: Factor analysis applied to Anderson’s iris data. Scatter plot of the factor against itself.

5.5 Real World Factor Analysis Examples

5.5.1 Iris Data Set

We revisit the iris data set and perform factor analysis on this data. We computed one factor by
factor analysis. Fig. 5.6 shows the factor extracted by factor analysis. The species can be quite
well separated except for one flower.

5.5.2 Multiple Tissue Data Set

We apply factor analysis to the multiple tissue microarray data set. Since for this data set m > n,
we first select the n features with largest variance, in order to ensure a full rank covariance matrix.
Then we call factor analysis with 4 components and then compute the scoring.

Fig. 5.7 shows scatter plots for pairs of factors from the factor analysis without any rotation.
Factor 1 (FA1) separates prostate samples (green) from the rest. FA2 separates breast samples
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Figure 5.7: Factor analysis applied to multiple tissue data with 4 components and no rotation.
Factor 1 (FA1=ML1) separates prostate samples (green) from the rest. FA2 (ML2) separates breast
samples (red) from the lung samples (blue), however this separation is not very good. FA3 (ML3)
separates the colon samples (orange) from the rest. FA4 (ML4) separates part of the lung samples
(blue) from the rest.

(red) from the lung samples (blue), however this separation is not very good. FA3 separates the
colon samples (orange) from the rest. FA4 separates part of the lung samples (blue) from the rest.
Fig. 5.8 shows scatter plots for pairs of factors from the factor analysis with rotation “varimax”.
Fig. 5.9 shows scatter plots for pairs of factors from the factor analysis with rotation “quartimax”.
The results of both rotations are very similar to each other. The separation is slightly worse than
without rotations.
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Figure 5.8: Factor analysis applied to multiple tissue data with 4 components and “varimax”
rotation. Factor 1 (FA1=ML2) separates prostate samples (green) from the rest. FA2 (ML1)
separates breast samples (red) from the lung samples (blue), however this separation is not very
good. FA3 (ML3) separates the colon samples (orange) from the rest. FA4 (ML4) separates part
of the lung samples (blue) from the rest.
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Figure 5.9: Factor analysis applied to multiple tissue data with 4 components and “quartimax”
rotation. Factor 1 (FA1) separates prostate samples (green) from the rest. FA2 separates breast
samples (red) from the lung samples (blue), however this separation is not very good. FA3 sepa-
rates the colon samples (orange) from the rest. FA4 separates part of the lung samples (blue) from
the rest.
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Chapter 6

Scaling and Projection Methods

We consider methods that project the data to a low-dimensional space. This is also called “scal-
ing”. The goal is either to visualize the data or to represent the data in a low-dimensional space
for further processing. The low-dimensional space allows to perform model selection using low-
complex model classes. In a low-dimensional space only the main structures of the data can be
captured, therefore, it is assumed that noise and outliers are not represented.

6.1 Projection Pursuit

Projection pursuit Friedman and Tukey [1974], Friedman and Stuetzle [1981], Huber [1985],
Friedman [1987], Jones [1987], Jones and Sibson [1987], Zhao and Atkeson [1996], Intrator
[1993] attempts to find “interesting” projections of the data in order to visualize or cluster the
data. “Interesting” is defined as the least Gaussian distribution. The central question is how to
define non-Gaussianity. If the covariance of a zero mean variable y is fixed, then a Gaussian
distribution maximizes the entropy H(y). Then for t = wTx the vector w must be found
which minimizes H(t) if t is normalized to zero mean and unit variance. However, the density of
t = wTx is difficult to estimate. The entropy is minimized by finding unimodal super-Gaussians
or by finding multimodal distributions.

Other more practical measures of non-Gaussianity have been given in paragraph “Non-Gaussianity”
in the Subsection 4.2 of ICA. Besides the kurtosis, different contrast functions are discussed which
measure non-Gaussianity. Actually, ICA provides examples for projection pursuit.

6.2 Multidimensional Scaling

6.2.1 The Method

Multidimensional Scaling (MDS) Torgerson [1958], Gower [1966] aims at representing data points
x by y in a lower dimensional space so that the distances between the y’s correspond to the
distances (dissimilarities) between the x’s.
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We define

yi = f(xi;w) (6.1)

δij = ‖xi − xj‖ (6.2)

dij = ‖yi − yj‖ . (6.3)

The goal is to define a measure which measures the difference between δ and d. In most cases
a weighted sum of the absolute differences between δij and dij or their squared values are used.
Measures, which have previously been used, are

R1(d, δ) =

∑
i<j (dij − δij)

2

∑
i<j δ

2
ij

∝
∑

i<j

(dij − δij)
2 , (6.4)

R2(d, δ) =
∑

i<j

(
dij − δij

δij

)2

, (6.5)

R3(d, δ) =
1∑
i<j δij

∑

i<j

(dij − δij)
2

δij
∝
∑

i<j

(dij − δij)
2

δij
, (6.6)

where “∝” means that factors which are constant in the parameters w are removed.

The measure R1 is called “Kruskal’s measure” and is basically the mean squared error and
penalizes large errors even if the δij are large. The measure R2 measures the fractional errors
(relative errors) but small δij may increase the relative error. R3 is called “Sammon mapping” and
is a compromise of R1 and R2.

The derivatives, which are used in gradient-based methods, are

∂

∂yk
R1(d, δ) =

2∑
i<j δ

2
ij

∑

j 6=k
(dkj − δkj)

yk − yj
dkj

(6.7)

∂

∂yk
R2(d, δ) = 2

∑

j 6=k

dkj − δkj
δ2
kj

yk − yj
dkj

(6.8)

∂

∂yk
R3(d, δ) =

2∑
i<j δij

∑

j 6=k

dkj − δkj
δkj

yk − yj
dkj

. (6.9)

If the measures R are viewed as potential functions, then these derivatives with respect to
points yk can be considered as forces on yk. Also other supervised and unsupervised methods can
be derived from potential functions and forces Bashkirov et al. [1964], Perrone and Cooper [1995],
Hochreiter and Mozer [2001b,a], Hochreiter et al. [2003], Hochreiter and Obermayer [2005].

6.2.2 Examples

Fig. 6.1 shows an example for multidimensional scaling from Duda et al. [2001].

We perform classical metric multidimensional scaling of a data matrix, which is known as
principal coordinates analysis Torgerson [1958], Gower [1966]. Fig. 6.2 shows the result of clas-
sical multidimensional scaling applied to multiple tissue data and down-projected to 2 dimensions.
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x1

x2

x3

xi xj

δij

s o u r c e  s p a c e ta r g e t s p a c e

y1

y2

yi

yj

dij

s o u r c e  s p a c e ta r g e t s p a c e

Figure 6.1: Example for multidimensional scaling. Points x from a 3-dimensional space (left) are
mapped by multidimensional scaling to a 2-dimensional space (right). From Duda et al. [2001],
Copyright c© 2001 John Wiley & Sons, Inc.

The 101 features with largest variance are selected. Fig. 6.3 shows the same result but for the 13
features with largest variance. In both cases the results are almost identical to PCA with the first
two components.

The R function isoMDS() implements Kruskal’s non-metric multidimensional scaling, which
is the measureR1 from above. We produce MDS with Kruskal’s measure for the 101 features with
the largest variance (see Fig. 6.4) and for the 13 features with the largest variance (see Fig. 6.5).
Kruskal’s is better for separating breast samples (red) from the lung samples (blue). However, the
separation of the colon samples (orange) gets worse. Also the prostate samples (green) are less
clearly separated.

The next MDS procedure is Sammon’s non-linear mapping, which was the measure R3 from
above. The results of Sammon’s mapping for the 101 features with the largest variance are shown
in Fig. 6.6 and for the 13 features with the largest variance in Fig. 6.7. The separation of the
classes is worse than with metric or Kruskal’s measure. Some data points get separated from their
corresponding classes. For 13 features the clusters are more spread out and there is a relatively
large distance between the points. The later makes it more difficult to identify cluster.
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Figure 6.2: Classical metric multidimensional scaling applied to multiple tissue data and down-
projected to 2 dimensions. The 101 features with largest variance are selected.
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Figure 6.3: Classical metric multidimensional scaling applied to multiple tissue data and down-
projected to 2 dimensions. The 13 features with largest variance are selected.
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Figure 6.4: Multidimensional scaling with Kruskal’s measure applied to multiple tissue data down-
projected to 2 dimensions. The 101 features with largest variance are selected.
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Figure 6.5: Multidimensional scaling with Kruskal’s measure applied to multiple tissue data down-
projected to 2 dimensions. The 13 features with largest variance are selected.
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Figure 6.6: Sammon’ mapping applied to multiple tissue data down-projected to 2 dimensions.
The 101 features with largest variance are selected.
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Figure 6.7: Sammon’ mapping applied to multiple tissue data down-projected to 2 dimensions.
The 13 features with largest variance are selected.
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6.3 Non-negative Matrix Factorization

6.3.1 The Method

Non-negative matrix factorization (NFM) Lee and Seung [1999, 2001], Hoyer [2004] is a matrix
factorization method where all matrix entries are assumed to be positive: both of the observation
matrix and the decomposition matrices. In contrast to PCA, ICA, or factor analysis, the non-
negativity constraints make the representation of the observations purely additive (allowing no
subtractions). A motivation for NFM is a parts-based representation: only parts are added to the
observation but never subtracted. For example, to images objects can be added but non-existing
objects are not subtracted.

Non-negative matrix factorization is concerned with computing a multiplicative decomposi-
tion of a positive data matrix X ∈ Rn×m into two positive matrices Y ∈ Rn×l, and U ∈ Rm×l
in the following way:

X = Y UT =
l∑

k=1

yk u
T
k , (6.10)

where 0 ≤ Xij , 0 ≤ Yik = [yk]i, and 0 ≤ Ujk = [uk]j . The right hand side of this equation
expresses the model as the sum of outer products of column vectors yj ∈ Rn and the uj ∈ Rm.

First we consider NFM with the Kullback-Leibler divergence as objective for the reconstruc-
tion error Lee and Seung [1999, 2001]. The objective is the Kullback-Leibler distance between
two matrices:

D(A ‖ B) =
∑

ij

(
Aij log

Aij
Bij

+ Aij − Bij

)
(6.11)

It is only the Kullback-Leibler divergence if
∑

ij Aij =
∑

ij Bij = 1, because in this case the
matrices can be viewed as probabilities as they are positive according to our assumptions.

We minimize the Kullback-Leibler divergence D(X ‖ Y UT ) by gradient descent, which
gives the following update rules:

Yik = Yik

∑m
j=1 Ujk Xij /

(
Y UT

)
ij∑m

j=1 Ujk
(6.12)

and

Ujk = Ujk

∑n
i=1 Yik Xij /

(
Y UT

)
ij∑n

i=1 Yik
. (6.13)

The second approach to non-negative matrix factorization uses the Euclidean distance as ob-
jective to measure the reconstruction error Lee and Seung [2001], Paatero and Tapper [1997]. The
objective is the Euclidean distance (Frobenius norm) between two matrices:

‖A − B‖2F =
∑

ij

(Aij − Bij)
2 . (6.14)
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We minimize the Euclidean distance ‖X − Y UT ‖2F by the following update rules:

Yik = Yik
(X U)ik

(Y UT U)ik
(6.15)

and

Ujk = Ujk

(
Y T X

)
kj

(Y T Y UT )kj
. (6.16)

The factor of the first multiplicative update rule is obtained by multiplying

X = Y UT (6.17)

from the right by U while the second multiplicative update rule is obtained by multiplying from
the left by Y T . For a fixed point, the left and the right hand side have to be equal, however for
small l that is not possible. The update rules for both approaches (Kullback-Leibler divergence
and Euclidean distance) have been proved to converge to a local optimum Lee and Seung [2001].

NFM has been extended to sparse non-negative matrix factorization which combines non-
negativity and sparseness Hoyer [2004]. In particular solutions become unique if sparseness con-
straints are introduced. Sparseness can be imposed on both decomposition matrices. If the matrix
Y is considered as an indicator matrix of which parts are present in the observations, then sparse-
ness means that only few parts are present in one observation. If the matrix U is considered as
how the parts are characterized or measured by the observations, then sparseness means that only
few measurements characterize one part. For example, in gene expression X is a samples-genes
measurement matrix. These measurements may be decomposed into pathways and their activa-
tion. Y may indicate which pathway is activated in which sample. Sparseness means that only
few pathways are activated in a particular sample. For gene expression U may indicate which
genes belong to which pathway. Sparseness means that only few genes belong to a pathway.

6.3.2 Examples

Fig. 6.8 shows an example from Lee and Seung [1999] of non-negative matrix factorization
(NMF). NFM learns parts-based representations of faces, whereas vector quantization (VQ) and
principal components analysis (PCA) learn holistic representations.

We generated positive toy data and apply different non-negative matrix factorization methods
to it. Fig. 6.9 shows the noise data (left) and the noise free data of this non-negative matrix
factorization problem. The data contains blocks of patterns. These blocks should be recognized
by the NFM methods, where Y and U indicate which rows and which columns, respectively,
belong to a block. For visualization purposes only, the blocks are constructed by adjacent row
or column elements. In real data there may be such blocks but no row and column sorting can
visualize them simultaneously — only two blocks can always be visualized simultaneously by
proper row and column sorting.

First we applied NMF with the Kullback-Leibler divergence as objective to the data and then
plotted the results. Fig. 6.10 shows the results for the Kullback-Leibler divergence as objective.
The right panel shows the reconstructed data while the left panel shows the reconstruction error.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

Figure 6.8: Non-negative matrix factorization (NMF) learns parts-based representations of faces,
whereas vector quantization (VQ) and principal components analysis (PCA) learn holistic repre-
sentations. Figure is from Lee and Seung [1999].
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Toy Example: noise free data
( 1000  genes,  100  samples,  13  biclusters )
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Figure 6.9: Non-negative toy data (left) and noise-free data (right) for non-negative matrix fac-
torization. The data contains blocks of patterns which is actually a biclustering problem. For
visualization the blocks are constructed by adjacent row or column elements.

The original matrix is scaled and, therefore, the range of the error may be different for different
methods (e.g. the biclustering method FABIA scales the data). Fig. 6.11 shows the matrix Y at
the left panel and the matrix UT at the right panel. The blocks are not as well detected as with
FABIA (see below).

Next we applied NMF with the Euclidean distance as objective to the data and plot the results.
Fig. 6.12 shows the results for the Euclidean distance as objective. The right panel shows the
reconstructed data while the left panel shows the reconstruction error. Fig. 6.13 shows the matrix
Y at the left panel and the matrix UT at the right panel. The blocks are not as well detected as
with FABIA (see below).

Then we applied NMF with a sparseness constraint Hoyer [2004] to the data and plot the
results. Fig. 6.14 shows the reconstructed data and error while Fig. 6.15 shows the matrices into
which the data matrix was factorized. Not all blocks are detected, because too much sparseness
was enforced onto the matrix factorization because it was difficult to properly adjust the parameter
which controls sparseness.

Further we applied matrix factorization with a sparseness constraint Hoyer [2004] to the data
and plot the results. That means we did not enforce non-negativity. Fig. 6.16 shows the recon-
structed data and error while Fig. 6.17 shows the matrices into which the data matrix was factor-
ized. Also in this case not all blocks are detected, because too much sparseness was enforced onto
the matrix factorization because it was difficult to properly adjust the parameter which controls
sparseness.

Finally, we applied the biclustering method FABIA Hochreiter et al. [2010] to the data and then
plotted the results. FABIA is based on a sparse factor analysis model, where both the factors and
the loadings are sparse. Thus, both the matrix Y as well as the matrix U are sparse if they are the
result of FABIA. Fig. 6.18 shows the reconstructed data and error. Fig. 6.19 shows the matrices
into which the data matrix was factorized. The original matrix is scaled for some methods like
FABIA and, therefore, the range of the error may be different for different methods.
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NMFDIV: reconstructed data
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NMFDIV: error
( 1000  genes,  100  samples,  13  biclusters )
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Figure 6.10: Non-negative matrix factorization using the Kullback-Leibler divergence as objective.
Left: reconstructed data. Right: reconstruction error.

NMFDIV: absolute factors
( 1000  genes,  100  samples,  13  biclusters )

sample1 sample11 sample21 sample31 sample41 sample51 sample61 sample71 sample81 sample91

bicluster10

bicluster4

bicluster9

bicluster12

bicluster8

bicluster5

bicluster6

bicluster2

bicluster7

bicluster11

bicluster13

bicluster3

bicluster1

0
1

2
3

4
5

6
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( 1000  genes,  100  samples,  13  biclusters )
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Figure 6.11: Non-negative matrix factorization using the Kullback-Leibler divergence as objective.
Left: Y matrix. Right: UT matrix.
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NMFEU: reconstructed data
( 1000  genes,  100  samples,  13  biclusters )
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NMFEU: error
( 1000  genes,  100  samples,  13  biclusters )
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Figure 6.12: Non-negative matrix factorization using the Euclidean distance as objective. Left:
reconstructed data. Right: reconstruction error.

NMFEU: absolute factors
( 1000  genes,  100  samples,  13  biclusters )
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NMFEU: absolute loadings
( 1000  genes,  100  samples,  13  biclusters )
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Figure 6.13: Non-negative matrix factorization using the Euclidean distance as objective. Left: Y
matrix. Right: UT matrix.
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NMFSC: reconstructed data
( 1000  genes,  100  samples,  13  biclusters )
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NMFSC: error
( 1000  genes,  100  samples,  13  biclusters )
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Figure 6.14: Non-negative matrix factorization using a sparseness constraint. Left: reconstructed
data. Right: reconstruction error.

NMFSC: absolute factors
( 1000  genes,  100  samples,  13  biclusters )
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NMFSC: absolute loadings
( 1000  genes,  100  samples,  13  biclusters )
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Figure 6.15: Non-negative matrix factorization using a sparseness constraint. Left: Y matrix.
Right: UT matrix.
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MFSC: reconstructed data
( 1000  genes,  100  samples,  13  biclusters )
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MFSC: error
( 1000  genes,  100  samples,  13  biclusters )
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Figure 6.16: Matrix factorization using a sparseness constraint. Left: reconstructed data. Right:
reconstruction error.

MFSC: absolute factors
( 1000  genes,  100  samples,  13  biclusters )
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MFSC: absolute loadings
( 1000  genes,  100  samples,  13  biclusters )
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Figure 6.17: Matrix factorization using a sparseness constraint. Left: Y matrix. Right: UT

matrix.
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FABIA: reconstructed data
( 1000  genes,  100  samples,  13  biclusters )
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FABIA: error
( 1000  genes,  100  samples,  13  biclusters )

sample1 sample11 sample21 sample31 sample41 sample51 sample61 sample71 sample81 sample91

gene1000

gene917

gene833

gene750

gene667

gene583

gene500

gene417

gene333

gene250

gene167

gene83

gene1

−
6

−
4

−
2

0
2

4

Figure 6.18: FABIA biclustering. Left: reconstructed data. Right: reconstruction error.

FABIA: absolute factors
( 1000  genes,  100  samples,  13  biclusters )
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FABIA: absolute loadings
( 1000  genes,  100  samples,  13  biclusters )

bicluster1 bicluster13 bicluster7 bicluster6 bicluster8 bicluster9 bicluster10

gene1000

gene917

gene833

gene750

gene667

gene583

gene500

gene417

gene333

gene250

gene167

gene83

gene1

0
1

2
3

4

Figure 6.19: FABIA biclustering. Left: Y matrix. Right: UT matrix.



6.4. Locally Linear Embedding 117

6.4 Locally Linear Embedding

6.4.1 The Method

Locally linear embedding (LLE) computes low-dimensional, neighborhood-preserving embed-
dings / representations of high-dimensional observations. LLE maps observations into a single
global coordinate system of lower dimensionality. In contrast to previous projection methods,
except multidimensional scaling, LLE performs nonlinear mappings.

The objective of LLE

ε(W ) =
∑

i

∥∥∥∥∥∥
xi −

k∑

j=1

Wijxj

∥∥∥∥∥∥

2

(6.18)

is minimized with respect to W by constrained least squares using only neighbors xj of xi and
enforcing

∑k
j=1Wij = 1. The solutions Wij of this problem are invariant to rotations, rescalings,

and translations of data point xi and its neighbors xj . This means that xi is represented as a
weighted sum of its neighbors.

Down-projection optimizes the objective

Φ(Y ) =
∑

i

∥∥∥∥∥∥
yi −

k∑

j=1

Wijyj

∥∥∥∥∥∥

2

, (6.19)

where the Wij are fixed but the yi are optimized. This means the representation of xi by its
neighbors is now transferred to yi which should have the same representation by its neighbors.
This quadratic problem is solved by a sparse eigenvalue problem.

The objective Φ(Y ) can be represented as

Φ(Y ) =
∑

ij

Mij y
T
i yj , (6.20)

where

Mij = δij −Wij − Wji +
∑

k

Wki Wkj , (6.21)

where δij is the Kronecker delta which is 1 for i = j and 0 otherwise. The matrix M can be
represented by

M = (I − W )T (I − W ) . (6.22)

The optimal embedding is found by the bottom d eigenvectors of this matrix, except the last one.

Fig. 6.20 depicts the steps of the LLE method. Alg. 6.1 presents a pseudo code for LLE.



118 Chapter 6. Scaling and Projection Methods
function subject to two constraints: first, that
each data point WXi is reconstructed only from
its neighbors (5), enforcing Wij 5 0 if WXj does

not belong to the set of neighbors of WXi;
second, that the rows of the weight matrix
sum to one: SjWij 5 1. The optimal weights

Wij subject to these constraints (6) are found
by solving a least-squares problem (7).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
,, D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation WXi is mapped to a low-dimensional
vector WYi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates WYi to minimize the
embedding cost function

F~Y ! 5 O
i

U WYi 2 SjWij
WYjU

2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates WYi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors WYi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N 3 N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates WYi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point WXi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct WXi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors WYi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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Figure 6.20: Steps of locally linear embedding: (1) Assign neighbors to each observation xi by
using k nearest neighbors. (2) Compute the weights Wij that best linearly reconstruct xi from
its neighbors, solving the constrained least-squares problem in Eq. (6.18). Compute the low-
dimensional embedding vectors yi which is also reconstructed by Wij from its neighbors, mini-
mizing Eq. (6.19) by finding the smallest eigenmodes of the sparse symmetric matrix in Eq. (6.21).
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Algorithm 6.1 Locally linear embedding

Given: X: n bymmatrix consisting of n data items inm dimensions, dimension of embedding
space l, k number of neighbors, distance measure

Find neighbors inX space
for (i = 1 ; i ≥ n ; i+ +) do

compute the distance from xi to every other point xj
find the k smallest distances
assign the corresponding points to be neighbors of xi

end for
Solve for reconstruction weightsW

for (i = 1 ; i ≥ n ; i+ +) do
create matrix Z consisting of all neighbors of xi [d]
subtract xi from every row of Z
compute the local covariance C = ZTZ [e]
solve linear system Cw = 1 for w [f]
set Wij = 0 if j is not a neighbor of i
set the remaining elements in the i-th row ofW equal to w/

∑
j(wj);

end for
Compute embedding coordinates Y using weightsW

create sparse matrixM = (I −W )T (I −W )
find bottom l + 1 eigenvectors ofM (corresponding to the d+ 1 smallest eigenvalues)
set the q-th column of Y to be the q + 1 smallest eigenvector (discard the bottom eigenvector
1 = (1, 1, 1, 1...) with eigenvalue zero)

Result Y : n by l matrix consisting of l < m dimensional embedding coordinates.

Comments:

[a] Notation xi and yi denote the i-th row of X and Y (in other words the data and embedding
coordinates of the i-th point),
MT denotes the transpose of matrixM ,
I is the identity matrix,
1 is a column vector of all ones

[b] This can be done in a variety of ways, for example above we compute the k nearest neigh-
bors using Euclidean distance. Other methods such as epsilon-ball include all points within a
certain radius or more sophisticated domain specific and/or adaptive local distance metrics.

[c] Even for simple neighborhood rules like KNN or epsilon-ball using Euclidean distance, there
are highly efficient techniques for computing the neighbors of every point, such as KD trees.

[d] Z consists of all rows ofX corresponding to the neighbors of xi but not xi itself

[e] If k > m, the local covariance will not have full rank, and it should be regularized by setting
C = C + εI where I is the identity matrix and ε is a small constant of order 1e-3 trace(C).
This ensures that the system to be solved in step 2 has a unique solution.
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors WXi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε~W ! 5 O
i

U WXi2SjWij
WXjU

2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
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Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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Figure 6.21: The “Swiss roll” data illustrates the Locally Linear Embedding method. (A) Original
manifold on which the data points are located. The color coding illustrates the neighborhood
which is preserved by LLE. Black outlines in the original data (B) and the mapped data (C) show
the neighborhood of a single point.

6.4.2 Examples

Examples for the application of LLE can be found in Fig. 6.21 for the Swiss Roll data set and in
and Fig. 6.22 for a data set of face images.

We test LLE on the “S” curve data. The points of this 3-dimensional data set form an “S” if
the data is viewed from the right perspective (see Fig. 6.23 and Fig. 6.24). LLE is able to embed
the points on the manifold into a 2-dimensional space (see Fig. 6.25).

We also applied LLE to the multiple tissue data set. We selected the 101 features with largest
variance and then called LLE with different parameters k. Fig. 6.26 shows LLE results for the
multiple tissue data set with different parameter settings. The results are not as good as with other
methods because the observations seem not to be located on a manifold in the high-dimensional
space. That was to be expected.
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function subject to two constraints: first, that
each data point WXi is reconstructed only from
its neighbors (5), enforcing Wij 5 0 if WXj does

not belong to the set of neighbors of WXi;
second, that the rows of the weight matrix
sum to one: SjWij 5 1. The optimal weights

Wij subject to these constraints (6) are found
by solving a least-squares problem (7).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
,, D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation WXi is mapped to a low-dimensional
vector WYi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates WYi to minimize the
embedding cost function

F~Y ! 5 O
i

U WYi 2 SjWij
WYjU

2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates WYi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors WYi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N 3 N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates WYi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point WXi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct WXi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors WYi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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Figure 6.22: Images of faces mapped by LLE onto the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line).
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Figure 6.23: Data of points that form a “S” if viewed from the right angle. Here is the original
view on the data.
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Figure 6.24: Data of points that form a “S” if viewed from the right angle. Here is a view which
makes the “S” visible.
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Figure 6.25: Result of LLE on the “S” curve data. The embedding into a 2-dimensional space is
shown.
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Figure 6.26: Result of LLE applied to the multiple tissue data set. The plots show the result of
LLE for different parameter settings k = 7 (the optimal value with minimal ρ), k = 12, k = 5,
and k = 9. LLE is not suited to this data set.
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converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix t(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d 5 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K 5 7 and N 5

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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Figure 6.27: The “Swiss roll” data illustrates the Isomap method and the geodesic paths for non-
linear dimensionality reduction. (A) The Euclidean distance of two points (circled) on a nonlinear
manifold does not reflect their intrinsic similarity given by their geodesic distance. (B) Isomap
constructs a neighborhood graph G which is used to approximate the geodesic path as the shortest
path between the points in G (red). (C) The two-dimensional embedding recovered by Isomap.

6.5 Isomap

6.5.1 The Method

Very similar to LLE, also Isomap is a low-dimensional embedding method which computes a
quasi-isometric, low-dimensional embedding of a set of high-dimensional observations. As LLE,
Isomap is a non-linear projection method.

Metric MDS performs low-dimensional embedding based on the pairwise distance between
data points using the Euclidean distance. In contrast to metric MDS, Isomap uses geodesic dis-
tance induced by a neighborhood graph embedded in the classical scaling. Isomap measures
geodesic distances which are the shortest distances on a manifold in the high-dimensional space.
Isomap approximates the geodesic distance by the sum of edge weights along the shortest path
between two nodes and, thereby, assuming to stay on the manifold. See Fig. 6.27 for the Isomap
method. The shortest path can be computed using Dijkstra’s algorithm. The largest l eigenvec-
tors of the geodesic distance matrix are coordinates in the l-dimensional projected space. This
procedure is similar to PCA on the geodesic distance matrix, i.e. local PCA.

The connectivity of each data point in the neighborhood graph is defined as its nearest k
Euclidean neighbors in the high-dimensional space. The connectivity is prone to “short-circuit
errors” for too large k with respect to the manifold structure or to noise in the data. “Short-circuit
errors” lead to a jump across the space to another location on the manifold.

The doubly centered geodesic distance matrix τ(D) in Isomap is a function of the geodesic
distance matrixD:

τ(D) = − 1

2
H D2 H , (6.23)

where D2 = D2
ij = D2

ji is the element-wise square of the geodesic distance matrix D = [Dij ],
H is the centering matrix

H = In −
1

n
1 1T , (6.24)
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where 1 = (1, 1, . . . , 1)T ∈ Rn. The doubly centered distance matrix τ(D) is not ensured to be
positive semidefinite but can be made positive by a constant-shifting method.

The objective of Isomap is

E = ‖τ(DX) − τ(DY )‖L2 , (6.25)

where DY is the matrix of Euclidean distances in the projected space, DX is the matrix of
geodesic distances, and τ converts distances to inner products as defined in Eq. (6.23). This
objective can be minimized by setting the coordinates yi to the top l eigenvectors of the matrix
τ(DX). Alg. 6.2 shows a pseudo-code for the Isomap algorithm.

Algorithm 6.2 Isomap

Given: distances d(xi,xj) between pairs from n data points in an m-dimensional space X ,
parameter k or parameter e

Construct neighborhood graph
Define the graph G over all data points by connecting points xi and xj if they are closer than e
(e-Isomap), or if i is one of the k nearest neighbors of j (k-Isomap). Closeness and neighbor-
hood is measured by d(xi,xj).
Set edge lengths equal to d(xi,xj).

Compute shortest paths by Floyd’s algorithm
for (i = 1 ; i ≥ n ; i+ +) do

for (j = 1 ; j ≥ n ; j + +) do
Initialize dG(xi,xj) = d(xi,xj) if i, j are linked by an edge; dG(xi,xj) =∞, otherwise.

end for
end for
for (k = 1 ; k ≥ n ; k + +) do

for (i = 1 ; i ≥ n ; i+ +) do
for (j = 1 ; j ≥ n ; j + +) do
dG(xi,xj) = min{dG(xi,xj), dG(xi,xk) + dG(xk,xj)}.

end for
end for

end for
define shortest path matrixDX by [DX ]ij = dG(xi,xj)

Construct l-dimensional embedding
Compute λp as the p-th eigenvalue (in decreasing order) of the matrix τ(DX), and vpi as the
i-th component of the p-th eigenvector.
set yij =

√
λivji.

Result Y : coordinate vectors yi in a l-dimensional (l < m) Euclidean space Y

6.5.2 Examples

Fig. 6.28 show an example of Isomap (k = 6) applied to n = 2000 images (64 pixels by 64 pixels)
of a hand in different configurations. The images were generated by making a series of opening
and closing movements of the hand at different wrist orientations, designed to give rise to a two-
dimensional manifold. The images were treated as 4096-dimensional vectors, with input-space
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Figure 6.28: Isomap applied to images of a hand making a series of opening and closing move-
ments at different wrist orientations. The recovered coordinate axes map approximately onto the
distinct underlying degrees of freedom: wrist rotation (x-axis) and finger extension (y-axis).

distances defined in the Euclidean metric. The recovered coordinate axes map approximately onto
the distinct underlying degrees of freedom: wrist rotation (x-axis) and finger extension (y-axis).

The next data set are tree counts in 1-hectare plots in the Barro Colorado Island Condit et al.
[2002]. The observations are 50 plots of 1 hectare with counts of trees on each plot. There are
225 tree species for which full Latin names are used. The data give the numbers of trees that have
at least 10 cm in diameter at breast height (1.3 m above the ground) in each one hectare square of
forest. Within each one hectare square, all individuals of all species were tallied and are recorded.
The data frame contains only the Barro Colorado Island subset of the original data. The quadrants
are located in a regular grid. Fig. 6.29 shows Isomap results for this data set. For comparison also
a standard multidimensional scaling result is given. The spanning tree is depicted in each graph.

Fig. 6.30 shows Isomap results for the multiple tissue data set with different parameter settings.
We selected the 101 features with largest variance and then applied Isomap to these data. The
results are not as good as with other methods because the observations seem not to be located on
a manifold in the high-dimensional space. That was to be expected.
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Figure 6.29: Isomap applied to Barro Colorado Island tree count. The upper left panel gives
the result of standard multidimensional scaling whereas the other panels give Isomap results with
different parameters. The spanning tree of the graphs is given in red.
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Figure 6.30: Isomap applied to multiple tissues data, where different parameter setting have been
tried.
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x(y;w)

y1

y2

t1

t2t3

S

Figure 1: The non-linear function y(x;W) defines a manifold S embedded in data space given
by the image of the latent-variable space under the mapping x → y.

confined to the L-dimensional manifold and hence would be singular. Since in reality the data will
only approximately live on a lower-dimensional manifold, it is appropriate to include a noise model
for the t vector. We choose the distribution of t, for given x and W, to be a radially-symmetric
Gaussian centred on y(x;W) having variance β−1 so that

p(t|x,W, β) =

(
β

2π

)D/2

exp

{
−β

2
‖y(x;W) − t‖2

}
. (1)

Note that other models for p(t|x) might also be appropriate, such as a Bernoulli for binary variables
(with a sigmoid transformation of y) or a multinomial for mutually exclusive classes (with a
‘softmax’, or normalized exponential transformation of y (Bishop 1995)), or even combinations of
these. The distribution in t-space, for a given value of W, is then obtained by integration over the
x-distribution

p(t|W, β) =

∫
p(t|x,W, β)p(x) dx. (2)

For a given a data set D = (t1, . . . , tN ) of N data points, we can determine the parameter matrix
W, and the inverse variance β, using maximum likelihood. In practice it is convenient to maximize
the log likelihood, given by

L(W, β) = ln
N∏

n=1

p(tn|W, β). (3)

Once we have specified the prior distribution p(x) and the functional form of the mapping y(x;W),
we can in principle determine W and β by maximizing L(W, β). However, the integral over x in
(2) will, in general, be analytically intractable. If we choose y(x;W) to be a linear function of
W, and we choose p(x) to be Gaussian, then the integral becomes a convolution of two Gaussians
which is itself a Gaussian. For a noise distribution p(t|x) which is Gaussian with a diagonal
covariance matrix, we obtain the standard factor analysis model. In the case of the radially
symmetric Gaussian given by (1) the model is closely related to principal component analysis since
the maximum likelihood solution for W has columns given by the scaled principal eigenvectors.
Here we wish to extend this formalism to non-linear functions y(x;W), and in particular to develop
a model which is similar in spirit to the SOM algorithm. We therefore consider a specific form for

3

t1

t2t3

x(y;w)

y1

y2

Figure 2: In order to formulate a latent variable model which is similar in spirit to the SOM,
we consider a prior distribution p(x) consisting of a superposition of delta functions,
located at the nodes of a regular grid in latent space. Each node xi is mapped to a
corresponding point y(xi;W) in data space, and forms the centre of a corresponding
Gaussian distribution.

p(x) given by a sum of delta functions centred on the nodes of a regular grid in latent space

p(x) =
1

K

K∑

i=1

δ(x − xi) (4)

in which case the integral in (2) can again be performed analytically. Each point xi is then mapped
to a corresponding point y(xi;W) in data space, which forms the centre of a Gaussian density
function, as illustrated in Figure 2. From (2) and (4) we see that the distribution function in data
space then takes the form

p(t|W, β) =
1

K

K∑

i=1

p(t|xi,W, β) (5)

and the log likelihood function becomes

L(W, β) =

N∑

n=1

ln

{
1

K

K∑

i=1

p(tn|xi,W, β)

}
. (6)

For the particular noise model p(t|x,W, β) given by (1), the distribution p(t|W, β) corresponds
to a constrained Gaussian mixture model (Hinton, Williams, and Revow 1992) since the centres
of the Gaussians, given by y(xi;W), cannot move independently but are related through the
function y(x;W). Note that, provided the mapping function y(x;W) is smooth and continuous,
the projected points y(xi;W) will necessarily have a topographic ordering in the sense that any
two points xA and xB which are close in latent space will map to points y(xA;W) and y(xB ;W)
which are close in data space.

2.1 The EM Algorithm

If we now choose a particular parametrized form for y(x;W) which is a differentiable function of
W (for example, a feed-forward network with sigmoidal hidden units) then we can use standard
techniques for non-linear optimization, such as conjugate gradients or quasi-Newton methods, to
find a weight matrix W∗, and an inverse variance β∗, which maximize L(W, β).

4

Figure 6.31: Left: The non-linear function x(y;w) defines a manifold S embedded in data space
given by the image of the latent-variable space under the mapping y −→ x. Right: The dis-
tribution p(y) is a superposition of delta function which are located on nodes of a regular grid.
The delta functions are mapped to Gaussians in the observation space. Figures from Bishop et al.
[1998].

6.6 The Generative Topographic Mapping

6.6.1 The Method

The generative topographic mapping (GTM) Bishop et al. [1998] is a non-linear latent variable
model where the parameters are found by maximizing the likelihood by the expectation maximiza-
tion algorithm. GTM is an alternative to SOMs and overcomes the disadvantages of SOMs as a
generative model.

Factor analysis as a generative model is a linear transformation from the latent space (the factor
space) to the space of observations. GTM is similar to factor analysis as is also maps from the
latent space to the observations space. In contrast to factor analysis, the mapping is nonlinear.

Latent variables y ∈ Rl are mapped to observations x ∈ Rm with m > l (see Fig. 6.31).
A distribution p(y) is defined on the latent-variable space in order to construct a distribution
p(x | w) in the observation space. The mapped data points x live in an l-dimensional manifold
in the m-dimensional space. Thus, probability masses would vanish in the m-dimensional space.
Therefore a Gaussian ball in the m-dimensional space around each mapped data point is defined:

p(t | y,w, β) =

(
β

2π

)m/2
exp−β

2
‖x(y,w) − t‖2 . (6.26)

The distribution in the m-dimensional space is obtained by integrating over all x that con-
tribute to a density at t:

p(t | w, β) =

∫
p(t | x,w, β) p(x) dx . (6.27)

For data points {t1, . . . , tn}, the log likelihood is

logL =

n∑

i=1

ln p(ti | w, β) . (6.28)
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Figure 4: Results from a toy problem involving data (‘◦’) generated from a 1-dimensional curve
embedded in 2 dimensions, together with the projected latent points (‘+’) and their
Gaussian noise distributions (filled circles). The initial configuration, determined by
principal component analysis, is shown on the left, and the converged configuration,
obtained after 15 iterations of EM, is shown on the right.

and the data set consists of 1000 points drawn with equal probability from the 3 configurations.
We take the latent-variable space to be two-dimensional, since our goal is data visualization.

Figure 5 shows the oil data visualized in the latent-variable space in which, for each data point,
we have plotted the posterior mean vector. Each point has then been labelled according to its
multi-phase configuration. For comparison, Figure 5 also shows the corresponding results obtained
using principal component analysis.

4 Relation to the Self-Organizing Map

Since one motivation for GTM is to provide a principled alternative to the self-organizing map, it
is useful to consider the precise relationship between GTM and SOM. We focus our attention on
the batch versions of both algorithms as this helps to make the relationship particularly clear.

The batch version of the SOM algorithm (Kohonen 1995) can be described as follows. A set of K
reference vectors zi is defined in the data space, in which each vector is associated with a node on
a regular lattice in a (typically) two-dimensional ‘feature map’ (analogous to the latent space of
GTM). The algorithm begins by initializing the reference vectors (for example by setting them to
random values, by setting them equal to a random subset of the data points, or by using principal
component analysis). Each cycle of the algorithm then proceeds as follows. For every data vector
tn the corresponding ‘winning node’ j(n) is identified, corresponding to the reference vector zj

having the smallest Euclidean distance ‖zj − tn‖2 to tn. The reference vectors are then updated
by setting them equal to weighted averages of the data points given by

zi =

∑
n hij(n)tn∑
n hij(n)

. (21)

in which hij is a neighbourhood function associated with the ith node. This is generally chosen to
be a uni-modal function of the feature map coordinates centred on the winning node, for example
a Gaussian. The steps of identifying the winning nodes and updating the reference vectors are

9

Figure 6.32: Example for GTM. Results from a toy problem involving data (“o”) generated from
a 1-dimensional curve embedded in 2 dimensions, together with the projected latent points (“+”)
and their Gaussian noise distributions (filled circles). The initial configuration, determined by
principal component analysis, is shown on the left, and the converged configuration, obtained
after 15 iterations of EM, is shown on the right. Figure from Bishop et al. [1998].

The distribution p(y) of the latent variables is a sum of delta functions located at the nodes of
a regular grid in latent space:

p(y) =
1

L

L∑

j=1

δ(y − yj) . (6.29)

It follows that

p(t | w, β) =
1

L

L∑

j=1

p(t | yj ,w, β) , (6.30)

which is a kernel density estimate or constraint Gaussian mixture model in the m-dimensional
space but with the centers mapped from an l-dimensional space.

6.6.2 Examples

There is an R package gtm but it was moved out of CRAN and is no longer supported. It is still in
the CRAN archive http://cran.at.r-project.org/contrib/main/Archive/gtm/.

http://cran.at.r-project.org/contrib/main/Archive/gtm/
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6.7 t-Distributed Stochastic Neighbor Embedding

6.7.1 The Method

t-distributed stochastic neighbor embedding (t-SNE) vanderMaaten and Hinton [2008] models
each high-dimensional observations by a two- or three-dimensional representation in such a way
that similar observations are represented by nearby projections and dissimilar observations are
represented by distant representations. Again the neighborhood relation should be preserved.

For stochastic neighbor embedding (SNE) the similarity of data point xj to data point xi is the
conditional probability, pj|i, that xi would pick xj as its neighbor. Neighbors are picked in propor-
tion to their probability density under a Gaussian centered at xi. For observations {x1, . . . ,xn},
we obtain

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
. (6.31)

For the low-dimensional projections yi and yj of the observations xi and xj , a similar conditional
probability is computed and denoted by qj|i:

qj|i =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yi − yk‖2)

, (6.32)

where the variance is 1/
√

2 and qi|i = 0.

The objective is the Kullback-Leibler divergence between the distribution P and the distribu-
tion Q:

KL(P ||Q) =
∑

i 6=j
pij log

pij
qij

. (6.33)

The objective is minimized by gradient descent.

The objective for the SNE approach is difficult to optimize and a problem called “crowding
problem” appears. To illustrate the “crowding problem”, in ten dimensions, it is possible to have
11 data points that are mutually equidistant but there is no way to model this faithfully in a two-
dimensional map. The “crowding problem” is that the area of the two-dimensional map that is
available to accommodate moderately distant data points will not be nearly large enough compared
with the area available to accommodate nearby data points in the observation space. Hence, if we
want to model the small distances accurately in the map, most of the points that are at a moderate
distance from data point i will have to be placed much too far away in the two-dimensional map.

These problems motivated the development of t-distributed stochastic neighbor embedding,
which has two differences to SNE:

the objective of the SNE is symmetrized which results in simpler gradients,

the objective uses Student’s t-distribution which is a heavy-tailed distribution. The heavy-
tails reduce the crowding problem and simplify the optimization problem.
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The symmetry is achieved by setting

pij =
pj|i + pi|j

2n
(6.34)

and using these values in the objective.

Using the Student’s t-distribution, we obtain

qij =
(1 + ‖yi − yj‖2)−1

∑
k 6=l(1 + ‖yk − yl))−1

. (6.35)

Optimization is still performed via gradient descent.

6.7.2 Examples

Fig. 6.33 shows visualizations of 6,000 handwritten digits from the MNIST data set. t-SNE is
compared to Sammon’s mapping, Isomap, and LLE. Fig. 6.34 shows visualizations of faces ob-
tained from the Olivetti data base. Again, t-SNE is compared to Sammon’s mapping, Isomap,
and LLE. Fig. 6.35 shows visualizations of the COIL-20 data set by t-SNE, Sammon’s mapping,
Isomap, and LLE.

We revisit the iris data set. Fig. 6.36 shows visualizations of the iris data set by t-SNE. As
comparison the down-projection onto two dimensions by PCA is again given in Fig. 6.37.

Finally we apply t-SNE to the multiple tissue data set. We selected the 101 features with
largest variance and then called t-SNE and plotted the result. Fig. 6.38 shows the t-SNE down-
projection with perplexity=50 and Fig. 6.39 with perplexity=30. The results are not as good
as with other methods because the observations are not located on a 2-dimensional manifold.
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(a) Visualization by t-SNE.

 

 

(b) Visualization by Sammon mapping.

Figure 2: Visualizations of 6,000 handwritten digits from the MNIST data set.
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VISUALIZING DATA USING T-SNE

 

 

(c) Visualization by Isomap.

 

 

(d) Visualization by LLE.

Figure 3: Visualizations of 6,000 handwritten digits from the MNIST data set.

2591
Figure 6.33: Visualizations of 6,000 handwritten digits from the MNIST data set by t-SNE. Figure
from vanderMaaten and Hinton [2008].
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VAN DER MAATEN AND HINTON

 

 

(a) Visualization by t-SNE.

 

 

(b) Visualization by Sammon mapping.

 

 

(c) Visualization by Isomap.

 

 

(d) Visualization by LLE.

Figure 4: Visualizations of the Olivetti faces data set.

structure of the data. The map constructed by Sammon mapping is significantly better, since it
models many of the members of each class fairly close together, but none of the classes are clearly
separated in the Sammon map. In contrast, t-SNE does a much better job of revealing the natural
classes in the data. Some individuals have their ten images split into two clusters, usually because a
subset of the images have the head facing in a significantly different direction, or because they have
a very different expression or glasses. For these individuals, it is not clear that their ten images form
a natural class when using Euclidean distance in pixel space.

Figure 5 shows the results of applying t-SNE, Sammon mapping, Isomap, and LLE to the COIL-
20 data set. For many of the 20 objects, t-SNE accurately represents the one-dimensional manifold
of viewpoints as a closed loop. For objects which look similar from the front and the back, t-SNE
distorts the loop so that the images of front and back are mapped to nearby points. For the four
types of toy car in the COIL-20 data set (the four aligned “sausages” in the bottom-left of the t-
SNE map), the four rotation manifolds are aligned by the orientation of the cars to capture the high

2592

Figure 6.34: Visualizations of the Olivetti faces data set by t-SNE. Figure from vanderMaaten and
Hinton [2008].
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VISUALIZING DATA USING T-SNE

 

 

(a) Visualization by t-SNE.

 

 

(b) Visualization by Sammon mapping.

 

 

(c) Visualization by Isomap.

 

 

(d) Visualization by LLE.

Figure 5: Visualizations of the COIL-20 data set.

similarity between different cars at the same orientation. This prevents t-SNE from keeping the
four manifolds clearly separate. Figure 5 also reveals that the other three techniques are not nearly
as good at cleanly separating the manifolds that correspond to very different objects. In addition,
Isomap and LLE only visualize a small number of classes from the COIL-20 data set, because the
data set comprises a large number of widely separated submanifolds that give rise to small connected
components in the neighborhood graph.

5. Applying t-SNE to Large Data Sets

Like many other visualization techniques, t-SNE has a computational and memory complexity that
is quadratic in the number of datapoints. This makes it infeasible to apply the standard version of
t-SNE to data sets that contain many more than, say, 10,000 points. Obviously, it is possible to
pick a random subset of the datapoints and display them using t-SNE, but such an approach fails to

2593

Figure 6.35: Visualizations of the COIL-20 data set. Figure from vanderMaaten and Hinton
[2008].
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Figure 6.36: Down-projection of the iris data set to two dimensions by t-SNE.
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Figure 6.37: Down-projection of the iris data set to two dimensions by PCA.
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Figure 6.38: Down-projection of the multiple tissue data onto a two-dimensional space by t-SNE.
We selected the 101 features with largest variance and set perplexity to 50.
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Figure 6.39: Down-projection of the multiple tissue data onto a two-dimensional space by t-SNE.
We selected the 101 features with largest variance and set perplexity to 30.
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6.8 Self-Organizing Maps

6.8.1 The Method

A method which is similar to multidimensional scaling is the Self-Organizing Map (SOM) also
called Kohonen map Kohonen [1982, 1988, 1990, 1995b], Ritter et al. [1992, 1991], Obermayer
et al. [1992], Erwin et al. [1992]. SOMs comprise two objectives: clustering (see next subsection)
and down-projecting. Data points x ∈ Rm are clustered and down-projected to points y ∈ Rl
with m > l. The y are clustered onto finite many yk.

For SOMs the objective function cannot always be expressed as a single scalar function like
an energy or an error function. Scalar objectives are important to derive learning algorithms based
on optimizing this function and to compare solutions. The objective of SOMs is a scalar function
for discrete input spaces and for discrete neighborhood functions otherwise the objective function
must be expressed as a vector valued potential function Kohonen [1995b], Cottrell et al. [1995],
Ritter et al. [1992, 1991], Erwin et al. [1992]. The lack of a scalar objective function is one of
the major drawbacks of SOMs, because models cannot be compared, overfitting not detected, and
stopping of training is difficult to determine, and the quality of the solution is hard to assess.

In most applications, the yk equidistantly fill a hypercube in Rl. For each yk there exists an
associatedwk ∈ Rm representing the cluster center in the data space. Thesewk are the parameters
of the SOM.

The goal now is to find cluster centers wk (parameters) such that for data points x, which
are neighbors in Rm, their projections y are also neighbors in Rl. The goal is to down-project
but preserve the neighborhood relation which gave these methods also the name “topologically
ordered maps” (TOMs).

The learning can be done on-line, that is each new data point x leads to an update of the wk.
The update rule is

k = arg max
s

xTws (6.36)

(wt)
new = wt + η δ (‖yt − yk|‖) (x − wt) , (6.37)

where η is the learning rate which also depends on the iteration number and is annealed and δ is
the “window function” which is largest for yt = yk and is decreasing with the distance to yk.

SOMs have serious disadvantages Kohonen [1995b], Bishop et al. [1998]:

the absence of a cost function

the lack of a theoretical basis for choosing learning rate parameter schedules and neighbor-
hood parameters to ensure topographic ordering

the absence of any general proofs of convergence

the fact that the model does not define a probability density.

These problems can all be traced back to the heuristic origins of the SOM algorithm.
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1 00,000 1 5 0,000

Figure 6.40: Self-organizing map example of a one-dimensional representation of a two-
dimensional space. Copyright c© 2001 John Wiley & Sons, Inc.

100 1000 10,000 2 5 ,000 5 0,000

7 5 ,000 100,000 15 0,000 2 00,000 3 00,000

Figure 6.41: Self-organizing map example for mapping from a square data space to a square (grid)
representation space. Copyright c© 2001 John Wiley & Sons, Inc.

6.8.2 Examples

We show some examples of self-organizing maps. Fig. 6.40 shows a self-organizing map example
of a one-dimensional representation of a two-dimensional space. A self-organizing map example
for mapping from a square data space to a square (grid) representation space is given in Fig. 6.41.
Fig. 6.42 shows the example of Fig. 6.41 but with different initialization. Kinks in the map do not
vanish even if more patterns are presented – that is a local minimum. Fig. 6.43 again shows the
example of Fig. 6.41 but with a non-uniformly sampling: the density at the center was higher than
at the border.
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0 1000 25000 400000

Figure 6.42: Self-organizing map example from Fig. 6.41 but with different initialization. Kinks
in the map do not vanish even if more patterns are presented – that is a local minimum. Copyright
c© 2001 John Wiley & Sons, Inc.

0 1000 400,000 800,000

Figure 6.43: Self-organizing map example from Fig. 6.41 but with a non-uniformly sampling: the
density at the center was higher than at the border. Copyright c© 2001 John Wiley & Sons, Inc.



Chapter 7

Clustering

One of the best known and most popular unsupervised learning techniques is clustering. “Clusters”
in the data are regions where observations group together or, in other words, regions of high
data density. Often these clusters are observations which stem from one “prototype” via noise
perturbations. The prototype may represent a certain situation in the real world which is repeated
but has slightly different environments or is measured with noise, so that, the feature values for
this situation differ for each occurrence.

Clustering extracts structures in the data and can identify new data classes which were un-
known so far. An important application of clustering is data visualization, where in some cases
both down-projection and clustering are combined, e.g. as for self-organizing maps which were
previously considered. If observations are represented by their prototypes then clustering is a data
compression method called “vector quantization”.

7.1 Mixture Models

7.1.1 The Method

Since clusters are regions of high data density, density estimators which locally assign a com-
ponent can be used for clustering. A component represents a cluster. Component j out of l
components has parameters like location µj and width or shape Σj . For every mixture model the
component j has a weight wj that gives the local probability mass. A well known example is the
mixtures of Gaussians (MoG) model Pearson [1894], Hasselblad [1966], Duda and Hart [1973].

In a generative model frameworkwj is the probability p(j) of choosing component j, the value
θj gives the parameters of the local component j, which has density p(x | j,θj). If we summarize
all parameters θj and w in the parameter vector θ, then we obtain the generative model

p(x | θ) =

l∑

j=1

p(j) p(x | j,θj) . (7.1)

For clustering, Bayes’ formula can be used:

p(j | x,θ) =
p(x | j,θj) p(j)

p(x | θ)
. (7.2)

145
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Observation x is assigned to the component j with largest posterior p(j | x,θ).

Before an observation was seen, each component or cluster has the prior probability p(j) =
wj that a data point is drawn from it. After observing data x some clusters may be more or
less probable of having produced x, therefore the prior probability p(j) changes to the posterior
p(j | x). The posterior tells how likely x was produced by cluster j.

Mixture models can contain other components than Gaussian distributions. For example, Pois-
son components were successfully used to estimate copy numbers in next generation sequencing
data Klambauer et al. [2012]. Another application of mixture models was a mixture of nega-
tive binomials in order to estimate differential expressed transcripts in next generation sequencing
without knowing the conditions and without having replicates Klambauer et al. [2013].

The log-likelihood is

lnL =
n∑

i=1

ln p(xi | θ) . (7.3)

The derivative of the log-likelihood is with respect to θj , the parameters of component j, is:

∂

∂θj
lnL =

n∑

i=1

1

p(xi | θ)

l∑

k=1

p(k)
∂

∂θj
p(xi | k,θk) = (7.4)

n∑

i=1

p(j | xi,θj)
∂

∂θj
ln p(xi | j,θj) ,

where we used Bayes’ formula

p(j | xi,θj) =
p(xi | j,θj) p(j)

p(xi | θ)
. (7.5)

The derivative of the log-likelihood of the model with respect to the parameters of the j-th
component is the posterior expectation of component j of the derivative of the log-likelihood of
component j.

7.1.2 Mixture of Gaussians

We will now consider mixture of Gaussian (MoG), where θj = (µj ,Σj) and

p(xi | j,θj) = p(xi | j,µj ,Σj) ∼ N (µj , Σj) . (7.6)

The model is

p(x | θ) =

l∑

j=1

wj N (µj , Σj) (7.7)

l∑

j=1

wj = 1 (7.8)

wj ≥ 0 (7.9)

N (µj , Σj) (x) = (2π)−m/2 |Σj |−1/2 exp

(
−1

2
(x − µj)

T Σ−1
j (x − µj)

)
. (7.10)
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Exponential distributions like Gaussians are convenient because in Eq. (7.4) the logarithm
inverts the exponential function:

ln p(x | j,µj ,Σj) = (7.11)

− m

2
ln (2π) − 1

2
ln |Σj | −

1

2
(x − µj)

T Σ−1
j (x − µj)

which gives for the derivatives

∂

∂µj
ln p(x | j,µj ,Σj) = Σ−1

j (x − µj) (7.12)

∂

∂Σj
ln p(x | j,µj ,Σj) = (7.13)

1

2

(
ΣT
j

)−1
+

1

2
Σ−Tj (x − µj) (x − µj)

T Σ−Tj .

Here also the EM-algorithm can be used where the hidden parameters p(j | xi,µj ,Σj) must
be estimated to evaluate Eq. (7.4).

The EM-algorithm is

E-step: (7.14)

p(j | xi,µj ,Σj) =
wj N (µj , Σj) (xi)∑l
t=1wt N (µt , Σt) (xi)

M-step: (7.15)

wnew
j =

1

n

n∑

i=1

p(j | xi,µj ,Σj)

µnew
j =

∑n
i=1 p(j | xi,µj ,Σj) xi∑n
i=1 p(j | xi,µj ,Σj)

(7.16)

Σnew
j =

∑n
i=1 p(j | xi,µj ,Σj) (xi − µj) (xi − µj)

T

∑n
i=1 p(j | xi,µj ,Σj)

. (7.17)

In order to avoid too small variances and near zero eigenvalues of Σj the mixture of Gaussian
can be optimized by a maximum a posterior approach.

A proper prior for the covariance Σ is the Wishart densityW(Σ−1 | α,Ψ), a proper prior for
the weighting factors wj is a Dirichlet density D(w | γ), and a proper prior for the mean values µ
is a Gaussian N

(
µ | ν, η−1Σ

)
:

W(Σ−1 | α,Ψ) = c(α,Ψ)
∣∣Σ−1

∣∣α−(m+1)/2
exp

(
−tr

(
Ψ Σ−1

))
(7.18)

D(w | γ) = c(γ)
l∏

j=1

wγ−1
j (7.19)

N
(
µ | ν, η−1Σ

)
= (7.20)

(2π)−m/2
∣∣η−1 Σj

∣∣−1/2
exp

(
−η

2
(µ − ν)T Σ−1

j (µ − ν)
)
,
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where α > (m− 1)/2 and c(γ) as well as c(α,Ψ) are normalizing constants. The operator “tr” is
the trace operator.

The expectation-maximization algorithm is now

E-step: (7.21)

p(j | xi,µj ,Σj) =
wj N (µj , Σj) (xi)∑l
t=1wt N (µt , Σt) (xi)

M-step: (7.22)

wnew
j =

∑n
i=1 p(j | xi,µj ,Σj) + γ − 1

n + l (γ − 1)

µnew
j =

∑n
i=1 p(j | xi,µj ,Σj) xi + η νj∑n

i=1 p(j | xi,µj ,Σj) + η
(7.23)

Σnew
j =

(
n∑

i=1

p(j | xi,µj ,Σj) (xi − µj) (xi − µj)
T + (7.24)

η (νj − µj) (νj − µj)
T + 2 Ψ

)

(
n∑

i=1

p(j | xi,µj ,Σj) + 2 α −m
)−1

.

Above formulas are obtained as follows: Since

l∑

j=1

wnew
j = 1 (7.25)

we obtain as Lagrangian for the constrained optimization problem for the wj

L =
n∑

i=1

l∑

j=1

p(j | xi,µj ,Σj) lnwnew
j + lnD(w | γ) − λ




l∑

j=1

wnew
j − 1


 . (7.26)

Setting the derivative to zero:

∂L

∂wj
=

n∑

i=1

p(j | xi,µj ,Σj)
(
wnew
j

)−1
+ (γ − 1)

(
wnew
j

)−1 − λ = 0 (7.27)

n∑

i=1

p(j | xi,µj ,Σj) + (γ − 1) = λ wnew
j

Summing over j gives

n∑

i=1

l∑

j=1

p(j | xi,µj ,Σj) + l (γ − 1) = λ

l∑

j=1

wnew
j (7.28)

n + l (γ − 1) = λ (7.29)



7.1. Mixture Models 149

We obtain

wnew
j =

∑n
i=1 p(j | xi,µj ,Σj) + (γ − 1)

n + l (γ − 1)
(7.30)

For the other parameters we do not have constraints. The gradient of the log-posterior L with
respect to µj contains the log-likelihood and the log-prior:

∂L

∂µj
=

n∑

i=1

p(j | xi,µj ,Σj) Σ−1
j (xi − µj) + (7.31)

η Σ−1
j (νj − µj) = 0 .

For the gradient with respect to Σj a trick is applied: the gradient is taken with respect to Σ−1
j

which also must be zero at the minimum, because

∂L

∂Σj
=

∂L

∂Σ−1
j

∂Σ−1
j

∂Σj
= − Σ−2

j

∂L

∂Σ−1
j

(7.32)

and the variables Σ−1
j fully represent the variables Σj .

We obtain

∂L

∂Σ−1
j

= (7.33)

1

2

n∑

i=1

p(j | xi,µj ,Σj)
(
Σj − (xi − µj) (xi − µj)

T
)

+

1

2

(
Σj − η (νj − µj) (νj − µj)

T
)

+

Σj (α − (m + 1)/2) − Ψ = 0 ,

where we used

∂ ln |U |
∂U

= U−1 (7.34)

for U = Σ−1
j .

Note that each component can have a prior so that we would obtain νj , ηj , αj , Ψj , and γj .
The update formulas would be similar as above.

Default values for the hyperparameters are

α =
m

2
(7.35)

Ψ =
1

2
I OR Ψ =

1

2
covar(x) (7.36)

γ = 1 (7.37)

η = 0 (7.38)

νj = mean(x) (7.39)



150 Chapter 7. Clustering

A prior on the mean values µ is in most cases not useful except a preferred region is known.

The posterior p(j | xi,µj ,Σj) can be used for clustering: xi belongs to the cluster j for
which the posterior is largest.

But also soft clustering is possible: p(j | xi,µj ,Σj) gives the graded or fuzzy membership of
xi to the cluster j.

7.1.3 Mixture of Poissons

We assume to have count data x and obtain the mixture of Poissons model with wj = p(j) as:

p(x) =
l∑

j=1

wj P(x;λj) . (7.40)

In this model P is the probability mass function (not a density since we have discrete data) of the
Poisson distribution:

P(x;λ) =
1

x!
e−λ λx . (7.41)

In a Bayes framework for model selection, w = (w1, . . . , wl) and λ = (λ1, . . . , λl) are con-
sidered as random variables, thus, p(x) in Eq. (7.40) becomes a conditional probability p(x |
w,λ). The EM algorithm minimizes an upper bound on the negative log-posterior of the parame-
ters. The parameter posterior of w and λ is given by:

p(w,λ | x) =
p(x | w,λ) p(w) p(λ)∫

p(x | w,λ) p(w) p(λ) dw dλ
, (7.42)

where we assumed that the priors on w and λ are independent of each other.

We use a Dirichlet prior with parameters γ:

p(w) = D(wl;γ) = b(γ)
l∏

j=1

w
γj−1
j , (7.43)

where wl is the n-dimensional vector (w2, . . . , wl) while w1 is obtained via w1 = 1−∑l
j=2wj .

Each component wj is distributed according to a beta distribution with mean

mean(wj) =
γj
γs
, (7.44)

mode

mode(wj) =
γj − 1

γs − l
, (7.45)

and variance

var(wj) =
γj (γs − γj)
γ2
s (γs + 1)

, (7.46)
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where we set

γs =
l∑

j=1

γi . (7.47)

For the prior on λ we assume that it factorizes into priors for components λj . For each com-
ponent we use an uniform distribution on a sufficiently large interval (0, 1/t] with left endpoint 0
and right endpoint 1/t. Thus, the density in (0, 1/t] is

p(λj) = t . (7.48)

According to Eq. (7.42), the posterior of the model parameters is

p(w,λ | x) =
p(x | w,λ) p(w) p(λ)∫

p(x | w,λ) p(w) p(λ) dw dλ
(7.49)

=
p(x | w,λ) p(w)∫

p(x | w, λ) p(w) dw dλ

=
1

c(x)
p(x | w,λ) p(w) ,

where c(x) is independent of the parameters w and λ.

For deriving an upper bound on the log posterior needed by the EM algorithm, we deduce the
following inequality for one sample x by introducing variables ŵj with

∑l
j=1 ŵj = 1:

− log p(w,λ | x) = − log (p(x | w,λ) p(w) / c(x)) (7.50)

= − log

l∑

j=1

wj P(x;λj) − log p(w) + log(c(x))

= − log

l∑

j=1

ŵj
ŵj

wj P(x;λj) − log p(w) + log(c(x))

≤ −
l∑

j=1

ŵj log
wj P(x;λj)

ŵj
− log p(w) + log(c(x))

= −
l∑

j=1

ŵj log (wj P(x;λj)) − log p(w)

+

l∑

j=1

ŵj log ŵj + log(c(x)) ,

where we applied Jensen’s inequality. Note that c(x) is independent of w and that for

ŵj = p(j | x,w,λ) =
wj P(x;λj)

p(x | w,λ)
(7.51)

we have in the fifth line of Eq. (7.50)

log
wj P(x;λj)

ŵj
= log p(x | w,λ) , (7.52)



152 Chapter 7. Clustering

thus the inequality Eq. (7.50) becomes an equality.

We assume that the data set {x1, . . . , xn} of the counts is given, where the i-th count is denoted
by xi. The posterior that xi is drawn from the j-th mixture component is

wji = p(j | xi,w,λ) =
p(j) p(xi | j,w,λ)

p(xi | w,λ)
=

wj P(xi;λj)

p(xi | w,λ)
, (7.53)

where wj is the prior of being drawn from the j-th mixture component.

We introduce for each xi variables ŵji with
∑l

j=1 ŵji = 1 which estimate p(j | w, xi,λ) (see
Eq. (7.51)). ŵji are is formally independent of the parameters w and λ. For the E-step of the EM
algorithm, we estimate the posterior wji by

ŵji =
wold
j P(xi;λ

old
j )

p(xi;wold,λold)
, (7.54)

where for the estimation the actual parameters wold and λold are used instead of the optimal
parameters w and λ in the expression for the posterior in Eq. (7.53).

Based on inequality Eq. (7.50) but with ŵji instead of ŵj , we define an upper bound B on the
1
n scaled negative log-posterior for all samples as

B = − 1

n

n∑

i=1

l∑

j=1

ŵji log (wj P(x;λj)) −
1

n
log p(w) (7.55)

+
1

n

n∑

i=1

l∑

j=1

ŵji log ŵji +
1

n

n∑

i=1

log c(xi) ,

where we summed over all terms depending on xi. Note, that according to Eq. (7.51) and
Eq. (7.52) an exact estimate in the E-step Eq. (7.54) (using the optimal parameters w and λ)
make inequality Eq. (7.50) to an equality, thus the upper bound B would be equal to the negative
log posterior.

In the M-step, we minimize the upper bound B on the negative log posterior with respect to w
under the constraint that the wj sum to 1. Only terms depending on w are considered:

min
w
− 1

n

n∑

i=1

l∑

j=1

ŵji logwj −
1

n
log p(w) (7.56)

s.t.
l∑

j=1

wj = 1 .
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The Lagrangian with Lagrange parameter ρ is

L = − 1

n

n∑

i=1

l∑

j=1

ŵji logwj −
1

n
log p(w) (7.57)

+ ρ




l∑

j=1

wj − 1




= − 1

n

n∑

i=1

l∑

j=1

ŵji logwj −
1

n

l∑

j=1

(γj − 1) logwj

+ ρ




l∑

j=1

wj − 1


 .

The solution requires that, the derivative of L with respect to wj is zero:

∂L

∂wj
= − 1

n

n∑

i=1

ŵji
1

wj
− 1

n

1

wj
(γj − 1) + ρ = 0 . (7.58)

Multiplying this equation by wj gives

− 1

n

n∑

i=1

ŵji −
1

n
(γj − 1) + ρ wj = 0 . (7.59)

Summation over j leads to

1 +
1

n
(γs − l) = ρ . (7.60)

Inserting this expression for ρ in Eq. (7.59) results in

− 1

n

n∑

i=1

ŵji −
1

n
(γj − 1) +

(
1 +

1

n
(γs − l)

)
wj = 0 . (7.61)

Solving Eq. (7.61) for wj gives the update rule for wj :

wnew
j =

ŵj + 1
n (γj − 1)

1 + 1
n (γs − l)

, (7.62)

where we used

ŵj =
1

n

n∑

i=1

ŵji . (7.63)



154 Chapter 7. Clustering

We introduced ŵj which sums up the ŵji and thereby approximates wj . This approximation
is justified because wj can be decomposed into wji:

wj = p(j) = p(j | w,λ) =

∫
p(j, x | w,λ) dx (7.64)

=

∫
p(j | x,w,λ) p(x | w,λ) dx = Ep(x|w,λ)(p(j | x,w,λ))

≈ 1

n

n∑

i=1

p(j | xi,w,λ) =
1

n

n∑

i=1

wji = ŵj .

In the M-step, B need not only be minimized with respect to w but also with respect to λj
(only terms depending on λj are considered):

min
λj


− 1

n

n∑

i=1

l∑

j=1

ŵji log P(x;λj)


 . (7.65)

For the minimum, the derivative of the above objective with respect to λj must be zero. Using

log P(xi;λj) = − log(xi!) − λj + xi log(λj) , (7.66)

this derivative is

− 1

n

n∑

i=1

(
− 1 +

xi
λj

)
ŵji . (7.67)

Multiplying Eq. (7.67) by λj and solving it for λj gives the update rule:

λnew
j =

∑n
i=1 xi ŵji∑n
i=1 ŵji

. (7.68)

The update rules can be summarized as follows:

ŵji =
wold
j P(xi;λ

old
j )

p(xi | wold,λold)
, (7.69)

wnew
j =

1
n

∑n
i=1 ŵji + 1

n(γj − 1)

1 + 1
n(γs − l)

, (7.70)

λnew
j =

1
n

∑n
i=1 ŵji xi

1
n

∑n
i=1 ŵji

. (7.71)

Concerning the EM algorithm the update rule Eq. (7.69) is the E-step, the update rule Eq. (7.70)
is the M-step for w, and the update rule Eq. (7.70) is the M-step for λ.

The update rule Eq. (7.70) can be obtained in an alternative way. The Dirichlet distribution
is conjugate to the multinomial distribution, that is the posterior p(w | {w1, . . . ,wi, . . . ,wn}) is
a Dirichlet distribution as is the prior p(w) with wi = p(w | xi). The Dirichlet prior p(w) =
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D(w1;γ) with parameters γ leads to the conjugate posterior p(w | {w1, . . . ,wi, . . . ,wn}) with
parameters

γ̂ = γ +

n∑

i=1

wi = γ + N w , (7.72)

where we used Eq. (7.64). We obtain update rule Eq. (7.70) from Eq. (7.72) component-wise by
first replacing the unknown values wji by their estimates ŵji and then computing the posterior’s
mode because we search for the maximum posterior.

7.1.4 Examples

In the following we will show examples for the mixtures of Gaussians. Fig. 7.1 shows a mixture of
Gaussians example on toy data. The results presented in the panels in Fig. 7.1 differ in the way the
initialization of the MoG model was done. “em” is a two-step procedure: first several EM runs are
performed with high tolerance, which leads to fast but not very precise solutions. Subsequently, a
run is started with low tolerance, that is the run which will give a precise solution. “rnd” samples
some random initializations and picks the best solution for a long EM run. “svd” utilizes singular
value decomposition to find a good initialization for the EM algorithm.

For the clustering we can impose different constraints on the parameters, especially the covari-
ance matrix. “Spherical” means that the covariance matrix is a multiple of the identity. Diagonal
means that the clusters are elongated along the axis but may have different variance. Volume
means the weighting factor wj or, equivalently, the priors p(j), which can be all equal or have
different values. Some constraints are:

univariate mixture:
"E" = equal variance (one-dimensional)
"V" = variable variance (one-dimensional)
multivariate mixture:
"EII" = spherical, equal volume
"VII" = spherical, unequal volume
"EEI" = diagonal, equal volume and shape
"VEI" = diagonal, varying volume, equal shape
"EVI" = diagonal, equal volume, varying shape
"VVI" = diagonal, varying volume and shape
"EEE" = ellipsoidal, equal volume, shape, and orientation
"EEV" = ellipsoidal, equal volume and equal shape
"VEV" = ellipsoidal, equal shape
"VVV" = ellipsoidal, varying volume, shape, and orientation
single component:
"X" = univariate normal
"XII" = spherical multivariate normal
"XXI" = diagonal multivariate normal
"XXX" = elliposidal multivariate normal

Fig. 7.2 shows the results of mixture of Gaussians with 3 components applied to the iris data
set. The upper left panel shows the true clusters (the species). The other panels show the result
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Figure 7.1: Mixture of Gaussians example on toy data from the R package EMCluster. The
panels differ in the way the initialization of the MoG model was done. The ellipsoid Gaussians
are depicted in the figures.
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Figure 7.2: Mixture of Gaussians with 3 components applied to Iris data. The upper left panel
shows the true clusters (the species). The other panels show the result of mixture of Gaussians
with different constraints on the parameters.

of mixture of Gaussians with different constraints on the parameters. The constraints enforce
“spherical, unequal volume”, “diagonal, equal volume, varying shape”, “diagonal, varying volume
and shape”, “ellipsoidal, equal volume and equal shape”, and “ellipsoidal, varying volume, shape,
and orientation”. The latter does not impose constraints on the mixture of Gaussians model. The
results differ only slightly. Fig. 7.3 shows the results of mixture of Gaussians with 6 components
applied to the iris data set.

Fig. 7.4 shows the results of mixture of Gaussians with 3 and 4 components applied to the mul-
tiple tissues data set. The 76 genes with largest variance are filtered before applying the mixture of
Gaussian model. The upper left panel shows the true clusters (the tissues). The other panels show
the result of Mixture of Gaussians with two different constraints, “spherical, unequal volume” and
“diagonal, equal volume, varying shape”, and different number of components. Fig. 7.5 shows
the results of mixture of Gaussians with different number of components applied to the multiple
tissues data set. The upper left panel shows the true clusters (the tissues). The other panels show
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Figure 7.3: Mixture of Gaussians with 6 components applied to Iris data. The upper left panel
shows the true clusters (the species). The other panels show the result of mixture of Gaussians
with different constraints on the parameters.
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Figure 7.4: Mixture of Gaussians applied to multiple tissues with 3 and 4 components. 76 genes
with largest variance are filtered.

the result of mixture of Gaussians with spherical components which may have unequal volume.
We tested 3 to 7 components.
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Figure 7.5: Mixture of Gaussians applied to multiple tissues with different number of components.
The components are spherical but may have unequal volume.
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7.2 k-Means Clustering

7.2.1 The Method

Probably the best known clustering algorithm is k-means clustering Forgy [1965], Hartigan [1972,
1975], Hartigan and Wong [1979]. k-means assumes k clusters but we denote the number of
clusters by l to keep the notation that we used for other methods.

If we simplify the model of mixture clustering, then we obtain k-means clustering. The sim-
plifications are:

equal weight (equal volume) for each component: wj = 1
l ,

spherical and equal (between components) covariance Σ−1
j = I ,

hard (discrete) cluster membership (a sample belongs to a cluster or not).

The only remaining parameters are the cluster centers.

For the cluster memberships we used p(j | xi,µj ,Σj) in Eq. (7.2). This value is determined
by the weight wj of the j-th component and the distance (xi − µj)

T Σ−1
j (xi − µj) of xi to

the mean µj . The simplification sets wj = 1
l and Σ−1

j = I . Thus, xi belongs to the cluster
j with the closest center µj , i.e. the smallest Euclidean distance ‖xi − µj‖ to xi. The third
simplification was hard cluster membership, therefore, we obtain:

p(j | xi,µj) =

{
1 if j = cxi = arg mink ‖xi − µk‖
0 otherwise

. (7.73)

The M-step in Appendix 7.1.2 in Eq. (7.15) becomes (only the centers are updated):

µnew
j =

1

nj

n∑

i=1, j=cxi

xi (7.74)

nj =
n∑

i=1

p(j | xi,µj ,Σj) =
n∑

i=1, j=cxi

1 , (7.75)

where nj is the number of data points assigned to cluster j.

Therefore µnew
j is the mean of the data points assigned to cluster j. The k-means clustering

algorithm is given in Alg. 7.1.

The k-means clustering:

fast,

robust to outliers (covariance),

simple (can be an advantage or a disadvantage),

prone to the initialization.
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Algorithm 7.1 k-means

Given: data {x} = (x1,x2, . . . ,xn), number of clusters l

BEGIN initialization
initialize the cluster centers µj , 1 ≤ j ≤ l

END initialization

BEGIN Iteration

Stop=false
while Stop=false do

for (i = 1 ; i ≥ n ; i+ +) do
assign xi to the nearest µj

end for
for (j = 1 ; j ≥ l ; j + +) do

µnew
j =

1

nj

n∑

i=1, j=cxi

xi

end for
if stop criterion fulfilled then

Stop=true
end if

end while
END Iteration
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For example, consider an initialization which places one center near several outliers which are
separated from the rest of the data points. The other data points have other cluster centers closer
to them. Then this outlier cluster will remain in each iteration at the outliers even if other cluster
are not modeled. This behavior can be serious in high dimensions.

The membership can be made continuous by using a softmax function. Let us again assume
wj = 1

l and Σ−1
j = I . But now we use a continuous estimate of p(j | xi,µj ,Σj) = p(j |

xi,µj), where the distances do not have an exponential decay as in Eq. (7.14).

We define the softmax membership with parameter b as

pb(j | xi,µj) =
‖xi − µj‖−2/(b−1)

∑l
k=1 ‖xi − µk‖−2/(b−1)

. (7.76)

and obtain

µnew
j =

∑n
i=1 p

b(j | xi,µj) xi∑n
i=1 p

b(j | xi,µj)
. (7.77)

The objective, which is minimized, is

l∑

j=1

n∑

i=1

pb(j | xi,µj) xi ‖xi − µj‖2 . (7.78)

This algorithm is called fuzzy k-means clustering and described in Alg. 7.2.

7.2.2 Examples

We demonstrate k-means on an artificial data set in two dimensions with five clusters. Fig. 7.6
shows the result of k-means with k = 5 where an optimal solution is found. Filled circles mark
the cluster centers. Local minima are shown in Fig. 7.7 and Fig. 7.8. In both cases one cluster
explains two true clusters while one true cluster is divided into two model clusters. Fig. 7.9 shows
a local minimum, where three model clusters share one true cluster.

We apply k-means with k = 8 to the five cluster data set. In this case the number of model
clusters does not match the number of true clusters. Therefore the solution will always be worse
than the optimal solution with the correct number of clusters. Fig. 7.10 shows a solution where
three true clusters are shared by pairs of model clusters. Fig. 7.11 shows a solution where one true
cluster is shared by 3 model clusters and another by 2 model clusters. This solution is very typical
and another example is presented in Fig. 7.12. Fig. 7.13 shows a solution where a true cluster is
shared by four model clusters. The remaining true clusters are correctly explained by one model
cluster.
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Algorithm 7.2 Fuzzy k-means

Given: data {x} = (x1,x2, . . . ,xn), number of clusters l, parameter b

BEGIN initialization
initialize the cluster centersµj , 1 ≤ j ≤ l, andwj(xi) = p(j | xi,µj) so that

∑l
j=1wj(xi) =

1, wj(xi) ≥ 0.
END initialization

BEGIN Iteration

Stop=false
while Stop=false do

µnew
j =

∑n
i=1wj(xi) xi∑n
i=1wj(xi)

wj(xi) =
‖xi − µj‖−2/(b−1)

∑l
k=1 ‖xi − µk‖−2/(b−1)

if stop criterion fulfilled then
Stop=true

end if
end while

END Iteration
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Figure 7.6: k-means clustering of the five cluster data set with k = 5 where filled circles mark the
cluster centers. An optimal solution is found.
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Figure 7.7: k-means clustering of the five cluster data set with k = 5 where filled circles mark the
cluster centers. A local minimum is found.
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Figure 7.8: k-means clustering of the five cluster data set with k = 5 where filled circles mark the
cluster centers. A local minimum is found.
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Figure 7.9: k-means clustering of the five cluster data set with k = 5 where filled circles mark the
cluster centers. A local minimum is found where three model cluster share one true cluster.
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Figure 7.10: k-means clustering of the five cluster data set with k = 8 where filled circles mark
the cluster centers. True clusters are shared by pairs of model clusters.
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Figure 7.11: k-means clustering of the five cluster data set with k = 8. Typical case where one
true cluster is shared by 3 model clusters and another by 2 model clusters.
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Figure 7.12: k-means clustering of the five cluster data set with k = 8. Another example of the
situation like Fig. 7.11.
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Figure 7.13: k-means clustering of the five cluster data set with k = 8. A true cluster is shared by
four model clusters.
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Figure 7.14: Down-projection of the iris data set to two dimensions by PCA. The true classes are
marked by colors.

We apply k-means to the Iris data set. To remind the reader, the down-projection onto two
dimensions by PCA is again given in Fig. 7.14, where the true classes are marked by colors.
Fig. 7.15 shows a typical solution of k-means applied to the Iris data set. The solution is quite
good, only at the border assignments are made wrong. Fig. 7.16 gives another typical solution
of k-means for the Iris data set. This solution is not good as two components share a cluster.
Important question is whether the quality of these solutions can be distinguished if the true classes
are not known.
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Figure 7.15: k-means clustering of the Iris data set. The first typical solution where filled circles
are cluster centers. The solution is quite good, only at the border assignments are made wrong.
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Figure 7.16: k-means clustering of the Iris data set. The second typical solution where filled
circles are cluster centers. This solution is not good as two components share a cluster.
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Figure 7.17: Down-projection of the multiple tissue data set to two dimensions by PCA. The true
classes are marked by colors.

We apply k-means to the multiple tissues data set. To remind the reader, the down-projection
onto two dimensions by PCA is again given in Fig. 7.17, where the true classes are marked by
colors. For the down-projection the 101 features with the largest variance are used. k-means
is applied to the full data set. Fig. 7.18 shows the typical solution of k-means applied to the
multiple tissues data set. This solution appears in almost all cases. The classes are almost perfectly
identified. Fig. 7.19 gives another solution of k-means for the multiple tissues data set. This
solution is not as good as the solution in Fig. 7.18. Another suboptimal solution is shown in
Fig. 7.20.
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Figure 7.18: k-means clustering of the multiple tissue data set with k = 4. Filled circles are cluster
centers. This is the solution found in almost all initializations. The classes are almost perfectly
identified.
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Figure 7.19: k-means clustering of the Iris data set with k = 4. This solution is not as good as the
typical solution from Fig. 7.18.
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Figure 7.20: k-means clustering of the Iris data set with k = 4. Again, this solution is not as good
as the typical solution from Fig. 7.18.
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Figure 7.21: Example of hierarchical clustering of animal species where the result is given as a
dendrogram (corresponding tree).

7.3 Hierarchical Clustering

7.3.1 The Method

So far we did not consider distances and structures between the clusters. Distances between clus-
ters help to evaluate the clustering result and single clusters. In particular it would help to decide
whether clusters should be merged or not. Hierarchical clustering supplies distances between
clusters which are captured in a dendrogram. Fig. 7.21 depicts a dendrogram as the result of
hierarchical clustering. Hierarchical clustering can be performed

agglomerative, that is, bottom up, where the clustering starts with all clusters having a single
observations and then clusters are merged until only one cluster remains

divisive, that is, top down, where the clustering starts with one cluster and clusters are split
until only clusters with a single observation remain.

In Bioinformatics the method “Unweighted Pair Group Method using arithmetic Averages”
(UPGMA) applies hierarchical clustering in order to construct a phylogenetic tree. In machine
learning the UPGMA method is called agglomerative hierarchical clustering, where the closest
clusters are merged to give a new cluster. Agglomerative hierarchical clustering is initialized by
clusters that consist of a single observation. Then clusters are iteratively merged until only one
cluster remains.

Agglomerative hierarchical clustering can be used with different distance measures between
clusters A and B:

dmin(A,B) = mina∈A,b∈B ‖a − b‖ (single linkage)
dmax(A,B) = maxa∈A,b∈B ‖a − b‖ (complete linkage)
davg(A,B) = 1

nA nB

∑
a∈A

∑
b∈B ‖a − b‖ (average linkage)

dmean(A,B) = ‖ā − b̄‖ (average linkage)

, (7.79)
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where nA (nB) is the number of elements in A (B) and ā (b̄) is the mean of cluster A (B). For the
element distance ‖.‖ any distance measure is possible like the Euclidean distance, the Manhattan
distance, or the Mahalanobis distance.

For clusters with a single element these distance measures are equivalent, however for clusters
with more than one element there is a difference.

complete linkage dmax avoids that clusters are elongated in some direction, that is, the small-
est distance between points may remains small. This means that the cluster may not be well
separated.

single linkage dmin ensures that each pair of elements, where one is from one cluster and the
other is from another cluster, has a minimal distance. The result of single linkage guarantees
that after a cut of the hierarchical clustering tree, the distance between clusters has a minimal
value. In machine learning single linkage clustering is relevant for leave-one-cluster-out
cross-validation. Leave-one-cluster-out cross-validation assumes that a whole new group of
objects is unknown and left out. Therefore in the training set there is no object that is similar
to a test set object. Leave-one-cluster-out cross-validation is known from protein structure
prediction.

average linkage davg is the “Unweighted Pair Group Method using arithmetic Averages”
(UPGMA) method.

Instead of starting with clusters containing a single object bottom up clustering can start top
down, that is, starting with a single cluster containing all objects. Such divisive or top down
clustering methods are based on graph theoretic considerations. First the minimal spanning tree is
built. Then the largest edge is removed which gives two clusters. Now the second largest edge can
be removed and so on. It might be more appropriate to compute the average edge length within a
cluster and find the edge which is considerably larger than other edges in the cluster. This means
long edges are selected locally as an edge that does not fit to the cluster structure and not globally.
At node level, the edge of each node can be determined which is considerably larger than other
edges of this node. The inconsistent (considerably larger) edges can be removed stepwise and new
clusters are produced.

7.3.2 Examples

We perform hierarchical clustering on the US Arrest data set. This data set contains statistics, in
arrests per 100,000 residents, for assault, murder, and rape in each of the 50 US states in 1973.
Also given is the percent of the population living in urban areas.

A data consists of 50 observations with 4 features / variables:

Murder: Murder arrests (per 100,000),

Assault: Assault arrests (per 100,000),

UrbanPop: Percent urban population,

Rape: Rape arrests (per 100,000).
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Figure 7.22: Hierarchical clustering of the US Arrest data set using Ward’s minimal variance
which gives compact, spherical clusters.

We test the distance measures “ward”, “single”, “complete”, “average”, “mcquitty”, “me-
dian”, and “centroid”. Fig. 7.22 shows the results agglomerative hierarchical clustering using
Ward’s minimal variance as distance which gives compact, spherical clusters. Fig. 7.23 shows the
results for single linkage which gives similar clusters with a minimal distance. Fig. 7.24 shows
the results for complete linkage (minimal spanning tree) which is a “friends of friends” clustering.
Fig. 7.25 shows the results for average linkage, which corresponds to UPGMA in bioinformatics
(distance between averages of cluster elements). Fig. 7.26 shows the results for the McQuitty dis-
tance. Fig. 7.27 shows the results for median distance which is not a monotone distance measure.
Fig. 7.28 shows the results for centroid distance which is also not a monotone distance measure.
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Figure 7.23: Hierarchical clustering of the US Arrest data set using single linkage which gives
similar clusters with a minimal distance.



184 Chapter 7. Clustering

F
lo

rid
a

N
or

th
 C

ar
ol

in
a

D
el

aw
ar

e
A

la
ba

m
a

Lo
ui

si
an

a
A

la
sk

a
M

is
si

ss
ip

pi
S

ou
th

 C
ar

ol
in

a
M

ar
yl

an
d

A
riz

on
a

N
ew

 M
ex

ic
o

C
al

ifo
rn

ia
Ill

in
oi

s
N

ew
 Y

or
k

M
ic

hi
ga

n
N

ev
ad

a
M

is
so

ur
i

A
rk

an
sa

s
Te

nn
es

se
e

G
eo

rg
ia

C
ol

or
ad

o
Te

xa
s

R
ho

de
 Is

la
nd

W
yo

m
in

g
O

re
go

n
O

kl
ah

om
a

V
irg

in
ia

W
as

hi
ng

to
n

M
as

sa
ch

us
et

ts
N

ew
 J

er
se

y
O

hi
o

U
ta

h
C

on
ne

ct
ic

ut
P

en
ns

yl
va

ni
a

N
eb

ra
sk

a
K

en
tu

ck
y

M
on

ta
na

Id
ah

o
In

di
an

a
K

an
sa

s
H

aw
ai

i
M

in
ne

so
ta

W
is

co
ns

in
Io

w
a

N
ew

 H
am

ps
hi

re
W

es
t V

irg
in

ia
M

ai
ne

S
ou

th
 D

ak
ot

a
N

or
th

 D
ak

ot
a

V
er

m
on

t

0
50

10
0

15
0

20
0

25
0

30
0

Hierarchical Clustering US Arrests: complete

hclust (*, "complete")
dist(USArrests)

H
ei

gh
t

Figure 7.24: Hierarchical clustering of the US Arrest data set using complete linkage (minimal
spanning tree) which is a “friends of friends” clustering.
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Figure 7.25: Hierarchical clustering of the US Arrest data set using average linkage.
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Figure 7.26: Hierarchical clustering of the US Arrest data set using McQuitty’s distance.
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Figure 7.29: Hierarchical clustering of the five cluster data set. With all distance measures the
optimal solution is found.

Next we apply hierarchical clustering to the five cluster data set. Fig. 7.29 shows the result
for Ward’s distance which is perfect. The results do not change if other distance measures than
Ward’s are used.

We apply hierarchical clustering to the iris data set. Fig. 7.30 shows the results for the distance
measures Ward, average linkage, complete linkage, and single linkage for 3 and 5 components.
Ward with 3 components performs well and average linkage with 3 components is worse. How-
ever, hierarchical clustering has problems to separate the close iris species. For 5 components
either equal large cluster or small clusters are separated. Ward divides true clusters in equal large
clusters while other methods separate small clusters. Single linkage separates out clusters with
large distances to other clusters which do not reflect the true clusters.

Next we apply hierarchical clustering to the multiple tissue data set. Fig. 7.31 shows the results
for the distance measures Ward, average linkage, complete linkage, and single linkage for 4 and
6 components. Ward with 4 components performs well. Again the correct number of clusters is
essential to obtain good clustering results.
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Figure 7.30: Hierarchical clustering of the iris data set. Ward with 3 components performs well
and average linkage with 3 components is worse. For 5 components either equal large cluster or
small clusters are separated.
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Figure 7.31: Hierarchical clustering of the multiple tissues data set. Ward with 4 components
performs well. If correct number of cluster is known, the performance is better than with wrong
number of clusters.
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7.4 Similarity-Based Clustering

So far the distances which are required for clustering are computed from the representation of
the objects by features. The feature vectors are embedded in a vector space in which distances
between the vectors can be computed like the Euclidean distance, the Manhattan distance, or the
Mahalanobis distance. However, many data sets are given by similarities between objects. The
similarities may be links in the web domain, interactions of humans (facebook), co-occurrences of
objects (co-expression of genes or co-citations), spacial distances between objects (cities on a map
or atoms in a molecule), or co-processing (compressing two documents or sorting two sets). In
bioinformatics a very prominent examples are the alignment of two sequences and the structural
alignment of two proteins. Clustering, which only uses the similarities between objects but does
not require to represent the objects via feature vectors, is called similarity-based clustering.

7.4.1 Aspect Model

Our first model, the aspect model Hofmann and Puzicha [1999], Hofmann et al. [1999], considers
discrete data, where observations are pairs (x, y) taht are counted. That means the number of
occurrences of x together with y are counted. Such data appear if relations like “person x buys
product y” or “person x participates in y” are counted. Applications are found in information
retrieval by document-word relations or in bioinformatics by sample-gene relations.

The aspect model assumes the model

p(x, y) =
∑

z

p(z) p(x | z) p(y | z) , (7.80)

where z ∈ {z1, . . . , zl} is the class variable and p(x, y) is the probability of the observation (x, y).
The underlying assumption is that x and y are independent conditioned on z:

p(x, y) =
∑

z

p(x, y, z) =
∑

z

p(z) p(x, y | z) =
∑

z

p(z) p(x | z) p(y | z) . (7.81)

p(x | z) and p(y | z) are the class conditional probabilities and p(z) is the class prior probability.
Therefore, observation (x, y) is observed more or less often than expected by random because
a hidden factor z has an effect on the occurrence of both x and y. We already mentioned John
Paulos’ example in ABCNews.com:

“Consumption of hot chocolate is correlated with low crime rate, but both are re-
sponses to cold weather.”

Here x is “Consumption of hot chocolate”, y is “crime rate”, and z is “cold weather”.

The maximum likelihood model parameters p(x | z) and p(y | z) can be estimated by an EM
algorithm. The E-step is

p(z | x, y) =
p(z) p(x | z) p(y | z)∑
z′ p(z

′) p(x | z′) p(y | z′) (7.82)
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and the M-step is

p(z) =
∑

x,y

n(x, y) p(z | x, y) (7.83)

p(y | z) =

∑
x n(x, y) p(z | x, y)

p(z)
(7.84)

p(x | z) =

∑
y n(x, y) p(z | x, y)

p(z)
, (7.85)

where n(x, y) is the number of observations (x, y). n(x, y) is the entry in the data matrix located
at the row of x and the column of y. For the updates only the counts n(x, y) are required, therefore,
we view the aspect model as similarity-based clustering.

Clustering of the x can be based on

p(z | x) =
p(x | z) p(z)

p(x)
, (7.86)

p(x) =
∑

z,y

p(z) p(x | z) p(y | z) . (7.87)

z indicates the cluster, that is, each z represents one cluster. Analog formulas are obtained for
clustering y or pairs (x, y).

7.4.2 Affinity Propagation

7.4.2.1 The Method

Mixture clustering and k-means cluster continuous data such that cluster members are similar
to the cluster center. If the cluster centers are actual data points, they are called “prototypes”
or “exemplars”. Clustering that enforces cluster centers to be data points is called exemplar-
based clustering. A popular technique of exemplar-based clustering is the k-centers clustering
MacQueen [1967]. It starts with an initial set of randomly selected exemplars and iteratively
refines this set so as to decrease the sum of squared errors. However k-centers is only applicable
for a small number of clusters where the chances are high that a good initialization leads to a good
solution.

A method that overcomes the problems of k-centers and showed good performance in different
applications is Affinity propagation Frey and Dueck [2006, 2007], Givoni and Frey [2009]. Affinity
propagation is both a similarity-based and an exemplar-based clustering method. The similarities
between object i and object k are given by s(i, k). The values s(k, k) are called “preferences” and
used to determine how likely object k becomes an exemplar. The larger s(k, k), the more likely
object k becomes an exemplar.

The values r(i, k) are called “responsibilities” which are messages sent from object i to can-
didate exemplar k. The responsibility reflects the evidence that k serves as an exemplar for i. In
other words, how well can k represent the object i. The responsibility takes into account how
well other candidate exemplars can represent object i (competition between candidate exemplars).
Here i summarizes the environment for better exemplars.
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The values a(i, k) are called “availabilities” which are messages sent from candidate exemplar
k to object i. The availability reflects the evidence that k is indeed an exemplar. The availability
a(i, k) takes into account how many objects are already represented by candidate exemplar k and
what is the input preference of k.

The affinity propagation algorithm starts with initializing:

a(i, k) = 0 . (7.88)

The responsibilities are updated using

r(i, k) = s(i, k) − max
k′,k′ 6=k

{a(i, k′) + s(i, k′)} . (7.89)

The availabilities are updated using

a(i, k) = min



0 , r(k, k) +

∑

i′,i′ 6∈{i,k}

max{0 , r(i′, k)}



 (7.90)

a(k, k) =
∑

i′,i′ 6=k
max{0 , r(i′, k)} . (7.91)

a(k, k) is the evidence that k is an exemplar based on the positive responsibilities sent from objects
i.

Fig. 7.32 shows how affinity propagation sends messages. Fig. 7.33 shows the specific mes-
sages which are passed on in the algorithm of affinity propagation.

For more detail on affinity propagation, see the homepage http://www.psi.toronto.edu/
index.php?q=affinity%20propagation. To apply affinity propagation to your own data, it is
convenient to use the R package APCluster which contains useful visualizations and extensions
Bodenhofer et al. [2011].

http://www.psi.toronto.edu/index.php?q=affinity%20propagation
http://www.psi.toronto.edu/index.php?q=affinity%20propagation
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incoming positive responsibilities, the total
sum is thresholded so that it cannot go above
zero. The “self-availability” a(k,k) is updated
differently:

aðk,kÞ ←
X

i′ s:t: i′≠k

maxf0,rði′,kÞg ð3Þ

This message reflects accumulated evidence that
point k is an exemplar, based on the positive
responsibilities sent to candidate exemplar k
from other points.

The above update rules require only simple,
local computations that are easily implemented
(2), and messages need only be exchanged be-
tween pairs of points with known similarities.
At any point during affinity propagation, avail-
abilities and responsibilities can be combined to
identify exemplars. For point i, the value of k
that maximizes a(i,k) + r(i,k) either identifies
point i as an exemplar if k = i, or identifies the

data point that is the exemplar for point i. The
message-passing procedure may be terminated
after a fixed number of iterations, after changes
in the messages fall below a threshold, or after
the local decisions stay constant for some num-
ber of iterations. When updating the messages,
it is important that they be damped to avoid
numerical oscillations that arise in some cir-
cumstances. Each message is set to l times its
value from the previous iteration plus 1 – l
times its prescribed updated value, where
the damping factor l is between 0 and 1. In
all of our experiments (3), we used a default
damping factor of l = 0.5, and each iteration
of affinity propagation consisted of (i) up-
dating all responsibilities given the availabil-
ities, (ii) updating all availabilities given the
responsibilities, and (iii) combining availabil-
ities and responsibilities to monitor the ex-
emplar decisions and terminate the algorithm

when these decisions did not change for 10
iterations.

Figure 1A shows the dynamics of affinity
propagation applied to 25 two-dimensional data
points (3), using negative squared error as the
similarity. One advantage of affinity propagation
is that the number of exemplars need not be
specified beforehand. Instead, the appropriate
number of exemplars emerges from the message-
passing method and depends on the input ex-
emplar preferences. This enables automatic
model selection, based on a prior specification
of how preferable each point is as an exemplar.
Figure 1D shows the effect of the value of the
common input preference on the number of
clusters. This relation is nearly identical to the
relation found by exactly minimizing the squared
error (2).

We next studied the problem of clustering
images of faces using the standard optimiza-

Fig. 1. How affinity propagation works.
(A) Affinity propagation is illustrated for
two-dimensional data points, where nega-
tive Euclidean distance (squared error) was
used to measure similarity. Each point is
colored according to the current evidence
that it is a cluster center (exemplar). The
darkness of the arrow directed from point i
to point k corresponds to the strength of
the transmitted message that point i
belongs to exemplar point k. (B) “Respon-
sibilities” r(i,k) are sent from data points to
candidate exemplars and indicate how
strongly each data point favors the candi-
date exemplar over other candidate exem-
plars. (C) “Availabilities” a(i,k) are sent
from candidate exemplars to data points
and indicate to what degree each candidate exemplar is available as a cluster center for the data point. (D) The effect of the value of the input preference
(common for all data points) on the number of identified exemplars (number of clusters) is shown. The value that was used in (A) is also shown, which was
computed from the median of the pairwise similarities.
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Figure 7.32: Affinity propagation is illustrated for two-dimensional data points, where negative
Euclidean distance (squared error) was used to measure similarity. Each point is colored according
to the current evidence that it is a cluster center (exemplar). The darkness of the arrow directed
from point i to point k corresponds to the strength of the transmitted message that point i belongs
to exemplar point k. Figure from Frey and Dueck [2007].

incoming positive responsibilities, the total
sum is thresholded so that it cannot go above
zero. The “self-availability” a(k,k) is updated
differently:

aðk,kÞ ←
X

i′ s:t: i′≠k

maxf0,rði′,kÞg ð3Þ

This message reflects accumulated evidence that
point k is an exemplar, based on the positive
responsibilities sent to candidate exemplar k
from other points.

The above update rules require only simple,
local computations that are easily implemented
(2), and messages need only be exchanged be-
tween pairs of points with known similarities.
At any point during affinity propagation, avail-
abilities and responsibilities can be combined to
identify exemplars. For point i, the value of k
that maximizes a(i,k) + r(i,k) either identifies
point i as an exemplar if k = i, or identifies the

data point that is the exemplar for point i. The
message-passing procedure may be terminated
after a fixed number of iterations, after changes
in the messages fall below a threshold, or after
the local decisions stay constant for some num-
ber of iterations. When updating the messages,
it is important that they be damped to avoid
numerical oscillations that arise in some cir-
cumstances. Each message is set to l times its
value from the previous iteration plus 1 – l
times its prescribed updated value, where
the damping factor l is between 0 and 1. In
all of our experiments (3), we used a default
damping factor of l = 0.5, and each iteration
of affinity propagation consisted of (i) up-
dating all responsibilities given the availabil-
ities, (ii) updating all availabilities given the
responsibilities, and (iii) combining availabil-
ities and responsibilities to monitor the ex-
emplar decisions and terminate the algorithm

when these decisions did not change for 10
iterations.

Figure 1A shows the dynamics of affinity
propagation applied to 25 two-dimensional data
points (3), using negative squared error as the
similarity. One advantage of affinity propagation
is that the number of exemplars need not be
specified beforehand. Instead, the appropriate
number of exemplars emerges from the message-
passing method and depends on the input ex-
emplar preferences. This enables automatic
model selection, based on a prior specification
of how preferable each point is as an exemplar.
Figure 1D shows the effect of the value of the
common input preference on the number of
clusters. This relation is nearly identical to the
relation found by exactly minimizing the squared
error (2).

We next studied the problem of clustering
images of faces using the standard optimiza-

Fig. 1. How affinity propagation works.
(A) Affinity propagation is illustrated for
two-dimensional data points, where nega-
tive Euclidean distance (squared error) was
used to measure similarity. Each point is
colored according to the current evidence
that it is a cluster center (exemplar). The
darkness of the arrow directed from point i
to point k corresponds to the strength of
the transmitted message that point i
belongs to exemplar point k. (B) “Respon-
sibilities” r(i,k) are sent from data points to
candidate exemplars and indicate how
strongly each data point favors the candi-
date exemplar over other candidate exem-
plars. (C) “Availabilities” a(i,k) are sent
from candidate exemplars to data points
and indicate to what degree each candidate exemplar is available as a cluster center for the data point. (D) The effect of the value of the input preference
(common for all data points) on the number of identified exemplars (number of clusters) is shown. The value that was used in (A) is also shown, which was
computed from the median of the pairwise similarities.
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Figure 7.33: Left: “Responsibilities” r(i, k) are sent from data points to candidate exemplars
and indicate how strongly each data point favors the candidate exemplar over other candidate
exemplars. Right: “Availabilities” a(i, k) are sent from candidate exemplars to data points and
indicate to what degree each candidate exemplar is available as a cluster center for the data point.
Figure from Frey and Dueck [2007].
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tion criterion of squared error. We used both
affinity propagation and k-centers clustering to
identify exemplars among 900 grayscale images
extracted from the Olivetti face database (3).
Affinity propagation found exemplars with
much lower squared error than the best of 100
runs of k-centers clustering (Fig. 2A), which
took about the same amount of computer time.
We asked whether a huge number of random
restarts of k-centers clustering could achieve the
same squared error. Figure 2B shows the error
achieved by one run of affinity propagation and
the distribution of errors achieved by 10,000
runs of k-centers clustering, plotted against the
number of clusters. Affinity propagation uni-
formly achieved much lower error in more than
two orders of magnitude less time. Another pop-
ular optimization criterion is the sum of ab-
solute pixel differences (which better tolerates
outlying pixel intensities), so we repeated the
above procedure using this error measure. Affin-
ity propagation again uniformly achieved lower
error (Fig. 2C).

Many tasks require the identification of ex-
emplars among sparsely related data, i.e., where
most similarities are either unknown or large
and negative. To examine affinity propagation in

this context, we addressed the task of clustering
putative exons to find genes, using the sparse
similarity matrix derived from microarray data
and reported in (4). In that work, 75,066 seg-
ments of DNA (60 bases long) corresponding to
putative exons were mined from the genome of
mouse chromosome 1. Their transcription levels
were measured across 12 tissue samples, and the
similarity between every pair of putative exons
(data points) was computed. The measure of
similarity between putative exons was based on
their proximity in the genome and the degree of
coordination of their transcription levels across
the 12 tissues. To account for putative exons
that are not exons (e.g., introns), we included an
additional artificial exemplar and determined the
similarity of each other data point to this “non-
exon exemplar” using statistics taken over the
entire data set. The resulting 75,067 × 75,067
similarity matrix (3) consisted of 99.73% sim-
ilarities with values of −∞, corresponding to
distant DNA segments that could not possibly
be part of the same gene. We applied affinity
propagation to this similarity matrix, but be-
cause messages need not be exchanged between
point i and k if s(i,k) = −∞, each iteration of
affinity propagation required exchanging mes-

sages between only a tiny subset (0.27% or 15
million) of data point pairs.

Figure 3A illustrates the identification of
gene clusters and the assignment of some data
points to the nonexon exemplar. The recon-
struction errors for affinity propagation and k-
centers clustering are compared in Fig. 3B.
For each number of clusters, affinity propa-
gation was run once and took 6 min, whereas
k-centers clustering was run 10,000 times and
took 208 hours. To address the question of how
well these methods perform in detecting bona
fide gene segments, Fig. 3C plots the true-
positive (TP) rate against the false-positive (FP)
rate, using the labels provided in the RefSeq
database (5). Affinity propagation achieved sig-
nificantly higher TP rates, especially at low
FP rates, which are most important to biolo-
gists. At a FP rate of 3%, affinity propagation
achieved a TP rate of 39%, whereas the best
k-centers clustering result was 17%. For com-
parison, at the same FP rate, the best TP rate
for hierarchical agglomerative clustering (2)
was 19%, and the engineering tool described
in (4), which accounts for additional bio-
logical knowledge, achieved a TP rate of 43%.

Affinity propagation’s ability to operate on the
basis of nonstandard optimization criteria makes
it suitable for exploratory data analysis using
unusual measures of similarity. Unlike metric-
space clustering techniques such as k-means
clustering (1), affinity propagation can be ap-
plied to problems where the data do not lie in a
continuous space. Indeed, it can be applied to
problems where the similarities are not symmet-
ric [i.e., s(i,k) ≠ s(k,i)] and to problems where the
similarities do not satisfy the triangle inequality
[i.e., s(i,k) < s(i, j) + s( j,k)]. To identify a small
number of sentences in a draft of this manuscript
that summarize other sentences, we treated each
sentence as a “bag of words” (6) and computed
the similarity of sentence i to sentence k based on
the cost of encoding the words in sentence i using
the words in sentence k. We found that 97% of
the resulting similarities (2, 3) were not symmet-
ric. The preferences were adjusted to identify
(using l = 0.8) different numbers of representa-
tive exemplar sentences (2), and the solution with
four sentences is shown in Fig. 4A.

We also applied affinity propagation to ex-
plore the problem of identifying a restricted
number of Canadian and American cities that
are most easily accessible by large subsets of
other cities, in terms of estimated commercial
airline travel time. Each data point was a city,
and the similarity s(i,k) was set to the negative
time it takes to travel from city i to city k by
airline, including estimated stopover delays (3).
Due to headwinds, the transit time was in many
cases different depending on the direction of
travel, so that 36% of the similarities were
asymmetric. Further, for 97% of city pairs i
and k, there was a third city j such that the
triangle inequality was violated, because the
trip from i to k included a long stopover delay

Fig. 2. Clustering faces. Exemplars minimizing the standard squared error measure of similarity were
identified from 900 normalized face images (3). For a common preference of −600, affinity
propagation found 62 clusters, and the average squared error was 108. For comparison, the best of
100 runs of k-centers clustering with different random initializations achieved a worse average
squared error of 119. (A) The 15 images with highest squared error under either affinity propagation
or k-centers clustering are shown in the top row. The middle and bottom rows show the exemplars
assigned by the two methods, and the boxes show which of the two methods performed better for that
image, in terms of squared error. Affinity propagation found higher-quality exemplars. (B) The
average squared error achieved by a single run of affinity propagation and 10,000 runs of k-centers
clustering, versus the number of clusters. The colored bands show different percentiles of squared
error, and the number of exemplars corresponding to the result from (A) is indicated. (C) The above
procedure was repeated using the sum of absolute errors as the measure of similarity, which is also a
popular optimization criterion.

16 FEBRUARY 2007 VOL 315 SCIENCE www.sciencemag.org974

REPORTS

 o
n 

F
eb

ru
ar

y 
15

, 2
00

7 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

Figure 7.34: Affinity propagation: faces. The 15 images with highest squared error under either
affinity propagation or k-centers clustering are shown in the top row. The middle and bottom
rows show the exemplars assigned by the two methods, and the boxes show which of the two
methods performed better for that image, in terms of squared error. Affinity propagation found
higher-quality exemplars. Figure from Frey and Dueck [2007].

7.4.2.2 Examples

Fig. 7.34 shows an example of affinity propagation with faces. Fig. 7.35 shows results of affinity
propagation at identifying key sentences and and at air-travel routing. Fig. 7.36 shows another
example of affinity propagation applied to face images.
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linear program with a constant factor approxima-
tion. There, the input was assumed to be metric,
i.e., nonnegative, symmetric, and satisfying the
triangle inequality. In contrast, affinity propagation
can take as input general nonmetric similarities.
Affinity propagation also provides a conceptually
new approach that works well in practice. Where-
as the linear programming relaxation is hard to
solve and sophisticated software packages need to

be applied (e.g., CPLEX), affinity propagation
makes use of intuitive message updates that can
be implemented in a few lines of code (2).

Affinity propagation is related in spirit to tech-
niques recently used to obtain record-breaking
results in quite different disciplines (16). The ap-
proach of recursively propagating messages
(17) in a “loopy graph” has been used to ap-
proach Shannon’s limit in error-correcting de-

coding (18, 19), solve random satisfiability
problems with an order-of-magnitude increase in
size (20), solve instances of the NP-hard two-
dimensional phase-unwrapping problem (21), and
efficiently estimate depth from pairs of stereo
images (22). Yet, to our knowledge, affinity prop-
agation is the first method to make use of this idea
to solve the age-old, fundamental problem of
clustering data. Because of its simplicity, general
applicability, and performance, we believe affin-
ity propagation will prove to be of broad value in
science and engineering.
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Fig. 4. Identifying key sentences and air-travel routing. Affinity propagation can be used to explore
the identification of exemplars on the basis of nonstandard optimization criteria. (A) Similarities between
pairs of sentences in a draft of this manuscript were constructed by matching words. Four exemplar
sentences were identified by affinity propagation and are shown. (B) Affinity propagation was applied to
similarities derived from air-travel efficiency (measured by estimated travel time) between the 456 busiest
commercial airports in Canada and the United States—the travel times for both direct flights (shown in
blue) and indirect flights (not shown), including the mean transfer time of up to a maximum of one
stopover, were used as negative similarities (3). (C) Seven exemplars identified by affinity propagation are
color-coded, and the assignments of other cities to these exemplars is shown. Cities located quite near to
exemplar cities may be members of other more distant exemplars due to the lack of direct flights between
them (e.g., Atlantic City is 100 km from Philadelphia, but is closer in flight time to Atlanta). (D) The inset
shows that the Canada-USA border roughly divides the Toronto and Philadelphia clusters, due to a larger
availability of domestic flights compared to international flights. However, this is not the case on the west
coast as shown in (E), because extraordinarily frequent airline service between Vancouver and Seattle
connects Canadian cities in the northwest to Seattle.
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Figure 7.35: Affinity propagation for identifying key sentences and air-travel routing. (A) Similar-
ities between pairs of sentences in a draft of this manuscript were constructed by matching words.
Four identified exemplar sentences are shown. (B) Affinity propagation was applied to similari-
ties derived from air-travel efficiency (estimated travel time) between the 456 busiest commercial
airports in Canada and the United States. (C) Seven exemplars identified by affinity propagation
are color-coded, and the assignments of other cities to these exemplars is shown. Cities located
quite near to exemplar cities may be members of other more distant exemplars due to the lack of
direct flights between them. (D) The inset shows that the Canada-USA border roughly divides the
Toronto and Philadelphia clusters, due to a larger availability of domestic flights vs. international
flights. The west coast is shown in (E), where extraordinarily frequent airline service between
Vancouver and Seattle connects Canadian cities in the northwest to Seattle. Figure from Frey and
Dueck [2007].
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the a priori knowledge of how good point B is

as an exemplar. In most cases all points are

equally suitable, so all the numbers take the

same value P. This quantity provides a control

parameter: The larger P, the more exemplars

one is likely to find. 

Affinity propagation is known in computer

science as a message-passing algorithm (see

the first figure) and it aims at maximizing the

net similarity. It is in fact an application of a

method called “belief propagation,” which

was invented at least twice: first in communi-

cation theory (3), where it is now at

the heart of the best error correction

procedures, and later in the study of

inference problems (4). 

Message passing can be under-

stood by taking an anthropomorphic

viewpoint. Imagine you are a data

point. You want to find an exemplar

that is the most similar to yourself, but

your choice is constrained. If you

choose some other point A as an

exemplar, then A must also decide to

be its own exemplar. This creates one

constraint per data point, establishing a large

network of constraints that must all be satis-

fied. When the net similarity is maximized

with all constraints satisfied, the set of actual

exemplars emerges.

Now imagine that next to each point stands

a guardian angel telling whether someone else

has chosen that point as an exemplar or not.

An approximate solution of the complicated

web of conflicting constraints is obtained by

having all of these characters talk to each

other. At a given time, all angels send mes-

sages to all points, and all points answer to all

angels. One data point tells the angel of every

other point his ranked list of favorite exem-

plars. An angel tells every other point the

degree of compatibility of his list with the

angel’s constraints. Every sent message is

evaluated through a simple computation on

the basis of the received messages and the

similarity matrix. After several message-pass-

ing rounds, all the characters reach an agree-

ment and every point knows its exemplar. In

practice, the running time of this algorithm

scales linearly with the number of similarities. 

As an example, affinity propagation can be

a powerful method to extract representative

faces from a gallery of images (see the second

figure). The input is a list of numerical simi-

larities between pairs of data points, which

may be measured, computed using a model,

or, in the present example, set by visual

inspection (missing similarity values indi-

cated with question marks are accepted by the

algorithm). Each face is a data point that

exchanges messages with all other faces and

their guardian angels. After a few iterations

of message passing, a global agreement is

reached on the set of exemplars.

Such message-passing methods have been

shown to be remarkably efficient in many

hard problems that include error correction,

learning in neural networks, computer vision,

and determining the satisfiability of logical

formulas. In many cases they are the best

available algorithms, and this new application

to cluster analysis looks very powerful. Under-

standing their limits is a main open challenge.

At the lowest level this means controlling the

convergence properties or the quality of the

approximate solutions that they find. A more

ambitious goal is to characterize the problems

where they can be useful. The concepts and

methods developed in statistical physics

to study collective behavior offer the most

promising perspective in this respect. In

physics terms, belief propagation (and

therefore affinity propagation) is a mean

field–type method (5). That is, the complex

interaction of a given object (a data point)

with all of the others is approximated by an

average effective interaction. Although this

works well in most cases, it may get into trou-

ble when the system gets close to a phase tran-

sition (6), where some correlations become

extremely long-ranged. The appropriate mod-

ification, which requires using more sophisti-

cated messages, has been worked out in some

special cases (7), but again its full range of

applicability is still to be found. 

Along with its pedagogical virtue, the

anthropomorphic explanation of message

passing also underlines its main features. This

Data points

?? 419
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8 1? 31

? 8? ?2

3 4? 4?

D
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Faces in a crowd. Exemplars (highlighted
by colored boxes) have been detected from
a group of faces by affinity propagation.
(Inset) A similarity matrix for a set of faces.
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Figure 7.36: Affinity propagation: faces (2). Exemplars (highlighted by colored boxes) have been
detected from a group of faces by affinity propagation. Figure from Frey and Dueck [2007].
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Figure 7.37: The x7 data set. 6 clusters are indicated by color coding of which 3 are smaller than
the other 3. Circles indicate the centers of the clusters.

To demonstrate how affinity propagation clusters observations, we create a data set with 6
clusters in a two-dimensional space. Three clusters are smaller than the other three clusters, that
is, they have a smaller variance. This data set is depicted in Fig. 7.37 where the cluster centers are
indicated by circles.

From this data set we computed similarities by the Euclidean distance. We cluster the x7
data set by affinity propagation. The result of affinity propagation is shown in Fig. 7.38. Circles
indicate the true cluster centers and black rectangles the exemplars found by affinity propagation.
The result is quite good. The two overlapping large clusters are identified. Affinity propagation
implicitely prefers spherical clusters, therefore the two large clusters are detected. Another version
of this kind of data generation is shown in Fig. 7.39 and the result of affinity propagation in
Fig. 7.40. At the upper right, a large and a small cluster are wrongly merged. AP assumes sphered
equal large clusters, therefore cannot detect the small cluster within the large cluster.

The x9 data set contains also 6 clusters of which 2 are small, 2 are medium sized, and 2 are
large with respect to the variance. Fig. 7.41 shows this data set. The result of affinity propagation
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Figure 7.38: Affinity propagation applied to the x7 data set. Circles indicate the true cluster
centers and black rectangles the exemplars found by affinity propagation. The result is quite good.
The two overlapping large clusters are identified.

is depicted in Fig. 7.42. One cluster could not be separated into the two true clusters.
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Figure 7.39: The x7A data set. 6 clusters are indicated by color coding of which 3 are smaller than
the other 3. Circles indicate the centers of the clusters.
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Figure 7.40: Affinity propagation applied to the x7A data set. Circles indicate the true cluster
centers and black rectangles the exemplars found by affinity propagation. At the upper right, a
large and a small cluster are wrongly merged. AP assumes sphered equal large clusters, therefore
cannot detect the small cluster within the large cluster.
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Figure 7.41: The x9 data set. 6 clusters are indicated by color coding of which 2 are small, 2 a
medium, and 2 are large. Circles indicate the centers of the clusters.
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Figure 7.42: Affinity propagation applied to the x9 data set. Circles indicate the true cluster
centers and black rectangles the exemplars found by affinity propagation. One cluster could not
be separated into the two true clusters.
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Figure 7.43: The d6 data set. 4 clusters in a 6-dimensional space, where one cluster is larger then
the other three clusters.

Next we test affinity propagation on a 6-dimensional data set with different cluster sizes with
respect to the variation of the elements in the clusters. We create one large cluster and three smaller
clusters. For visualization, we project the data down by PCA to visualize the data. We generated
two data sets which are depicted in Fig. 7.43 and Fig. 7.45 where the cluster centers are indicated
by circles. The result is given in Fig. 7.44 where again circles indicate the true cluster centers and
black rectangles the exemplars found by affinity propagation. Affinity propagation is not able to
detect the large cluster. Elements of the large cluster are assigned to the smaller cluster. AP has
problems with the different cluster sizes because it cannot adjust the variance. The same result for
another data set (see Fig. 7.45) can be seen in Fig. 7.46. Affinity propagation does not adjust the
variance therefore, again the data points of the large cluster are assigned to the smaller clusters.
Equally sized clusters makes affinity propagation on the one hand very robust, however on the
other hand it is AP’s weakness if different cluster sizes are present.
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Figure 7.44: Affinity propagation applied to the d6 data set. Circles indicate the true cluster
centers and black rectangles the exemplars found by affinity propagation. Affinity propagation is
not able to detect the large cluster.
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Figure 7.45: The d6A data set. Another variant of Fig. 7.43.
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Figure 7.46: Affinity propagation applied to the d6A data set. Same result as shown in Fig. 7.44:
the large cluster is not detected.
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Figure 7.47: Affinity propagation applied to the iris data set. The left panels shows the true
clusters and the right panel the clusters identified by affinity propagation. Affinity propagation
gives quite good results.

Next we apply affinity propagation to the iris data set. Fig. 7.47 shows the results of affinity
propagation. Affinity propagation gives quite good results.

Finally we applied affinity propagation to the multiple tissues data set. Fig. 7.48 shows the
result of affinity propagation with p = 0. The result is quite good. Fig. 7.49 shows the result of
affinity propagation with p = 1. Affinity propagation found too many clusters, where some cluster
have only few members and one cluster is large. Fig. 7.50 shows the result of affinity propagation
with p = −1. Only three clusters were found which cannot represent the 4 tissues. We saw that
the quality of the result of affinity propagation depends on the choice of the hyperparameter p.
Here the quality is sensitive to the choice of the hyperparameter.
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Figure 7.48: Affinity propagation applied to the multiple tissues data set with p = 0. The left
panels shows the true clusters and the right panel the clusters identified by affinity propagation.
The result is quite good.
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Figure 7.49: Affinity propagation applied to the multiple tissues data set with p = 1. The left
panels shows the true clusters and the right panel the clusters identified by affinity propagation.
Too many clusters, where some cluster have only few members and one cluster is large.
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Figure 7.50: Affinity propagation applied to the multiple tissues data set with p = −1. The left
panels shows the true clusters and the right panel the clusters identified by affinity propagation.
Only three clusters were found which cannot represent the 4 tissues.
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7.4.3 Similarity-based Mixture Models

Similarity-based mixture models are mixture models that use only similarities between objects but
not feature vectors. The similarity between object i and object j is considered as the conditional
probability p(xj | xi). This idea was already introduced in stochastic neighbor embedding (SNE),
where this was the probability that xi would pick xj as its neighbor. Another interpretation is:
the more xj is similar to xi, the less modifications are necessary to obtain xj from xi, the higher
is the probability to obtain xj (randomly) from xi. In contrast to SNE, we now assume that the
p(xj | xi) are given to allow for similarity-based clustering.

7.4.3.1 Similarity-based Mixture of Gaussians

For similarity-based clustering, we assume that for each x the similarities k(x,xi) to each element
{x1, . . . ,xn} are given. In particular the similarities k(xj ,xi) for 1 ≤ i, j ≤ n are given to derive
a clustering. Therefore, our goal is to express all update rules and parameters by these similarities.

We start with a Gaussian mixture model for density estimation and n observations {x1, . . . ,xn}.
For K components, the estimated density at x is

p(x) =
K∑

i=1

p(i) p(x | i) =
K∑

i=1

p(i) k(x;µi,Σi) , (7.92)

where

K∑

i=1

p(i) = 1 . (7.93)

and k(x;µi,Σi) is the Gaussian density with mean µi and variance Σi evaluated at x:

k(x;µi,Σi) =
1

(2 π)m/2 |Σi|1/2
exp

(
− 1

2
(x− µi)T Σ−1

i (x− µi)
)
. (7.94)

For Σi = σ2
i I we obtain in an m-dimensional space (x ∈ R m):

k(x;µi, σ
2
i ) =

1

(2 π)m/2 σmi
exp

(
− 1

2 σ2
i

‖x− µi‖2
)

(7.95)

=
1

(2 π)m/2 σmi
exp

(
− 1

2
‖x− µi‖2

)1/σ2
i

=
1

σmi
k(x;µi, 1)1/σ2

i .

Later we will replace the Gaussians by our similarities k(xj ,xi) for which the variance is
unknown. Therefore, we replace k(x;µi, σ

2
i ) by 1

σm
i
k(x;µi)

1/σ2
i and obtain:

p(x) =

K∑

j=1

p(j)
1

σmj
k(x,µj)

1/σ2
j . (7.96)
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giving

p(xi) =

K∑

j=1

p(j)
1

σmj
k(xi,µj)

1/σ2
j . (7.97)

This is the likelihood for observation xi.

We set

k(x;µi, σ
2
i ) =

1

σmi
k(x,µi)

1/σ2
i . (7.98)

The posterior gives the probability that x belongs to cluster i:

p(i | x) =
p(i) p(x | i)

∑K
j=1 p(j) p(x | j)

=
p(i) k(x;µi, σ

2
i )∑K

j=1 p(j) k(x;µj , σ2
j )

=
p(i) k(x;µi, σ

2
i )

p(x)
. (7.99)

The posterior is invariant under scaling of the p(i), that is the p(i) need not sum to 1.

Note that with wi = p(i) and wik = p(i | xk,w), we obtain

wi = p(i) = p(i | w) =

∫
p(i,x | w) dx (7.100)

=

∫
p(i | x,w) p(x | w) dx = Ep(x|w)(p(i | x,w))

≈ 1

n

n∑

k=1

p(i | xk,w) =
1

n

n∑

k=1

wik .

Analog to Gaussian mixture models, we use a Dirichlet prior on w and Wishart prior on Σj

(see Appendix 7.1.2).

The likelihood for one data point x is

p(x) =

K∑

i=1

wi
1

σmi
k(xk;µi)

1/σ2
i =

K∑

i=1

wi k(xk;µi, σ
2
i ) . (7.101)

The objective is the negative log posterior, which is

B = − 1

n

n∑

k=1

K∑

i=1

ŵik log
(
k(xk;µi, σ

2
i )
)
− 1

n

n∑

k=1

K∑

i=1

ŵik log (wi) (7.102)

− 1

n
log p(w) − 1

n
log p(σ2) +

1

n

n∑

k=1

K∑

i=1

ŵik log ŵik

+
1

n

n∑

k=1

log c(xk) .

In this objective p(w) is the Dirichlet prior and the prior p(σ2) is a Wishart distribution but for
covariance matrices which are a multiple of the identity. σ2 is the vector σ2 = (σ2

1, σ
2
2, . . . , σ

2
K).
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See Appendix 7.1.2 for the resulting update rules from this objective. The update rule for wi
is:

wnew
i =

n ŵi + γi − 1

γs
, (7.103)

where we used

ŵi =
1

n

n∑

k=1

ŵik (7.104)

and γs =
∑n

i=1 γi. The hyper-parameters γi stem from the Dirichlet distribution. We now set

ŵik =
wold
i k(xk;µi, σ

2
i )

p(xk)
, (7.105)

which is the posterior of wi but with the actual estimate wold
i .

The update rule for σ2
i is:

(σ2
i )

new =

∑n
k=1 ŵik (− 2 log k(xk,µi)) + w S

n ŵi + w
, (7.106)

7.4.3.2 Representing the Centers

Without a prior on the centers, the EM algorithm for the mixture of Gaussians has as update for
its cluster centers (Appendix 7.1.2):

µi =

∑n
k=1 ŵik xk∑n
k=1 ŵik

. (7.107)

In the objective Eq. (7.102), only the term k(xk;µi, σ
2
i ) contains the centers µi, therefore we

have for the optimal µi:

∂B

∂µi
= − 1

n

n∑

k=1

ŵik
1

σ2
i

∂ log k(xk,µi)

∂µi
= 0 , (7.108)

where we used

log k(xk;xi,σ
2
i ) = − n log(σi) − σ−2

i (− log k(xk,xi)) . (7.109)

If

log k(xk,µi) = −1

2
‖xk − µi‖ = −1

2
(xk − µi)T (xk − µi) (7.110)

then

∂ log k(xk,µi)

∂µi
= − xk + µi . (7.111)

If we insert this derivative in Eq. (7.108) and solve for µi, then we obtain Eq. (7.107).
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In the following, we want to express update formula Eq. (7.107) by the given similarities
k(xj ,xk). For the update rules we do not require µi but only ‖xl − µi‖. Therefore, we will
express −2 log k(xl,µi) = ‖xl − µi‖ by k(xj ,xk), that is, by the given similarities.

We assumed for the similarities

k(xk,xj) =
1

(2 π)m/2
exp

(
− 1

2
‖xk − xj‖2

)
(7.112)

from which follows that

− 2 log k(xk,xj) = n log(2π) + ‖xk − xj‖2 (7.113)

= n log(2π) + xTk xk − 2 xTk xj + xTj xj ,

and, therefore, we have

xTk xj =
1

2
n log(2π) +

1

2
xTk xk +

1

2
xTj xj + log k(xk,xj) . (7.114)

As mentioned, we want to express ‖xl − µi‖ by the given similarities:

‖xl − µi‖2 = (xl − µi)T (xl − µi) = xTl xl − 2 xTl µi + µTi µi (7.115)

= xTl xl − 2

∑n
k=1 ŵik x

T
k xl∑n

k=1 ŵik
+

∑n
k,j=1 ŵik ŵij x

T
k xj(∑n

k=1 ŵik
)2

= xTl xl −
∑n

k=1 ŵik
(
xTk xk + 2 log k(xk,xl)

)
∑n

k=1 ŵik
− n log (2π) − xTl xl

+

∑n
k,j=1 ŵik ŵij

(
1/2 n log(2π) + 1/2 xTk xk + 1/2 xTj xj + log k(xk,xj)

)

(∑n
k=1 ŵik

)2

= −
∑n

k=1 ŵik x
T
k xk∑n

k=1 ŵik
− 2

∑n
k=1 ŵik log k(xk,xl)∑n

k=1 ŵik
− n log(2π)

+ 1/2 n log(2π) +
1

2

∑n
k=1 ŵik x

T
k xk∑n

k=1 ŵik
+

1

2

∑n
j=1 ŵij x

T
j xj∑n

k=1 ŵik

+

∑n
k,j=1 ŵik ŵij log k(xk,xj)

(∑n
k=1 ŵik

)2

= − 1/2 n log(2π) − 2

∑n
k=1 ŵik log k(xk,xl)∑n

k=1 ŵik
+

∑n
k,j=1 ŵik ŵij log k(xk,xj)

(∑n
k=1 ŵik

)2 .

To obtain the second line, we inserted the expression for µi in Eq. (7.107). For obtaining the third
line, we inserted the dot product of Eq. (7.114). Using this expression for ‖xl − µi‖2, we can
compute

k(xk,µi) =
1

(2 π)m/2
exp

(
− 1

2
‖xk − µi‖2

)
. (7.116)

If we ignore the scaling factor 1/(2π)m/2 and define

k(x,xi) = exp
(
− 1

2
‖x− xi‖2

)
(7.117)
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then we would obtain

‖xl − µi‖2 = − 2

∑n
k=1 ŵik log k(xk,xl)∑n

k=1 ŵik
+

∑n
k,j=1 ŵik ŵij log k(xk,xj)

(∑n
k=1 ŵik

)2 . (7.118)

and

k(xk,µi) = exp
(
− 1

2
‖xk − µi‖2

)
. (7.119)

Scaling of k does not change the updates, because in the update rule for ŵik, the scaling of
p(xk) cancels with the scaling of k.

7.4.3.3 Update Rules

The algorithm has following the update rules:

k(xk;µi, σ
2
i ) =

1

σmi
k(xk,µi)

1/σ2
i . (7.120)

p(xk) =
l∑

i=1

wold
i k(xk;µi, σ

2
i ) , (7.121)

ŵik =
wold
i k(xk;µi, σ

2
i )

p(xk)
, (7.122)

ŵi =
1

n

n∑

k=1

ŵik , (7.123)

wnew
i =

n ŵi + γi − 1

γs
, (7.124)

(σ2
i )

new =

∑n
k=1 ŵik (− 2 log k(xk,µi)) + w S

n ŵi + w
, (7.125)

− 2 log k(xl,µi) = ‖xl − µi‖2 (7.126)

=

∑n
k=1 ŵik (− 2 log k(xk,xl))

n ŵi
− 1

2

∑n
k,j=1 ŵik ŵij (− 2 log k(xk,xj))

n2 ŵ2
i

,

k(xl,µi)
new = exp

(
− 1

2
‖xl − µi‖2

)
. (7.127)

The covariance matrix can also be represented by the similarities. However, we would require
a matrix inversion where the dimension of this matrix is the number of observations. This is
computationally very expensive and the algorithm is no longer stable.
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7.4.3.4 Examples

We demonstrate similarity-based mixture clustering on the same data sets as affinity propagation.
We start with the data set depicted in Fig. 7.37, which contains 6 clusters in a two-dimensional
space. Three clusters are smaller than the other three clusters, that is, they have a smaller variance.

We cluster the x7 data set by similarity-based mixture clustering. The result of similarity-
based mixture clustering is shown in Fig. 7.51. Circles indicate the true cluster centers and black
rectangles the centers found by similarity-based mixture clustering. One cluster could not be
separated into the two true clusters while affinity propagation did it. How the parametersw change
during the iterative update of similarity-based mixture clustering is shown in Fig. 7.52. Fig. 7.53
shows the development of the variances of the components given by σ during the iterations of
similarity based mixture clustering. For the analog data of Fig. 7.39, the result of similarity-based
mixture clustering is shown in Fig. 7.54. The result is the same as with affinity propagation.

For the x9 data set of Fig. 7.41, the result of affinity propagation is depicted in Fig. 7.55. The
cluster which affinity propagation was not able to separate is separated by similarity-based mixture
clustering.
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Figure 7.51: Similarity-based mixture clustering applied to the x7 data set. Circles indicate the
true cluster centers and black rectangles the centers found by similarity-based mixture clustering.
One cluster could not be separated into the two true clusters while affinity propagation did that.
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Figure 7.52: The changes of alpha during the iterations of similarity-based mixture clustering for
the x7 data set.
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Figure 7.53: The changes of sigma (the variance of the components) during the iterations of
similarity-based mixture clustering for the x7 data set.
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Figure 7.54: Similarity-based mixture clustering applied to the x7A data set. The result is the
same as with affinity propagation.
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Figure 7.55: Similarity-based mixture clustering applied to the x9 data set. The cluster which
affinity propagation was not able separate is separated by similarity-based mixture clustering.
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Next we test similarity-based mixture clustering on the 6-dimensional data set of Fig. 7.43.
It contains different cluster sizes with respect to the variation of the elements in the clusters.
The data has one large cluster and three smaller clusters. We generated two data sets which are
depicted in Fig. 7.43 and Fig. 7.45 where the cluster centers are indicated by circles. We perfrom
similarity-based mixture clustering. The result is given in Fig. 7.56 where again circles indicate the
true cluster centers and black rectangles the centers found by similarity-based mixture clustering.
In contrast to affinity propagation, similarity-based mixture clustering is able to detect the large
cluster because it adjusts the variance of the clusters. It even correctly assigns data points that are
far away from the cluster center. The same result for another data set (see Fig. 7.45) can be seen
in Fig. 7.57.
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Figure 7.56: Similarity-based mixture clustering applied to the d6 data set. Circles indicate the
true cluster centers and black rectangles the centers found by similarity-based mixture clustering.
In contrast to affinity propagation, mixture clustering detects the large cluster because it adjusts
the variance of the clusters. It even correctly assigns data points that are far away from the cluster
center.
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Figure 7.57: Similarity-based mixture clustering applied to the d6A data set. Same result as
shown in Fig. 7.56: in contrast to affinity propagation, the large cluster is detected.
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Figure 7.58: Similarity-based mixture clustering applied to the iris data set. The left panels shows
the true clusters and the right panel the clusters identified by similarity-based mixture clustering.

Next we apply similarity-based mixture clustering to the iris data set. Fig. 7.58 shows the
results of similarity-based mixture clustering. Similarity-based mixture clustering gives quite good
results.

Finally we applied similarity-based mixture clustering to the multiple tissues data set. Fig. 7.59
shows the result of similarity-based mixture clustering. The result is quite good.
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Figure 7.59: Similarity-based mixture clustering applied to the multiple tissue data set. The
left panels shows the true clusters and the right panel the clusters identified by similarity-based
mixture clustering.



Chapter 8

Biclustering

Biclustering simultaneously clusters the rows and the columns of a matrix. A bicluster of a matrix
is a pair of a set of row elements that belong to the bicluster and a set of column elements that
belong to the bicluster. For a bicluster its column elements are similar to each other on its row
elements or/and vice versa. Each row element can belong to multiple biclusters or to no bicluster
at all. Analogously, each column element can belong to multiple biclusters or to no bicluster at
all. In contrast to standard clustering, the clustering of row elements (samples) is performed on
only a subgroup of column elements (features). The role of row elements / samples and column
elements / features can be interchanged in biclustering.

The noise free data from Fig. 6.9 shows biclusters which are once more shown in Fig. 8.1. The
data matrix contains blocks of patterns which are biclusters. For visualization purposes only, the
blocks are constructed by adjacent row and column elements.

8.1 Types of Biclusters

Biclusters can be be divided into biclusters with:

(a) constant values,

(b) constant rows values,

(c) constant column values,

(d) additive coherent values,

(e) multiplicative coherent values,

(f) general coherent values.

a) Bicluster with constant values:

2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0

229
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Toy Example: noise free data
( 1000  genes,  100  samples,  13  biclusters )

sample1 sample11 sample21 sample31 sample41 sample51 sample61 sample71 sample81 sample91

gene1000

gene917

gene833

gene750

gene667

gene583

gene500

gene417

gene333

gene250

gene167

gene83

gene1

0
5

10
15

20
25

Figure 8.1: The data contains blocks of patterns which are biclusters. For visualization purposes
only, the blocks are constructed by adjacent row and column elements.
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b) Bicluster with constant values on rows and column pattern:

1.0 1.0 1.0 1.0 1.0
2.0 2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0 3.0
4.0 4.0 4.0 4.0 4.0
4.0 4.0 4.0 4.0 4.0

c) Bicluster with constant values on columns and row pattern:

1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0

d) Bicluster with coherent values (additive):

1.0 4.0 5.0 0.0 1.5
4.0 7.0 8.0 3.0 4.5
3.0 6.0 7.0 2.0 3.5
5.0 8.0 9.0 4.0 5.5
2.0 5.0 6.0 1.0 2.5

e) Bicluster with coherent values (multiplicative):

1.0 0.5 2.0 0.2 0.8
2.0 1.0 4.0 0.4 1.6
3.0 1.5 6.0 0.6 2.4
4.0 2.0 8.0 0.8 3.2
5.0 2.5 10.0 1.0 4.0

8.2 Overview of Biclustering Methods

A survey of biclustering approaches has been given by Madeira and Oliveira [2004]. In principle,
there exist four categories of biclustering methods:

(1) variance minimization methods,

(2) two-way clustering methods,
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(3) motif and pattern recognition methods, and

(4) probabilistic and generative approaches.

(1) Variance minimization methods define clusters as blocks in the matrix with minimal
deviation of their elements. This definition has been already considered by Hartigan [1972] and
extended by Tibshirani et al. [1999]. The δ-cluster methods search for blocks of elements having
a deviation (“variance”) from the mean below δ. One example are δ-ks clusters Califano et al.
[2000], where the maximum and the minimum of each row need to differ less than δ on the
selected columns. A second example are δ-pClusters Wang et al. [2002] which are defined as
2× 2 sub-matrices with pairwise edge differences less than δ. A third example are the Cheng and
Church [2000] δ-biclusters having a mean squared error below δ after fitting an additive model
with a constant, a row, and a column effect. FLexible Overlapped biClustering (FLOC) extends
Cheng-Church δ-biclusters by dealing with missing values via an occupancy threshold θ and by
using both l1 and l2 norms Yang et al. [2005].

(2) Two-way clustering methods apply conventional clustering to the columns and rows and
(iteratively) combine the results. Coupled Two-Way Clustering (CTWC) iteratively performs stan-
dard clustering of the rows (columns) using previously constructed columns (rows) clusters as fea-
tures Getz et al. [2000]. Also Interrelated Two-Way Clustering (ITWC) using k-means Tang et al.
[2001] and Double Conjugated Clustering (DCC) using self-organizing maps combine column and
row clustering Busygin et al. [2002].

(3) Motif and pattern recognition methods define a bicluster as samples sharing a common
pattern or motif. To simplify this task, some methods discretize the data in a first step, like xMO-
TIF Murali and Kasif [2003] or Bimax Prelic et al. [2006], the latter even binarizes the data and
searches for blocks with an enrichment of ones. Order-Preserving Sub-Matrices (OPSM) searches
for blocks having the same order of values in their columns Ben-Dor et al. [2003]. Using partial
models, only the column order on subsets must be preserved. Spectral clustering (SPEC) per-
forms a singular value decomposition of the data matrix after normalization Kluger et al. [2003].
SPEC extracts columns with the same pattern using the fact that they are linearly dependent and
span a subspace associated with a certain singular value. The Iterative Signature Algorithm (ISA)
selects samples that have a given pattern and then uses these samples to define a new sample sig-
nature Ihmels et al. [2004]. This sample signature, in turn, is used to select features and to define
a new feature signature. For each bicluster to be extracted, this process is initialized by a ran-
domly selected binary feature signature and repeated iteratively. A related approach uses a Hough
transform for identifying groups of linearly dependent features and samples Gan et al. [2008].
CCC-biclustering Madeira and Oliveira [2009], Madeira et al. [2010] is a method for time series
which finds patterns in contiguous columns.

(4) Probabilistic and generative methods use model-based techniques to define biclusters.
Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) uses a bi-partitioned graph, where
both conditions and genes are nodes Tanay et al. [2002]. An edge from a gene to a condition
means that the gene responds to the condition. With a probabilistic objective, subgraphs are found
that have a significantly higher connectivity than the overall graph. In another approach, Sheng
et al. [2003] use Gibbs sampling to estimate the parameters of a simple frequency model for the
expression pattern of a bicluster. However, the data must first be discretized and then only one bi-
cluster with constant column values at each step can be extracted. Probabilistic Relational Models
(PRMs) Getoor et al. [2002] and their extension ProBic Van den Bulcke [2009] are fully generative
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models which combine probabilistic modeling and relational logic. Another generative approach
is cMonkey Reiss et al. [2006] which models biclusters by Markov chain processes. Both PRMs
and cMonkey are able to integrate additional data sources.

In the plaid model family Lazzeroni and Owen [2002], the i-th bicluster is extracted by row and
column indicator variables ρki and κij . The values of each bicluster are explained by a general
additive model θkij = µi + αki + βij . Parameters are estimated by a least square fit. Gu and
Liu [2008] generalized the plaid models to fully generative models called Bayesian BiClustering
model (BBC). To avoid the high percentage of overlap in the plaid models, BBC constrains the
overlapping of biclusters to only one dimension. Further it allows different error variances per
bicluster. Caldas and Kaski [2008] also extended the plaid model to a fully generative model
using a Bayesian framework and found that the plaid model is equivalent to the PRM model for
specific parameters.

Factor Analysis for Bicluster Acquisition (FABIA) is based on a multiplicative model Hochre-
iter et al. [2010]. FABIA accounts for linear dependencies between row elements and column
elements, and also captures heavy-tailed distributions as observed in real-world data (transcrip-
tomics and genetics). The generative framework allows to utilize well-founded model selection
methods and to apply Bayesian techniques.

The latter models Gu and Liu [2008], Caldas and Kaski [2008], Hochreiter et al. [2010] are
generative models which have the advantage that (1) they select models using well-understood
model selection techniques like maximum likelihood, (2) hyperparameter selection methods (e.g.
to determine the number of biclusters) can rely on the Bayesian framework, (3) signal-to-noise
ratios can be computed, (4) they can be compared to each other via the likelihood or posterior, (5)
tests like the likelihood ratio test are possible, and (6) they produce a global model to explain all
data.

8.3 FABIA Biclustering

We assume that the data is given as a data matrix X ∈ Rn×m, where every row corresponds to a
sample and every column to a feature; the value xkj corresponds to the value of the j-th feature in
the k-th sample. The matrixX is the input to biclustering methods like FABIA.

We defined a bicluster as a pair of a row set and a column set for which the rows are similar
to each other on the columns and vice versa. In a multiplicative model, two vectors are similar if
one is a multiple of the other, that is, the angle between them is zero or their correlation coefficient
is (minus) one. It is clear that such a linear dependency on subsets of rows and columns can be
represented as an outer product u yT of two vectors u and y. The vector u corresponds to a
prototype column vector that contains zeros for features not participating in the bicluster, whereas
y is a vector of factors with which the prototype column vector is scaled for each sample; clearly
y contains zeros for samples not participating in the bicluster. Vectors containing many zeros or
values close to zero are called sparse vectors. Fig. 8.2 visualizes this representation of biclusters
by sparse vectors schematically.

The overall model for l biclusters and additive noise is

X =

l∑

j=1

uj y
T
j + Υ = Y UT + Υ , (8.1)
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Figure 8.2: The outer product u yT of two sparse vectors defines a bicluster in a matrix. Note that
the non-zero entries in the vectors are adjacent to each other for visualization purposes only.

where Υ ∈ Rn×m is additive noise; ui ∈ Rm and yj ∈ Rn are the sparse prototype vector and
the sparse vector of factors of the j-th bicluster, respectively. U ∈ Rm×l is the sparse prototype
matrix containing the prototype vectors uj as columns and Y ∈ Rn×l is the sparse factor matrix
containing the transposed factors yTj as rows. Eq. (8.1) formulates biclustering as sparse matrix
factorization.

According to Eq. (8.1), the i-th sample xi, i.e., the i-th row ofX , is

xi =

l∑

j=1

uj yij + εi = U ỹi + εi , (8.2)

where εi is the i-th column of the noise matrix Υ and ỹi = (yi1, . . . , yil)
T denotes the i-th row

of the matrix Y . Recall that yTj = (y1j , . . . , ynj) is the vector of values that constitutes the j-th
bicluster (one value per sample), while ỹi is the vector of values that contribute to the i-th sample
(one value per bicluster).

The formulation in Eq. (8.2) facilitates a generative interpretation by a factor analysis model
with l factors Everitt [1984]:

x =

l∑

j=1

uj ỹj + ε = U ỹ + ε , (8.3)

where x are the observations, U is the loading matrix, ỹj is the value of the j-th factor, ỹ =
(ỹ1, . . . , ỹl)

T is the vector of factors, and ε ∈ Rm is the additive noise. Standard factor analysis
assumes: the noise is independent of ỹ, ỹ is N (0, I)-distributed, and ε is N (0,Ψ)-distributed.
The covariance matrix Ψ ∈ Rl×l is diagonal — expressing independent Gaussian noise. The pa-
rameter U explains the dependent (common) and Ψ the independent variance in the observations
x Hochreiter et al. [2006].
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The covariance matrix for ỹ is the unit matrix, which means that the biclusters are assumed
to not be correlated. This assumption ensures that one true bicluster in the data will not be di-
vided into dependent small model biclusters — thereby ensuring maximal model biclusters. Note,
however, that this assumption still allows for overlapping biclusters.

Standard factor analysis does not consider sparse factors and sparse loadings which are essen-
tial in the FABIA formulation to represent biclusters. Sparseness is obtained by a component-wise
independent Laplace distribution Hyvärinen and Oja [1999], which is now used as a prior on the
factors ỹ instead of the Gaussian:

p(ỹ) =
(

1√
2

)l l∏

j=1

e−
√

2 |ỹj | (8.4)

Sparse loadings uj and, therefore sparse U , are achieved by a component-wise independent
Laplace prior for the loadings (like for the factors):

p(uj) =
(

1√
2

)m m∏

k=1

e−
√

2 |ukj | (8.5)

The FABIA model contains the product of Laplacian variables which is distributed proportion-
ally to the 0-th order modified Bessel function of the second kind Bithas et al. [2007]. For large
values, this Bessel function is a negative exponential function of the square root of the random
variable. Therefore, the tails of the distribution are heavier than those of the Laplace distribution.
The Gaussian noise, however, reduces the heaviness of the tails such that the heaviness is between
Gaussian and Bessel function tails — about as heavy as the tails of the Laplacian distribution.
These heavy tails are exactly the desired model characteristics to distinguish noise from signal (cf.
projection pursuit).

To identify biclusters, the model parameters U and Ψ have to be selected. Maximum likeli-
hood is the most common approach for selecting a generative model. Unfortunately, for FABIA,
the likelihood is analytically intractable. The reason is that FABIA aims at generating sparse val-
ues, for which Laplacian priors are used (in contrast to the commonly used Gaussian priors). The
resulting integral defining the likelihood cannot be computed analytically. In such situations, vari-
ational approaches can be applied, where a lower bound of the likelihood is maximized instead of
the likelihood itself.

Expectation maximization (EM) is the most popular method for maximizing the likelihood
Dempster et al. [1977]. The EM algorithm has been extended to variational expectation maxi-
mization Girolami [2001], Palmer et al. [2006]. For FABIA this approach is followed. However,
also a prior on the loadings is assumed to be sparse in order to make the loadings sparse, too.
Therefore, FABIA model selection is based on a variational expectation maximization for maxi-
mizing the posterior Hochreiter et al. [2006], Talloen et al. [2007].

Fig. 8.3 illustrates a FABIA result on a simulated data set, where the biclusters have been
created as contiguous blocks for visualization purposes.
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8.4 Examples

FABIA is implemented in the R package fabia. For the R package fabia demos can be started
by fabiaDemo() Hochreiter et al. [2010].

We test FABIA on a 50-dimensional data set with linearly mixed super-Gaussians from Sub-
section 5.4. In contrast to factor analysis, fabia aims to make both the factors and the loadings
sparse. Sparseness is related to ICA (see above), therefore fabia tends to results similar to ICA
methods. Fig. 8.4 shows the first two components of the results of fabia (sparse factor analysis)
applied to the mixture of 50-dimensional super-Gaussians.

The results of FABIA on a toy data from Section 6.3.2 have been presented there. Fig. 6.18
shows the reconstructed data and error. Fig. 6.19 shows the matrices into which the data matrix
was factorized. FABIA performed much better than non-negative matrix factorization or sparse
matrix factorization.

We apply FABIA biclustering to the iris data set. For this data set biclustering does not make
much sense, because sparseness in the loadings is not justified as there are only four features. The
FABIA result is shown in Fig. 8.5.

The loadings of FABIA are

bicluster2 bicluster3 bicluster1
Sepal.Length 0.6490253 -0.2155847 0
Sepal.Width -0.1828042 -0.3511878 0
Petal.Length 1.7465614 0.0000000 0
Petal.Width 0.7285857 -0.0453688 0

Only two biclusters have been found. We see that the first bicluster “bicluster2” focuses
on “Petal.Length” which is correlated to “Petal.Width” and “Sepal.Length”. The first biclus-
ter is related to petal but includes also sepal length. The second bicluster “bicluster3” removed
“Petal.Length” and “Petal.Width” due to sparseness and focused on “Sepal.Width” including also
“Sepal.Length”. The second bicluster is related to sepal.

The fabia package comes with a plot function which produces a biplot. A biplot plots both
the features and the samples into one plot. The biplot for the FABIA result on the iris data set is
shown in Fig. 8.6. Circles are features where red circles are the most relevant features and golden
circles are less relevant features. Squares are samples which are colored according to the given
prior knowledge. Two biclusters are plotted along the axis where both the samples and features are
in one plot. Deviations from the center in vertical or horizontal directions means that the sample
or feature is important for the according bicluster. If a sample or a feature is on the diagonal, then
this means this sample or this feature belongs to both biclusters.

We test FABIA on the multiple tissue data set. We show the results for 200, 500, and 2,000
iterations (a separate run for each number of iterations).

Fig. 8.7 shows the result after 200 iterations. The first bicluster (“bicluster3”) separates the
prostate samples (green) and the colon samples (orange) from the rest. The second bicluster (“bi-
cluster4”) separates the colon samples (orange) from the rest. The fourth bicluster (“bicluster2”)
separates the breast samples (red) from the rest, though not perfectly.
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Fig. 8.8 shows the result after 500 iterations. The first bicluster (“bicluster2”) separates the
prostate samples (green) from the rest. The second bicluster (“bicluster3”) separates the colon
samples (orange) from the rest. The fourth bicluster (“bicluster2”) separates the lung samples
(blue) from the rest, though not perfectly.

Fig. 8.9 shows the result after 2,000 iterations. The first bicluster (“bicluster4”) clearly sepa-
rates the prostate samples (green) from the rest. The second bicluster (“bicluster1”) clearly sep-
arates the colon samples (orange) from the rest. The third and fourth bicluster (“bicluster3” and
“bicluster2”) can help to separate the lung samples (blue) and the breast samples (red) from one
another but not very reliable.

With more iterations the solutions become more spares. More sparseness and the focus on the
most strong signals leads to a more clear separation of the classes. Therefore, with more iterations
the separation becomes more clear.

Since the FABIA solution is sparse, it allows for an interpretation. We investigate which genes
drive the first bicluster. Therefore we extract the most relevant genes of the first bicluster.

The functions of these genes are described in the following:

1. KLK3 is known as the prostate specific antigen. The GeneCards database http://www.
genecards.org comments:

“Serum level of this protein, called PSA in the clinical setting, is useful in the
diagnosis and monitoring of prostatic carcinoma.”

2. ACPP The GeneCards database says:

ACPP “is synthesized under androgen regulation and is secreted by the epithelial
cells of the prostate gland.”

3. KLK2 The GeneCards database says

KLK2 “is primarily expressed in prostatic tissue and is responsible for cleaving
pro-prostate-specific antigen into its enzymatically active form.”

This means that the most relevant genes of the first bicluster are all strongly associated with
prostate tissue.

Fig. 8.10 shows a biplot of the first and second bicluster of FABIA applied to multiple tissue
data with 4 components after 2000 iterations. The large red circles are the features (genes) driving
the bicluster while the golden small circles are features with minor influence. Sparseness pushes
most features to zero in one direction (the axes are golden due to the features pushed to zero).
The turquoise prostate samples at the x-axis are separated from the other samples. Fig. 8.11 show
the according biplot for the first and third bicluster. For the first bicluster at the x-axis the genes
KLK3 (prostate specific antigen) and ACPP (secreted by the epithelial cells of the prostate gland)
can be recognized. These genes separate the turquoise prostate samples at the x-axis from the
other samples.

http://www.genecards.org
http://www.genecards.org
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FABIA: reconstructed data
( 1000  genes,  100  samples,  13  biclusters )
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FABIA: absolute factors
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FABIA: data
( 1000  genes,  100  samples,  13  biclusters )
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FABIA: noise free data
( 1000  genes,  100  samples,  13  biclusters )
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FABIA: absolute loadings
( 1000  genes,  100  samples,  13  biclusters )
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Figure 8.3: An example of FABIA model selection. The data have 10 true biclusters. We have
trained the model with 13 biclusters. Only for visualization purposes, the biclusters are generated
as contiguous blocks. Top: data (left) and noise-free data (right). Middle: factors Y . Bottom:
data reconstructed by the FABIA model as Y UT (left) and loadingsU (right). The lines indicate
three biclusters and connect each bicluster in the reconstructed data with its corresponding factors
(middle) and loadings (bottom right).
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Figure 8.4: The first two components of the results of fabia (sparse factor analysis) applied to the
mixture of 50-dimensional super-Gaussians.
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Figure 8.5: FABIA applied to the iris data set.
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Figure 8.6: Biplot of the result of FABIA applied to the iris data set. The red circles are the most
relevant features. From the location of the features we see that BC1 is driven by “Petal.Length”
and BC2 by “Sepal.Width”. “Sepal.Length” participates at both biclusters as it has both an x-axis
and y-axis extension.
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Figure 8.7: FABIA biclustering applied to multiple tissue data with 4 components after 200 it-
erations. The first bicluster (“bicluster2”) separates the prostate samples (green) from the rest.
The second bicluster (“bicluster3”) separates the colon samples (orange) from the rest. The fourth
bicluster (“bicluster1”) separates the lung samples (blue) from the rest, though not perfectly.
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Figure 8.8: FABIA biclustering applied to multiple tissue data with 4 components after 500 it-
erations. The first bicluster (“bicluster2”) separates the prostate samples (green) from the rest.
The second bicluster (“bicluster3”) separates the colon samples (orange) from the rest. The fourth
bicluster (“bicluster1”) separates the lung samples (blue) from the rest, though not perfectly.
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Figure 8.9: FABIA biclustering applied to multiple tissue data with 4 components after 2,000
iterations. The first bicluster (“bicluster2”) separates the prostate samples (green) from the rest.
The second bicluster (“bicluster3”) separates the colon samples (orange) from the rest. The fourth
bicluster (“bicluster1”) separates the lung samples (blue) from the rest, though not perfectly.
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Figure 8.10: Biplot of the first and second bicluster of FABIA applied to multiple tissue data
with 4 components after 2,000 iterations. The large red circles are the features (genes) driving
the bicluster while the golden small circles are features with minor influence. Sparseness pushes
most features to zero in one direction (the axes are golden due to the features pushed to zero). The
turquoise prostate samples at the x-axis are separated from the other samples.
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Figure 8.11: Biplot of the first and third bicluster of FABIA applied to multiple tissue data
with 4 components after 2,000 iterations. For the first bicluster at the x-axis the genes KLK3
(prostate specific antigen) and ACPP (secreted by the epithelial cells of the prostate gland) can
be recognized. These genes separate the turquoise prostate samples at the x-axis from the other
samples.
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Figure 8.12: FABIA applied to the breast cancer data set with 3 biclusters. The upper left panel
shows the projection to the first two principal components. Both PCA and biclustering separate
the blue class but have problems to separate the red class.

The breast cancer data set consists of microarray data from the Broad Institute “Cancer
Program Data Sets” which was produced by van’t Veer et al. [2002]. Goal of van’t Veer et al.
[2002] was to find a gene signature to predict the outcome of a cancer therapy, that is, to predict
whether metastasis will occur. A signature of 70 genes has been discovered. We removed array
S54, because we identified it as an outlier. Thereafter, the data set contains 97 samples for which
1213 gene expression values are provided — these genes were selected by the authors.

Hoshida et al. [2007] found 3 subclasses and verified that 50/61 cases from class 1 and 2 were
estrogen receptor (ER) positive and only 3/36 from class 3. The subclasses were reconfirmed by
an independent second breast cancer data set. The three subclasses are indicated in the data set.

We test FABIA on the breast cancer data, where Hoshida et al. [2007] found 3 subclasses
which are marked by colors in the plots. Fig. 8.12 shows the results of PCA (the first two principal
components) and FABIA biclustering. Both FABIA and PCA separate the subclasses quite well,
especially the blue subclass. Fig. 8.13 shows the biplot for bicluster 2 and 3. The subclasses are
quite well separated.
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Figure 8.13: FABIA applied to the breast cancer data set with 3 biclusters. The biplot for bicluster
2 and 3. The subclasses are quite good separated.
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Finally, we apply FABIA to the DLBCL data set. This is another microarray data set from the
Broad Institute “Cancer Program Data Sets” which was produced by Rosenwald et al. [2002]. The
gene expression profile of diffuse large-B-cell lymphoma (DLBCL) was measured. Goal was to
predict the survival after chemotherapy. The data set consists of 180 DLBCL samples with 661
preselected genes.

Hoshida et al. [2007] divided the data set into three subclasses:

“OxPhos” (oxidative phosphorylation),

“BCR” (B-cell response), and

“HR” (host response).

These subclasses were confirmed on independent DLBCL data. We mark these subclasses in the
data set.

Fig. 8.14 shows the results of PCA (the first two principal components) and FABIA bicluster-
ing. PCA separates the blue subclass. Biclustering separates the subclasses better because the red
cluster is more separated. Fig. 8.15 shows the biplot for bicluster 1 and 2. The subclasses are quite
good separated.
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Figure 8.14: FABIA applied to the DLBCL data set with 3 biclusters. The upper left panel
shows the projection to the first two principal components where the blue subclass is separated.
Biclustering separates the subclasses better because the red cluster is more separated.
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Figure 8.15: FABIA applied to the DLBCL data set with 3 biclusters. The biplot for bicluster 1
and 2. The subclasses are quite good separated.
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Chapter 9

Hidden Markov Models

This is the first chapter devoted to unsupervised learning, especially to generative models. The
most prominent generative model in bioinformatics is the hidden Markov model. It is well suited
for analyzing protein or DNA sequences because of its discrete nature.

9.1 Hidden Markov Models in Bioinformatics

A hidden Markov model (HMM) is a generative approach for generating output sequences. The
model is able to assign to each sequence a certain probability of being produced by the current
model. The sequences of a class are used to build a model so that these sequences have high
probability of being produced by the model. Thereafter the model can be utilized to search for
sequences which also have high probability as being produced by the model. Therefore the new
sequences with high probability are assumed to be similar to the sequences from which the model
is build.

The HMM is able to model certain patterns in sequences and if those patterns are detected, the
probability of the sequence is increased.

HMMs for gene prediction.

The DNA is scanned and exons and introns are identified from which the coding region of the
gene can be obtain. Translating the coding regions of the gene gives a protein sequences. HMMs
are a standard tool for identifying genes in a genome. GENSCAN [Burge and Karlin, 1997] and
other HMM approaches to gene prediction [Kulp et al., 1996, Krogh, 1997, Krogh et al., 1994b]
have a base-pair specificity between 50% and 80%.

Profile HMMs.

Profile HMMs [Krogh et al., 1994a] are used to store a multiple alignment in a hidden Markov
model. An HMM is better suited for storing the alignment than a consensus string because it is a
generative model. Especially new sequences can be be evaluated according to their likelihood of
being produced by the model. Also the likelihood can be fine tuned after storing the alignment.

If HMMs are build from unaligned sequences, they often stick in local likelihood maxima.
Approaches exist which try to avoid them, e.g. deterministic annealing (“Userguide” to HMMER
version 1.8). Because of the poor results with unaligned sequences despite annealing approaches,
in the new version of HMMER the HMMs are only initialized by alignment results.
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The most common software packages for profile HMMs are HMMER [Eddy, 1998] (http://
hmmer.wustl.edu/) and SAM [Krogh et al., 1994a] (http://www.cse.ucsc.edu/compbio/
sam.html).

However HMMs have drawbacks as Sean Eddy writes [Eddy, 2004]:

“HMMs are reasonable models of linear sequence problems, but they don’t deal
well with correlations between residues or states, especially long-range correlations.
HMMs assume that each residue depends only on one underlying state, and each state
in the state path depends only on one previous state; otherwise, residues and states are
independent of each other.” ... “The state path of an HMM has no way of remember-
ing what a distant state generated when a second state generates its residue.”

Real valued protein characteristics like hydrophobic profiles cannot be represented by HMMs.
HMMs cannot detect higher order correlations, cannot consider dependencies between regions
in the sequence, cannot deal with correlations of elements within regions, cannot derive or pro-
cess real valued protein characteristics, cannot take into account negative examples during model
selection, and do not work sufficiently well for unaligned sequences.

Other HMMs Applications.

HMMs were used for remote homology detection [Park et al., 1998, Karplus et al., 1998, 1999]
which is weak sequence homology [Sjölander et al., 1996].

HMMs were used for scoring [Barrett et al., 1997] and are combined with trees [Lio et al.,
1999].

A whole data base is build on HMMs, namely the PFAM (protein family database) [Bateman
et al., 2004, 2000]. Here protein families are classified by HMMs. Software exists for large data
sets or proteins like SMART (simple modular architecture research tool) [Schultz et al., 2000].

9.2 Hidden Markov Model Basics

A hidden Markov model (HMM) is a graph of connected hidden states u ∈ {1, . . . , S}, where
each state produces a probabilistic output.

Fig. 9.1 shows a hidden Markov model with two state values 1 and 0 which are associated with
“on” and “off”. If the switch is “on” then it can remain on or go to the value “off”. If the switch is
“off” then it can remain off or go to the value “on”. The state may be hidden in the sense that the
position of the switch cannot be observed.

The model evolves over time t (in bioinformatics time is replaced by sequence position). At
each step the process jumps from the current state into another state or remains in the current state.
The evolving of the state variable u over time can be expressed by introducing the variable ut for
each time point t. At each time t the variable ut has a certain value ut ∈ {1, . . . , S}. Fig. 9.2
shows a hidden Markov model where the state variable evolves over time.

It is possible to present all possible sequences of values of the hidden state like in Fig. 9.3.
Each path in the figure from left to right is a possible sequence of state values. The probability of
taking a certain value at a certain time (e.g. u5 = 3) is the sum over all path’ from the left to this
value and time.

http://hmmer.wustl.edu/
http://hmmer.wustl.edu/
http://www.cse.ucsc.edu/compbio/sam.html
http://www.cse.ucsc.edu/compbio/sam.html


9.2. Hidden Markov Model Basics 255

on:u = 1 off:u = 0

Figure 9.1: A simple hidden Markov model, where the state u can take on one of the two values 0
or 1. This model represents the switch for a light: it is either “on” or “off” and at every time point
it can remain in its current state (reccurent connections) or go to the opposite state.

ut−2 ut−1 ut ut+1 ut+2 ut+3

Figure 9.2: A simple hidden Markov model. The state u evolves over time and at each time t the
state u takes on the value ut.

ut−1 ut ut+1 ut+2 ut+3ut−2

u = 1

u = 2

u = 3

u = 4

u = 5

Figure 9.3: The hidden Markov model from Fig. 9.2 in more detail where also the state values
u = 1, . . . , u = 5 are given (S = 5). At each time t the state ut takes on one of these values and
if the state moves on the value may change. Each path from left to right has a certain probability
and the probability of taking a certain value at a certain time is the sum over all paths from the left
to this value and time.
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ut−2 ut−1 ut ut+1 ut+2 ut+3

Figure 9.4: A second order hidden Markov model. The transition probability does not depend
only on the current state value but also on the previous state value.

The hidden Markov model has transition probabilities p(a | b), where a, b ∈ {1, . . . , S} and
b is the current state and a the next state. Here the Markov assumption is that the next state only
depends on the current state. Higher order hidden Markov models assume that the probability of
going into the next state depends on the current state and previous states. For example in a second
order Markov model the transition probability is p(a | b, c), where a, b, c ∈ {1, . . . , S} and b is
the current state, c the previous state, and a the next state. The second order Markov model is
depicted in Fig. 9.4.

We will focus on a first order hidden Markov model, where the probability of going into a state
depends only on the actual state.

At each time the state variable u takes on the value ut and has a previous value given by
ut−1, therefore we observed the transition from ut−1 to ut. This transition has probability of
p(ut | ut−1),

Assume we have a certain start state probability pS(u1) then the probability of observing the
sequence uT = (u1, u2, u3, . . . , uT ) of length T is

p(uT ) = pS(u1)
T∏

t=2

p(ut | ut−1) . (9.1)

For example a sequence may be (u1 = 3, u2 = 5, u3 = 2, . . . , uT = 4) that is the sequence
(3, 5, 2, . . . , 4). Fig. 9.5 shows the hidden Markov model from Fig. 9.3 where now the transition
probabilities are marked including the start state probability pS .

Now we will consider Markov models which actually produce data, that means they are used
as generative models. We assume that each state value has an emission probability pE(xt | ut) of
emitting a certain output. Here ut is a value of the state variable at time t (e.g. ut = 2) and xt is
an element of the output alphabet of size P , for example xt ∈ {A, T,C,G}. A specific emission
probability may be pE(A | 2). Fig. 9.6 shows a hidden Markov model with output emission.

Fig. 9.7 shows a HMM where the output sequence is the Shine-Dalgarno pattern for ribosome
binding regions.

Each output sequence has a certain probability of being produced by the current model. The
joint probability of the output sequence xT = (x1, x2, x3, . . . , xT ) of length T and the hidden
state value sequence uT = (u1, u2, u3, . . . , uT ) of length T is

p(uT , xT ) = pS(u1)
T∏

t=2

p(ut | ut−1)
T∏

t=1

pE(xt | ut) . (9.2)
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ut−1 ut ut+1 ut+2 ut+3ut−2

u = 1

u = 2

u = 3

u = 4

u = 5

p(u = 1 | u = 1)
p(u = 2 | u = 1)

p(u = 3 | u = 1)
p(u = 1 | u = 3)

p(u = 5 | u = 3)

ut+1 = 4

pS(u = 3)

Figure 9.5: The hidden Markov model from Fig. 9.3 where now the transition probabilities are
marked including the start state probability pS . Also the state value ut+1 = 4 is marked.

ut−2 ut−1 ut ut+1 ut+2 ut+3

xt−2 xt−1 xt xt+1 xt+2 xt+3

Figure 9.6: A simple hidden Markov model with output. At each time t the hidden state ut has a
certain probability of producing the output xt.

G G A G G UA

Shine-Dalgarno pattern for ribosome binding

ut−2 = AG

ut−1 = AGG

ut = AGGA

ut+1 = AGGAG

ut+2 = AGGAGG

ut+3 = AGGAGGU

Figure 9.7: An HMM which supplies the Shine-Dalgarno pattern where the ribosome binds. Each
state value is associated with a prefix sequence of the Shine-Dalgarno pattern. The state value for
“no prefix” is omitted in the figure.
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Through marginalization we obtain the probability of the output sequence xT being produced
by the HMM:

p(xT ) =
∑

uT

p(uT , xT ) =
∑

uT

pS(u1)

T∏

t=2

p(ut | ut−1)

T∏

t=1

pE(xt | ut) , (9.3)

where
∑

uT denotes the sum over all possible sequences of length T of the values {1, . . . , S}. The
sum

∑
uT has ST summands corresponding to different sequences (S values for u1 multiplied by

S values for u2 etc.).

Fortunately, the (first order) Markov assumption allows to recursively compute above sum.
We denote with xt = (x1, x2, x3, . . . , xt) the prefix sequence of xT of length t. We introduce the
probability p(xt, ut) of the model producing xt and being in state ut at the end.

p(xt, ut) = p(xt | xt−1, ut) p(x
t−1, ut) = (9.4)

pE(xt | ut)
∑

ut−1

p(xt−1, ut, ut−1) =

pE(xt | ut)
∑

ut−1

p(ut | xt−1, ut−1) p(xt−1, ut−1) =

pE(xt | ut)
∑

ut−1

p(ut | ut−1) p(xt−1, ut−1) ,

where the Markov assumptions p(xt | xt−1, ut) = pE(xt | ut) on the output emission and p(ut |
xt−1, ut−1) = p(ut | ut−1) on the transitions is used. Further marginalization p(xt−1, ut) =∑

ut−1
p(xt−1, ut, ut−1) and the definition of conditional probabilities p(xt−1, ut, ut−1) = p(ut |

xt−1, ut−1) p(xt−1, ut−1) were applied.

That means each recursion step needs only a sum over all ut−1 which is a sum over S val-
ues. However we have to do this for each value of ut, therefore the recursion has complexity of
O(T S2). The complexity can be reduced if transition probabilities are zero. The recursion starts
with

p(x1, u1) = pS(u1) pE(x1 | u1) . (9.5)

The final probability of xT can be computed as

p(xT ) =
∑

uT

p(xT , uT ) . (9.6)

This algorithm is called the “forward pass” or the “forward phase” and is used to compute the
probability of xT which is equal to the likelihood of xT because we have discrete values. Alg.
9.1 shows the algorithm for the forward phase to compute the likelihood for one sequence for an
HMM.

9.3 Expectation Maximization for HMM: Baum-Welch Algorithm

Now we focus on learning and parameter selection based on a training set.
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Algorithm 9.1 HMM Forward Pass

Given: sequence xT = (x1, x2, x3, . . . , xT ), state values u ∈ {1, . . . , S}, start probabilities
pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(xt | ut); Output:
likelihood p(xT ) and p(xt, ut)

BEGIN initialization

p(x1, u1) = pS(u1) pE(x1 | u1)

END initialization
BEGIN Recursion

for (t = 2 ; t ≤ T ; t+ +) do
for (a = 1 ; a ≤ S ; a+ +) do

p(xt, ut = a) = pE(xt | ut = a)

S∑

ut−1=1

p(ut = a | ut−1) p(xt−1, ut−1)

end for
end for

END Recursion
BEGIN Compute Likelihood

p(xT ) =
S∑

a=1

p(xT , uT = a)

END Compute Likelihood
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The parameters of a hidden Markov model are the S start probabilities pS(u1), the S2 transi-
tions probabilities p(ut | ut−1), and the S P emission probabilities pE(xt | ut) (P is the number
of output symbols). If we have a set of training sequences {xi}, 1 ≤ i ≤ l, then the parameters
can be optimized by maximizing the likelihood. Instead of gradient based methods, we deduce an
Expectation Maximization algorithm.

We define

F(Q,w) =

∫

U
Q(u | x) ln p(x,u;w) du − (9.7)

∫

U
Q(u | x) lnQ(u | x) du ,

where Q(u | x) is an estimation for p(u | x;w).

We have to adapt this formulation to discrete HMMs. For HMMs u is the sequence of hid-
den states, x the sequence of output states and w summarizes all probability parameters (start,
transition, and emission) in the model. The integral

∫
U du can be replaced by a sum.

The estimation for the state sequence can be written as

Q(u | x) = p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w) . (9.8)

We obtain

F(Q,w) =
S∑

a1=1

. . .
S∑

aT =1

(9.9)

p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w) ln p(xT , uT ;w) −
S∑

a1=1

. . .
S∑

aT =1

p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w)

ln p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w) = (9.10)
S∑

a1=1

. . .
S∑

aT =1

p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w) ln p(xT , uT ;w)

− c ,

where c is a constant independent of w.

We have

ln p(uT , xT ;w) = ln pS(u1) +

T∑

t=2

ln p(ut | ut−1) +

T∑

t=1

ln pE(xt | ut) . (9.11)
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Because most variables at can be summed out we obtain:

F(Q,w) =
S∑

a=1

p(u1 = a | xT ;w) ln pS(u1 = a) + (9.12)

T∑

t=1

S∑

a=1

p(ut = a | xT ;w) ln pE(xt | ut = a) +

T∑

t=2

S∑

a=1

S∑

b=1

p(ut = a, ut−1 = b | xT ;w) ln p(ut = a | ut−1 = b) − c .

Note that the parameters w are the start probabilities pS(a), the emission probabilities pE(x |
a), and the transition probabilities p(a | b). We have as constraints

∑
a pS(a) = 1,

∑
x pE(x |

a) = 1, and
∑

a p(a | b) = 1.

Consider the optimization problem

min
w

∑

t

∑

a

cta lnwa (9.13)

s.t.
∑

a

wa = 1 .

The Lagrangian is

L =
∑

t

∑

a

cta lnwa − λ

(∑

a

wa − 1

)
. (9.14)

Optimality requires
∂L

∂wa
=
∑

t

cta
1

wa
− λ = 0 (9.15)

therefore
∑

t

cta − λ wa = 0 (9.16)

and summing over a gives
∑

a

∑

t

cta = λ . (9.17)

We obtain

wa =

∑
t cta∑

a

∑
t cta

. (9.18)

The constraint maximization step (M-step) is therefore

pS(a) =
p(u1 = a | xT ;w)∑
a′ p(u1 = a′ | xT ;w)

(9.19)

pE(x | a) =

∑T
t=1 δxt=x p(ut = a | xT ;w)

∑
y

∑T
t=1 δxt=y p(ut = a | xT ;w)

(9.20)

p(a | b) =

∑T
t=2 p(ut = a, ut−1 = b | xT ;w)

∑
a′
∑T

t=2 p(ut = a′, ut−1 = b | xT ;w)
(9.21)
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which is

pS(a) = p(u1 = a | xT ;w) (9.22)

pE(x | a) =

∑T
t=1 δxt=x p(ut = a | xT ;w)
∑T

t=1 p(ut = a | xT ;w)
(9.23)

p(a | b) =

∑T
t=2 p(ut = a, ut−1 = b | xT ;w)
∑T

t=2 p(ut−1 = b | xT ;w)
. (9.24)

We now consider the estimation step (E-step) in order to estimate p(ut = a | xT ;w) and
p(ut = a, ut−1 = b | xT ;w). First we have to introduce the suffix sequence xt←T = (xt, xt+1, . . . , xT ).
of length T − t+ 1.

We use the probability p(xt+1←T | ut = a) of the suffix sequence xt+1←T = (xt+1, . . . , xT )
being produced by the model if starting from ut = a.

Now we can formulate an expression for p(ut = a | xT ;w)

p(ut = a | xT ;w) =
p(ut = a, xT ;w)

p(xT )
= (9.25)

p(xt, ut = a;w) p(xt+1←T | ut = a)

p(xT )
,

where the first “=” is the definition of conditional probability and the second “=” says that all paths
of hidden values which have at time t the value a can be separated into a prefix path from start to
time t ending in the value a and a suffix path starting at time t in a.

Similar we can formulate an expression for p(ut = a, ut−1 = b | xT ;w)

p(ut = a, ut−1 = b | xT ;w) =
p(ut = a, ut−1 = b, xT ;w)

p(xT )
= (9.26)

p(xt−1, ut−1 = b;w) p(ut = a | ut−1 = b) pE(xt | ut = a)

p(xt+1←T | ut = a) / p(xT ) ,

where again the first “=” is the conditional probability and the second “=” says all paths which are
at time t in state value a and in time (t− 1) in state value b can be separated in a prefix path from
start to time (t − 1) ending in b, a suffix path starting from t in value a to the end, the transition
b← a with probability p(ut = a | ut−1 = b) and the emission of xt given by pE(xt | ut = a).

Note that

p(ut = a | xT ;w) =

S∑

b=1

p(ut = a, ut−1 = b | xT ;w) . (9.27)

Similar to eq. (9.4) we can derive a backward recursion for computing p(xt+1←T | ut = a) by
using the Markov assumptions:

p(xt+1←T | ut = a) = (9.28)
S∑

b=1

pE(xt+1 | ut+1 = b) p(ut+1 = b | ut = a) p(xt+2←T | ut+1 = b) .
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The starting conditions are

p(xT←T | uT−1 = a) =

S∑

b=1

pE(xT | uT = b) p(uT = b | uT−1 = a) (9.29)

or, alternatively

∀a : p(xT+1←T | uT = a) = 1 (9.30)

In Alg. 9.2 an algorithm for the backward procedure for HMMs is given.

Algorithm 9.2 HMM Backward Pass

Given: sequence xT = (x1, x2, x3, . . . , xT ), state values u ∈ {1, . . . , S}, start probabilities
pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(xt | ut); Output:
likelihood p(xT ) and p(xt+1←T | ut = a)

BEGIN initialization

∀a : p(xT+1←T | uT = a) = 1

END initialization
BEGIN Recursion

for (t = T − 1 ; t ≥ 1 ; t−−) do
for (a = 1 ; a ≤ S ; a+ +) do

p(xt+1←T | ut = a) =

S∑

b=1

pE(xt+1 | ut+1 = b) p(ut+1 = b | ut = a) p(xt+2←T | ut+1 = b) .

end for
end for

END Recursion
BEGIN Compute Likelihood

p(xT ) =
S∑

a=1

pS(u1 = a) (p(x1←T | u1 = a)

END Compute Likelihood

The EM algorithm for HMMs is given in Alg. 9.3 which is based on the forward procedure
Alg. 9.1 and the backward procedure Alg. 9.2.
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Algorithm 9.3 HMM EM Algorithm

Given: l training sequences (xT )i = (xi1, x
i
2, x

i
3, . . . , x

i
T ) for 1 ≤ i ≤ l, state values u ∈ {1, . . . , S}, start

probabilities pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(x | u); Output: updated
values of pS(u), pE(x | u), and p(ut | ut−1)

BEGIN initialization
initialize start probabilities pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(x | u);
Output: updated values of pS(u), pE(x | u), and p(ut | ut−1)

END initialization

Stop=false
while Stop=false do

for (i = 1 ; i ≥ l ; i++) do
Forward Pass

forward pass for (xT )i according to Alg. 9.1

Backward Pass
backward pass for (xT )i according to Alg. 9.2

E-Step
for (a = 1 ; a ≤ S ; a++) do

for (b = 1 ; b ≤ S ; b++) do

p(ut = a, ut−1 = b | (xT )i;w) =

p((xt−1)i, ut−1 = b;w) p(ut = a | ut−1 = b) pE(x
i
t | ut = a)

p((xt+1←T )i | ut = a) / p((xT )i)

end for
end for
for (a = 1 ; a ≤ S ; a++) do

p(ut = a | (xT )i;w) =

S∑
b=1

p(ut = a, ut−1 = b | (xT )i;w)

end for
M-Step

for (a = 1 ; a ≤ S ; a++) do

pS(a) = p(u1 = a | (xT )i;w)

end for
for (a = 1 ; a ≤ S ; a++) do

for (x = 1 ; x ≤ P ; x++) do

pE(x | a) =

∑T
t=1 δxi

t=x p(ut = a | (xT )i;w)∑T
t=1 p(ut = a | (xT )i;w)

end for
end for
for (a = 1 ; a ≤ S ; a++) do

for (b = 1 ; b ≤ S ; b++) do

p(a | b) =

∑T
t=2 p(ut = a, ut−1 = b | (xT )i;w)∑T

t=2 p(ut−1 = b | (xT )i;w)

end for
end for

end for
if stop criterion fulfilled then

Stop=true
end if

end while
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9.4 Viterby Algorithm

In the forward (and also backward) pass we computed p(xT ), the probability of producing xT by
the model, that is the likelihood of xT . The likelihood of xT is an integral – more exactly a sum –
over all probabilities of possible sequences of hidden states multiplied by the probability that the
hidden sequence emits xT .

In many cases a specific hidden sequence (uT )∗ = (u∗1, u
∗
2, u
∗
3, . . . , u

∗
T ) and its probability of

emitting xT dominates the above sum. More formally

(uT )∗ = arg max
uT

p(uT | xT ) = arg max
uT

p(uT , xT ) . (9.31)

(uT )∗ is of interest if the hidden states have a semantic meaning, then one want to extract
(uT )∗.

In bioinformatics the extraction of (uT )∗ is important to make an alignment of a sequence with
a multiple alignment stored in an HMM.

Because (uT )∗ can be viewed as an alignment, it is not surprising that it can be obtained
through dynamic programming. The dynamic programming algorithm has to find a path in Fig.
9.5 from left to right. Towards this end the state values at a certain time which are the circles in
Fig. 9.5 are represented by a matrix V . Vt,a contains the maximal probability of a sequence of
length t ending in state value a:

Vt,a = max
ut−1

p(xt, ut−1, ut = a) . (9.32)

The Markov conditions allow now to formulate Vt,a recursively:

Vt,a = pE(xt | ut = a) max
b
p(ut = a | ut−1 = b) Vt−1,b (9.33)

with initialization

V1,a = pS(a)pE(x1 | u1 = a) (9.34)

and the result

max
uT

p(uT , xT ) = max
a

VT,a . (9.35)

The best sequence of hidden states can be found by back-tracing using

b(t, a) = arg max
b
p(ut = a | ut−1 = b) Vt−1,b (9.36)

The complexity of the Viterby algorithm is O(T S2) because all S T values Vt,a must be
computed and for computing them, the maximum over S terms must be determined.

The Viterby algorithm can be used to iteratively improve a multiple alignment:

1 initialize the HMM

2 align all sequences to the HMM via the Viterby algorithm

3 make frequency counts per column and compute the transition probabilities to update the
HMM

4 if not converged go to step 2



266 Chapter 9. Hidden Markov Models

Algorithm 9.4 HMM Viterby

Given: sequence xT = (x1, x2, x3, . . . , xT ), state values u ∈ {1, . . . , S}, start probabilities
pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(xt | ut); Output:
most likely sequence of hidden state values (uT )∗ and its probability p

(
xT , (uT )∗

)

BEGIN initialization

V1,a = pS(a)pE(x1 | u1 = a)

END initialization
BEGIN Recursion

for (t = 2 ; t ≤ T ; t+ +) do
for (a = 1 ; a ≤ S ; a+ +) do

Vt,a = pE(xt | ut = a) max
b
p(ut = a | ut−1 = b) Vt−1,b

b(t, a) = arg max
b
p(ut = a | ut−1 = b) Vt−1,b

end for
end for

END Recursion
BEGIN Compute Probability

p
(
xT , (uT )∗

)
=

S
max
a=1

V (T, a)

END Compute Probability
BEGIN Back-tracing

s = arg
S

max
a=1

V (T, a)

print s

for (t = T ; t ≥ 2 ; t−−) do

s = b(t, s)

print s

end for
END Back-tracing
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ut+2 ut+3ut−2 ut−1 ut ut+1

xt−2 xt xt+1 xt+2 xt+3

yt−2 yt−1 yt yt+1 yt+2 yt+3

xt−1

Figure 9.8: An input output HMM (IOHMM) where the output sequence xT =
(x1, x2, x3, . . . , xT ) is conditioned on the input sequence yT = (y1, y2, y3, . . . , yT ).

9.5 Input Output Hidden Markov Models

Input Output Hidden Markov Models (IOHMMs) generate an output sequence xT = (x1, x2, x3, . . . , xT )
of length T conditioned on an input sequence yT = (y1, y2, y3, . . . , yT ) of length T .

The difference between standard HMMs and input output HMMs is that the probabilities are
conditioned on the input. Start probabilities are pS(u1 | y1), the transition probabilities p(ut |
yt, ut−1), and the emission probabilities pE(xt | yt, ut).

Using IOMMs also negative examples can be used by setting for all yt either a don’t care or a
fixed value and setting yT = 1 for the positive class and yT = −1 for the negative class. Whether
a model for the negative class can be built is not clear but at least a subclass of the negative class
which is very similar to the positive class can be better discriminated.

The number of parameters increase proportional to the number of input symbols, which may
make it more difficult to estimate the probabilities if not enough data is available.

Learning via the likelihood is as with the standard HMM with the probabilities additionally
conditioned on the input.

9.6 Factorial Hidden Markov Models

The HMM architecture Fig. 9.6 is extended to Fig. 9.9 where the hidden state is divided into more
components ui (three in the figure).

The transition probability of ui is conditioned on all uk with k ≤ i and the emission proba-
bility depends on all hidden states. In the HMM architecture in Fig. 9.9 u1 evolves very slowly,
u2 evolves faster, and u3 evolves fastest of all hidden variables. Fast evolving variables do not
influence slow evolving ones but slow evolving variables influence fast evolving variables.

If the factorial HMM has h hidden state variables ui and each one of them can take on S val-
ues then the emission probability distribution consists of P Sh emission probabilities. Therefore
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xt−2 xt xt+1 xt+2 xt+3xt−1

u3,t+2 u3,t+3u3,t−2 u3,t−1 u3,t u3,t+1

u2,t+2 u2,t+3u2,t−2 u2,t−1 u2,t u2,t+1

u1,t+2 u1,t+3u1,t−2 u1,t−1 u1,t u1,t+1

Figure 9.9: A factorial HMM with three hidden state variables u1, u2, and u3. The transition
probability of ui is conditioned on all uk with k ≤ i and the emission probability depends on all
hidden states.

learning factorial HMMs is computational expensive. However approximative methods have been
developed to speed up learning [Ghahramani and Jordan, 1996, 1997].

9.7 Memory Input Output Factorial Hidden Markov Models

Remember that we quoted Sean Eddy [Eddy, 2004]:

“HMMs are reasonable models of linear sequence problems, but they don’t deal
well with correlations between residues or states, especially long-range correlations.
HMMs assume that each residue depends only on one underlying state, and each state
in the state path depends only on one previous state; otherwise, residues and states are
independent of each other.” ... “The state path of an HMM has no way of remember-
ing what a distant state generated when a second state generates its residue.”

The only way a HMM can store information over time is to go into a certain state value and
don’t change it any more. The state is fixed and the event which led the HMM enter the fixed state
is memorized. Instead of a state a set of states can be entered from which the escape probability is
zero.

To realize a state with a non-escaping value which can memorize past events is

p(ut = a | ut−1 = a) = 1 .

That means if the state takes on the value a then the state will not take any other value.

In principle the storage of past events can be learned but the likelihood of storing decreases ex-
ponentially with the time of storage. Therefore learning to store is practically impossible because
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Figure 9.10: Number of updates required to learn to remember an input element until sequence
end for three models: input output HMM (IOHMM), input output factorial HMM (IOFHMM),
and “Memory-based Input-Output Factorial HMM” (MIOFHMM) as a function of the sequence
length T .

these small likelihood differences are tiny in comparison to local minima resulting from certain
input / output patterns or input / output distributions.

Therefore memory is enforced by setting p(ut = a | ut−1 = a) = 1 and not allowing this
probability to change.

However after the storage process (taking on the value a) the model is fixed and neither future
systems dynamics nor other events to memorize can be dealt with.

To overcome this problem a factorial HMM can be used where some of the hidden state vari-
ables can store information and others extract the dynamics of the system to model.

Storing events is especially suited for input output HMMs where input events can be stored.

An architecture with memory state variable and using the input output architecture is the
“Memory-based Input-Output Factorial HMM” (MIOFHMM, [Hochreiter and Mozer, 2001c]).

Initially, all state variables have “uncommitted” values then various inputs can trigger the
memory state variables to take on values from which the state variables cannot escape – they
behave as a memory for the occurrence of an input event. Fig. 9.10 shows the number of up-
dates required to train three models: input output HMM (IOHMM), input output factorial HMM
(IOFHMM), and “Memory-based Input-Output Factorial HMM” (MIOFHMM) as a function of
the sequence length T .
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9.8 Tricks of the Trade

Sometimes the HMM and its algorithms must be adjusted for bioinformatics applications
for example to handle delete states which do not emit symbols in the forward pass.

HMMs can be used for variable length of the sequences; however care must be take if com-
paring likelihoods because there are more longer sequences than shorter and the likelihood
decreases exponentially with the length

To deal with small likelihood and probability values is is recommended to compute the
values in the log-space

To avoid zero probabilities for certain sequences which makes certain minima unreachable
all probabilities can be kept above a threshold ε.

The EM-algorithm cannot reach probabilities which are exact zero, therefore, as an after-
learning postprocessing all small probabilities ≤ ε can be set to zero. This often helps to
generalize from short to very long sequences.

HMMs are prone to local minima, for example if HMMs are build from unaligned se-
quences. Global optimization strategies try to avoid theses minima, e.g. deterministic an-
nealing was suggested in the “Userguide” to HMMER version 1.8.

9.9 Profile Hidden Markov Models

Profile Hidden Markov Models code a multiple sequence alignment into an HMM as a position-
specific scoring system which can be used to search databases for remote homologous sequences.
Fig. 9.11 shows a HMM which can be used for homology search. The top row with states indicated
with circles are a pattern. The diamond states are inserted strings. The bottom row with states
indicated as squares are deletions, where a letter from the pattern is skipped.

To learn an HMM from a set of unaligned positive examples suffers from the problem of
local minima. Therefore expensive global optimization strategies must be used to avoid theses
minima, e.g. deterministic annealing was suggested in the “Userguide” to HMMER version 1.8.
Therefore in most applications an HMM is at least initialized by a multiple alignment of the
positive examples.

The use of profile HMMs was made very convenient by the free HMMER package by Sean
Eddy [Eddy, 1998] which allows to build and apply HMMs. HMMER supplies a log-odds likeli-
hood of the model compared to a random model to access the significance of the score of a new
sequence. Fig. 9.12 shows the architecture of the models used by HMMER. The states indicated
by squares and denoted by “Mx” are the consensus string. The circled states denoted by “Dx”
are deletion states (non-emitting states), where part of the consensus string can be skipped. The
diamond states denoted by “Ix” are insertion states where a substring can be inserted into the
consensus string

The other package which enabled a convenient use of HMMs for biological sequences is
Sequence Alignment and Modeling system (SAM – http://www.cse.ucsc.edu/research/
compbio/sam.html) which allows creating, refining, and using HMMs for biological sequence

http://www.cse.ucsc.edu/research/compbio/sam.html
http://www.cse.ucsc.edu/research/compbio/sam.html
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Figure 9.11: Hidden Markov model for homology search. The top row with states indicated with
circles are a pattern. The diamond states are inserted strings. The bottom row with states indicated
as squares are deletions, where a letter from the pattern is skipped.

analysis. Also the SAM models represent a refinement of a multiple alignment. Models can be
used to both generate multiple alignments and search databases for new members of the family.

Also databases like Protein FAMily database (Pfam) are based on HMMs. 67% of proteins
contain at least one Pfam profile HMM and 45% of residues in the protein database are covered in
total by the HMMs.

Another HMM application which is not associated with profile HMMs is shown in Fig. 9.13,
where the HMM is used for splice site detection.
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Figure 9.12: The HMMER hidden Markov architecture. The states indicated by squares and de-
noted by “Mx” form a pattern (consensus string). The circled states denoted by “Dx” are deletion
states (non-emitting), where a letter from the pattern can be skipped. The diamond states denoted
by “Ix” are insertion states where a substring between letters of the pattern has been inserted. “B”
and “E” denote the begin and end state of the pattern, respectively.

Figure 9.13: An HMM for splice site detection.



Chapter 10

Boltzmann Machines

10.1 The Boltzmann Machine

A Boltzmann machine is a stochastic recurrent neural network proposed by Geoffrey Hinton and
Terry Sejnowski in 1985. Boltzmann machines with unconstrained connectivity have not proven
useful for practical problems in machine learning or inference. However recently restricted Boltz-
mann machines gained high popularity in the context of deep learning. The name stems from the
Boltzmann distribution in statistical mechanics, which is the normalizing distribution and used for
sampling.

A Boltzmann machine is a network of units with an “energy” associated with its current state
(see Fig. 10.1). It consists of binary units that are stochastic. The global energy, E, is

E = −


 ∑

i,j;i<j

wij si sj +
∑

i

θi si


 . (10.1)

Where:

wij is the connection strength between unit j and unit i.

si is the state, si ∈ {0, 1}, of unit i.

θi is the bias or the activation threshold of unit i.

Restriction on the connections of the Boltzmann machine are:

wii = 0 ∀i, that is, units do not have self-connections,

wij = wji ∀i, j, that is, connections are symmetric.

Typically the weights are written by a symmetric matrix W , with zeros along the diagonal
(W is indefinite).

The energy difference of a single unit i being 0 (off) versus 1 (on) is ∆Ei:

∆Ei =
∑

j

wij sj + θi . (10.2)
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Boltzmannexamplev1.png (PNG Image, 433 × 411 pixels)

http://upload.wikimedia.org/wikipedia/commons/7/7a/Boltzmannexamplev1.png[2/16/2014 1:22:25 PM]

Figure 10.1: A graphical representation of an example Boltzmann machine. Each undirected edge
represents dependency. In this example there are 3 hidden units and 4 visible units.
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For the Boltzmann distribution the energy of a state is proportional to the negative log prob-
ability of that state. We can compute the Boltzmann Factor which is the energy difference if one
unit is flipped:

∆Ei = −kB T ln(pi=off) − (−kB T ln(pi=on)) (10.3)

where kB is Boltzmann’s constant and is absorbed into the temperature T .

We obtain for the energy difference at temperature T :

∆Ei
T

= ln(pi=on) − ln(pi=off) (10.4)

⇔ ∆Ei
T

= ln(pi=on) − ln(1− pi=on)

⇔ ∆Ei
T

= ln

(
pi=on

1− pi=on

)

⇔ −∆Ei
T

= ln

(
1− pi=on

pi=on

)

⇔ −∆Ei
T

= ln

(
1

pi=on
− 1

)

⇔ exp

(
−∆Ei

T

)
=

1

pi=on
− 1 .

Solving for pi=on gives the probability that the i-th unit is on:

pi=on =
1

1 + exp(−∆Ei
T )

(10.5)

where T is the temperature of the system. Therefore the logistic function is used in activation
probabilities of the Boltzmann machine.

The network is run iteratively choosing a unit and setting its state according to its probability
from above. When the machine is “at thermal equilibrium” the probability distribution of global
states has converged. Often the network starts with a high temperature which gradually decreases
until a thermal equilibrium is reached with a low temperature. The energy level may fluctuate
around a global minimum.

10.2 Learning in the Boltzmann Machine

The goal of training the network is to ensure that it will converge to a global state given an ex-
ternal distribution. Hence, training searches for weights so that the global states with the highest
probabilities will get the lowest energies.

The Boltzmann Machine consists of “visible” units, V , and “hidden” units, H . The visible
units are those, which receive input from the “environment”, thus the training set is a set of binary
vectors over V . The distribution over the training set is P+(V ). The distribution over global states
converges as the Boltzmann machine reaches thermal equilibrium. After marginalization over the
hidden units, this distribution is P−(V ).
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The aim in Boltzmann Machine learning is to approximate the “true” distribution P+(V ) using
the model distribution P−(V ). The Kullback-Leibler divergence measures the difference between
these distributions:

DKL(P+ ‖ P−) =
∑

v

P+(v) ln

(
P+(v)

P−(v)

)
, (10.6)

where the sum is over all the possible states of V . D is a function of the weights, therefore this
objective can be minimized by gradient descent algorithms.

Analog to the EM algorithm, Boltzmann machine training has two phases that are performed
alternating. During the “positive” phase the visible units’ states are clamped to the training data.
During the “negative” phase the network runs freely, i.e. the training data does not influence the
network.

The gradient of the objective D with respect to a given weight, wij , is given by:

∂D

∂wij
= − 1

η

(
p+
ij − p−ij

)
, (10.7)

where:

p+
ij is the probability of units i and j both being on when the machine is at equilibrium on

the positive phase,

p−ij is the probability of units i and j both being on when the machine is at equilibrium on
the negative phase,

η denotes the learning rate.

Interestingly only information needed to change the weights is provided by “local” information
which makes the Boltzmann Machine a biological plausible model.

The training the bias weights is:

∂D

∂θi
= −1

η

(
p+
i − p−i

)
. (10.8)

Problems with the Boltzmann machine:

the time the machine must be run in order to collect equilibrium statistics grows exponen-
tially with the machine’s size, and with the magnitude of the connection strengths

connection strengths are more plastic when the units being connected have activation prob-
abilities intermediate between zero and one, leading to a so-called variance trap. The net
effect is that noise causes the connection strengths to random walk until the activities satu-
rate.
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10.3 The Restricted Boltzmann Machine

A quite efficient architecture is the “restricted Boltzmann machine” (RBM) which does not have
intralayer connections between hidden or visible units (see Fig. 10.2). After training one RBM,
the activities of its hidden units can be viewed as representation of the visible units. This idea is
used in deep learning where the hidden units of one RBM are the visible units of a higher-level
RBM. Therefore it is possible to stack RBMs and to train many layers of hidden units efficiently.
This is a common unsupervised deep learning strategy.

The weight wi,j is the connection between hidden unit hj and visible unit vi and the bias
weights (offsets) are ai for the visible units and bj for the hidden units. The energy can be com-
puted as

E(v,h) = −
∑

i

ai vi −
∑

j

bj hj −
∑

i,j

hj vi wi,j . (10.9)

or, in matrix form,

E(v,h) = − aTv − bTh − hTWv . (10.10)

Probability distributions over hidden and visible vectors are defined as:

p(v,h) =
1

Z
e−E(v,h) , (10.11)

where Z is a normalizing constant or the partition function defined as the sum of e−E(v,h) over all
possible configurations. Marginalizing gives the probability of a visible (input) vector of booleans:

p(v) =
1

Z

∑

h

e−E(v,h) (10.12)

Since the RBM is a bipartite graph, the hidden unit activations are mutually independent given
the visible unit activations and conversely:

p(v | h) =
m∏

i=1

p(vi | h) (10.13)

p(h | v) =
n∏

j=1

p(hj | v) (10.14)

with the individual activation probabilities:

p(hj = 1 | v) = σ(bj +
m∑

i=1

wi,j vi) (10.15)

p(vi = 1 | h) = σ(ai +
n∑

j=1

wi,j hj) , (10.16)

where σ is the sigmoid function.
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2000px-Restricted_Boltzmann_machine.svg.png (PNG Image, 2000 × 2129 pixels) - Scaled (44%)
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Figure 10.2: Graphical representation of a restricted Boltzmann machine. The four blue units
represent hidden units, and the three red units represent visible states. In restricted Boltzmann
machines there are only connections (dependencies) between hidden and visible units, and none
between units of the same type.
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Training aims at maximizing the product of probabilities assigned to some training set V :

arg max
W

∏

v∈V
p(v) (10.17)

or equivalently, to maximize the expected log probability

arg max
W

E

(∑

v∈V
log p(v)

)
(10.18)

The algorithm most often used to train RBMs, that is, to optimize the weight vector W , is
the contrastive divergence (CD) algorithm. The single-step contrastive divergence procedure for a
single sample is:

1. Take a training sample v, compute the probabilities of the hidden units and sample a hidden
activation vector h from this probability distribution.

2. Compute the outer product of v and h and call this the “positive gradient”.

3. From h, sample a reconstruction v′ of the visible units, then resample the hidden activations
h′ from this.

4. Compute the outer product of v′ and h′ and call this the “negative gradient”.

5. Let the weight update to wi,j be the “positive gradient” minus the “negative gradient”, times
some learning rate η.
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