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INTRODUCTION

The most powerful and most versatile “learning machine” is still
the human brain.
Starting in the 1940ies, ideas for creating “intelligent‘” systems
by mimicking the function of nerve/brain cells have been devel-
oped.
An artificial neural network is a parallel processing system
with small computing units (neurons) that work similarly to
nerve/brain cells.
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NEUROPHYSIOLOGICAL

BACKGROUND

The inside of every neuron (nerve or brain cell) carries a certain
electric charge.
Electric charge of connected neurons may raise or lower this
charge (by means of transmission of ions through the synaptic
interface).
As soon as the charge reaches a certain threshold, an electric
impulse is transmitted through the cell’s axon to the neighbor-
ing cells.
In the synaptic interfaces, chemicals called neurotransmitters
control the strength to which an impulse is transmitted from
one cell to another.
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NEUROPHYSIOLOGICAL

BACKGROUND (cont'd)

[Wikimedia Commons]

http://en.wikipedia.org/wiki/Image:Complete_neuron_cell_diagram.svg
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FEED-FORWARD NEURAL NETWORKS

We restrict to feed-forward neural networks, i.e. simple static
input-output systems without any feedback loops between neu-
rons and without any system dynamics over time.
Within this class, we consider perceptrons and multi-layer per-
ceptrons (along with the backpropagation algorithm).
Finally, we will also highlight deep learning, i.e. different strate-
gies for training networks with many layers (which mostly have
large numbers of neurons too).

Important note: For notational simplicity, throughout this unit, all
vectors are column vectors, in particular, weight vectors, input vec-
tors and output vectors!
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PERCEPTRONS

A perceptron is a simple linear threshold unit:

g(x;w, θ) =

1 if
d∑
j=1

wj · xj > θ

0 otherwise
(1)

In analogy to the biological model, the inputs xj correspond to the
charges received from connected cells through the dentrites, the
weights wj correspond to the properties of the synaptic interface, and
the output corresponds to the impulse that is sent through the axon as
soon as the charge exceeds the threshold θ.
Though it seems to be a (simplistic) model of a neuron, a perceptron
is nothing else but a simple linear classifier.
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THE PERCEPTRON LEARNING

ALGORITHM

1. Given: data set Z = {(xi, yi) | i = 1, . . . , l}, where xi ∈ Rd, yi ∈
{0, 1}; learning rate η; initial weight vector w

2. For k = 1, . . . , l do:

If g(xk;w, θ) = 0 and yk = 1

� w := w + η · xk

� θ := θ − η
Else if g(xk;w, θ) = 1 and yk = 0

� w := w − η · xk

� θ := θ + η

3. Return to 2. if stopping condition not fulfilled
4. Output: vector of weights w ∈ Rd, threshold θ
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PERCEPTRONS AND LINEAR

SEPARABILITY

In case that the data set Z is linearly separable in Rd, the
perceptron learning algorithm terminates and finally solves the
learning task.
The final solution is not unique and the learning algorithm just
gives one arbitrary solution (depending on initial weights).
Obviously, perceptrons cannot solve classification tasks that
are not linearly separable, e.g. like the simple XOR problem.
In such a case, the perceptron learning algorithm not even ter-
minates.
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MULTI-LAYER PERCEPTRONS

The only solution to the limitation of linear separability is to in-
troduce intermediate layers.
A multi-layer perceptron is a feed-forward artificial neural net-
work consisting of a certain number of layers of perceptrons.
The output of such a network is computed in the following
way: The outputs of the first layer are initialized with the input
(x1, . . . , xd)

T , then the outputs of the other neurons are com-
puted layer by layer using Formula (1).
The “only problem” is how to find appropriate weights and
thresholds that solve a given classification problem.
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MULTI-LAYER PERCEPTRONS (cont'd)

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER
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SOME HISTORICAL REMARKS

Minsky and Papert, the pioneers of perceptrons, conjectured in the
late 1960ies that a training algorithm for multi-layer perceptrons—even
if one could be found—is computationally infeasible and that, there-
fore, the study of multi-layer perceptrons is not worthwhile.
Because of this conjecture, the study of multi-layer perceptrons was
almost halted until the mid of the 1980ies.
In 1986, Rumelhart and McClelland first published the backpropaga-
tion algorithm and, thereby, proved Minsky and Papert wrong.
It turned out later that the backpropagation algorithm had already been
described by Werbos in 1974 in his dissertation. In a different context,
the algorithm first appeared in the work of Bryson et al. in the 1960ies.
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CONTINUOUS ACTIVATION

FUNCTIONS

The key idea is to replace the discontinuous threshold function in (1) by
a differentiable function ϕ. Then the output of the neuron, its so-called
activation, is computed as

g(x;w, θ) = ϕ
( d∑
j=1

wj · xj − θ
)
. (2)

For simplicity, we consider the offset −θ as a “zero-th” weight w0 (with the
convention x0 = 1) and denote the activation as a and the so-called net-
work input of the neuron as net =

∑d
j=0 wj · xj :

g(x;w) = a = ϕ
(
wT ·

(
1
x

)
︸ ︷︷ ︸

net

)
. (3)
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CONTINUOUS ACTIVATION

FUNCTIONS (cont'd)

For regression, the simplest choice is ϕ(x) = x (i.e. resulting in a
simple linear regressor).
For 0/1 outputs, the most common choice is the so-called sigmoid or
logistic function

ϕ(x) =
1

1 + e−x
.

Note that this is nothing else but the inverse logit function logit−1(x),
where logit(x) = ln( x

1−x ). Further note that, for this particular case,
ϕ′(x) = ϕ(x) · (1− ϕ(x)) holds.
For -1/+1 data, a common choice of the activation function is the hy-
perbolic tangent ϕ(x) = tanh(x) = ex−e−x

ex+e−x , which is nothing else but
a transformation of the sigmoid function to the interval [−1,+1].
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TRAINING WITH DIFFERENTIABLE

ACTIVATION FUNCTION

The central problem with training a perceptron with threshold activa-
tion is the lack of differentiability. If a differentiable activation func-
tion and a differentiable loss function are used, we can compute the
derivative of the loss of a single training sample (and, consequently,
the empirical loss) according to the weights w.
The derivatives are the key to solving the learning problem:

� Any w satisfying the equation ∂L
∂w

(
yi, g(xi,w)

)
= 0 mini-

mizes the loss for sample (xi, yi). A w satisfying the equation∑l
i=1

∂L
∂w

(
yi, g(xi,w)

)
= 0 minimizes the empirical error for the

training set Z = {(xi, yi) | i = 1, . . . , l}.
� If such a solution cannot be computed explicitly, an iterative opti-

mization method can be used, e.g. gradient descent.
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DIFFERENTIATING THE LOSS W.R.T.

WEIGHTS

Consider a sample (xi, yi). Then we obtain the following by using
the chain rule:

∂L

∂w

(
yi, g(xi;w)

)
=
∂L

∂a
(yi, a) ·

=ϕ′(net)︷ ︸︸ ︷
∂a

∂net
(net) ·

=
(

1 |xi
T
)︷ ︸︸ ︷

∂net

∂w
(xi,w)

=
∂L

∂a
(yi, a) · ϕ′(net) ·

(
1 | xiT

)
= ϕ′(net) · ∂L

∂a
(yi, a)︸ ︷︷ ︸

=δ

·
(
1 | xiT

)
(4)
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DIFFERENTIATING THE QUADRATIC

LOSS

Consider a sample (xi, yi). Then we obtain the following for the
halved quadratic loss:

∂L

∂a
(yi, a) =

∂

∂a

(1

2
(yi − a)2

)
= (a− yi)

Hence, (4) gives the following:

∂L

∂w

(
yi, g(xi;w)

)
= ϕ′(net) · (a− yi)︸ ︷︷ ︸

=δ

·
(
1 | xiT

)
(5)
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DIFFERENTIATING THE QUADRATIC

LOSS: LINEAR ACTIVATION

For the special case ϕ(x) = x (hence ϕ′(x) = 1), (5) further simplifies to

∂L

∂w

(
yi, g(xi;w)

)
= (a− yi)︸ ︷︷ ︸

=δ

·
(
1 | xi

T )
.

Some routine computations show that the equation∑l
i=1

∂L
∂w

(
yi, g(xi,w)

)
= 0 has the unique solution

w =
(
X̃T · X̃

)−1 · X̃T︸ ︷︷ ︸
X̃+

·y

with X̃ =
(
1 | XT

)
(compare with slide no. 78).
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LOGISTIC REGRESSION AND CROSS

ENTROPY

Suppose we have a perceptron with sigmoid activation function ϕ. Then
the output g(xi;w) can be interpreted as an estimate of the probability that
xi belongs to the positive class:

p(y = 1 | xi) = a = ϕ(net) and p(y = 0 | xi) = 1− a = 1− ϕ(net)

We can unify these two formulas as follows to get a single formula for the
likelihood p(y = yi | xi;w):

p(y = yi | xi;w) = ϕ(net)y
i

·
(
1− ϕ(net)

)(1−yi)
= ay

i

· (1− a)(1−y
i)
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LOGISTIC REGRESSION AND CROSS

ENTROPY (cont'd)

Maximizing the likelihood is equivalent to minimizing −1 times its
natural logarithm:

− ln
(
p(y = yi | xi;w)

)
= −yi · ln(a)− (1− yi) · ln(1− a)

This formula corresponds to the cross entropy between predic-
tion and true class, and is a well-established loss function of its own.

Training a linear classifier by minimizing the cross entropy of a lo-

gistic linear model is usually called logistic regression.
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DIFFERENTIATING CROSS ENTROPY

Consider a sample (xi, yi). Then we obtain the following for the cross entropy loss:

∂L

∂a

(
yi, a

)
= −yi ·

1

a
− (1− yi) ·

1

1− a
· (−1) = −yi ·

1

a
− (yi − 1) ·

1

1− a

For the sigmoid function, ϕ′(net) = ϕ(net) · (1 − ϕ(net)) = a · (1 − a) holds, and
(4) simplifies to

∂L

∂w

(
yi, g(xi;w)

)
=

ϕ′(net)︷ ︸︸ ︷
a · (1− a) ·

= ∂L
∂a

(
yi,a

)︷ ︸︸ ︷(
− yi ·

1

a
− (yi − 1) ·

1

1− a

)
·
(
1 | xi

T )
=
(
− yi · (1− a)− (yi − 1) · a

)
·
(
1 | xi

T )
= (a− yi)︸ ︷︷ ︸

=δ

·
(
1 | xi

T )
.
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TRAINING ALGORITHM

(ONLINE VERSION)

1. Given: data set Z = {(xi, yi) | i = 1, . . . , l}, where xi ∈ Rd,
yi ∈ R; learning rate η; initial weight vector w

2. For all training samples (xi, yi) (in random order) do:

a. Compute net, a, and δ (according to (4))

b. Update: w := w − η · δ ·
(

1
xi

)
3. Return to 2. if stopping condition not fulfilled
4. Output: vector of weights w ∈ Rd+1
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TRAINING ALGORITHM

(BATCH VERSION)

1. Given: data set Z = {(xi, yi) | i = 1, . . . , l}, where xi ∈ Rd,
yi ∈ R; learning rate η; initial weight vector w

2. Set ∆w = 0

3. For all training samples (xi, yi) do:

a. Compute net, a, and δ (according to (4))

b. ∆w := ∆w − η · δ ·
(

1
xi

)
4. Update: w := w + ∆w

5. Return to 2. if stopping condition not fulfilled
6. Output: vector of weights w ∈ Rd+1
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TRAINING WITH DIFFERENTIABLE

ACTIVATION (COMMENTS)

One pass through the training set is usually called a training epoch.
The first variant is called online learning because w is updated for
each sample individually. This local update performs one gradient de-
scent step with the aim to reduce the loss for this sample. The ran-
domization of the order of training samples is necessary to avoid that
the result is biased to the order of samples.
The second variant is called batch learning because the local updates
are summed up for all samples before w is updated. This global up-
date performs one gradient descent step with the aim to reduce the
empirical error for the entire training set.
A common variant is to train in mini batches, i.e. to apply batch training
for small randomly sampled batches.
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MULTI-LAYER PERCEPTRON:

ARCHITECTURE AND NOTATION (1/3)
INPUT LAYER HIDDEN LAYER(S) OUTPUT LAYER
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MULTI-LAYER PERCEPTRON:

ARCHITECTURE AND NOTATION (2/3)

Suppose that we have a training set with I real-valued inputs andO outputs
(continuous or binary), i.e.

Z = {(xi,yi) | i = 1, . . . , l,xi ∈ RI ,yi ∈ RO}.

Then we consider a multi-layered network as follows:

The network consists of an input layer, N − 1 hidden/intermediate
layer, and one output layer.
For each layer k = 0, . . . , N , we denote the number of neurons in that
layer with nk. The input layer has I neurons, i.e. n0 = I and the output
layer has O neurons, i.e. nN = O.
The activation of each layer is denoted with a(k).
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MULTI-LAYER PERCEPTRON:

ARCHITECTURE AND NOTATION (3/3)

For k > 0, each neuron of the k-th layer receives input from all neurons
of the k − 1-st layer and the bias unit (which has constant activation
1), but not from any other neurons. The net input of the k-th layer is
denoted with net(k). The activation function used by all units of the
k-th layer is denoted with ϕk.
For each k > 0, the weights between the k − 1-st and the k-th layer
are stored in a weight matrix W(k) =

(
w

(k)
ji

)i=0,...,nk−1

j=1,...,nk
. So, w(k)

ji is
the weight of the connection between the i-th unit of the k − 1-st layer
and the j-th unit of the k-th layer. Any w(k)

j0 corresponds to the weight
between the bias unit and the j-th unit of the k-th layer.
Networks in which all units of one layer are connected with all units of
the next layer are called fully connected neural networks.
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FORWARD PROPAGATION /

FORWARD PASS

1. Given: multi-layer perceptron according to the specifications above,
i.e. with I inputs, O outputs and N − 1 hidden layers; input x ∈ RI .

2. Set a(0) := x.
3. For k from 1 to N do:

a. Compute net input as net(k) := W(k) ·
(

1
a(k−1)

)
.

b. Compute activation as a(k) := ϕk•
(
net(k)

)
(apply ϕk element-

wise to net(k)).

4. Output: y := a(N).

So the input x is propagated through the network from the input layer to the
output layer. As already noted, such a type of network is called feed-forward
network.
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DIFFERENTIATING THE LOSS W.R.T.

WEIGHTS (1/5)

Suppose we have a training sample (x, y) that we have propagated through
the network. Then the derivative of the loss function w.r.t. to weight w(N)

ji ,
i.e. a weight between the N − 1-st and the output layer, is given as:

∂L

∂w
(N)
ji

(
y,a(N)) = ∂L

∂a
(N)
j

(
y,a(N)) ·

=ϕ′N

(
net

(N)
j

)︷ ︸︸ ︷
∂a

(N)
j

∂net
(N)
j

(
net

(N)
j

)
·

=a
(N−1)
i︷ ︸︸ ︷

∂net
(N)
j

∂w
(N)
ji

(
a

(N−1)
i , w

(N)
ji

)
= ϕ′N

(
net

(N)
j

)
· ∂L

∂a
(N)
j

(
y,a(N))

︸ ︷︷ ︸
=δ

(N)
j

· a(N−1)
i (6)
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DIFFERENTIATING THE LOSS W.R.T.

WEIGHTS (2/5)
In matrix notation, (6) can be summarized as an outer product of deltas of the output
layer and the activations of the N − 1-st layer:

∂L

∂W(N)

(
y,a(N)

)
= diag

(
ϕ′L•(net(N))

)
·
( ∂L

∂a(N)

)T
︸ ︷︷ ︸

=δ(N)

·
(
1 | a(N−1)T

)

The deltas simplify to δ(N) =
(
a(N) − y

)
in the following two cases:

1. Linear output units (ϕN (x) = x) are used in conjunction with the halved
quadratic loss

L(y,a(N)) =
1

2

∑O

i=1

(
yi − a

(N)
i

)2
.

2. We have sigmoid output units and use the sum of binary cross entropy losses:

L(y,a(N)) = −
∑O

i=1

(
yi · ln(a

(N)
i ) + (1− yi) · ln(1− a(N)

i )
)
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DIFFERENTIATING THE LOSS W.R.T.

WEIGHTS (3/5)
With the above assumptions, the derivative of the loss function w.r.t. to weight
w

(N−1)
ji , i.e. a weight between the N − 2-nd and the N − 1-st layer, is given as:

∂L

∂w
(N−1)
ji

(
y, a

(N))
=

nN∑
h=1

∂L

∂a
(N)
h

(
y, a

(N)) ·
=ϕ′N

(
net

(N)
h

)
·w(N)
hj︷ ︸︸ ︷

∂a
(N)
h

∂a
(N−1)
j

(
a
(N−1)
j

)
·

=ϕ′N−1

(
net

(N−1)
j

)
·a(N−2)
i︷ ︸︸ ︷

∂a
(N−1)
j

∂w
(N−1)
ji

(
a
(N−1)
i , w

(N−1)
ji

)

= ϕ
′
N−1

(
net

(N−1)
j

)
·
nN−1∑
h=1

=δ
(N)
h︷ ︸︸ ︷

ϕ
′
N

(
net

(N)
h

)
·

∂L

∂a
(N)
h

(
y, a

(N)) ·w(N)
hj︸ ︷︷ ︸

=δ
(N−1)
j

· a(N−2)
i

= ϕ
′
N−1

(
net

(N−1)
j

)
·
(nN−1∑
h=1

δ
(N)
h
· w(N)

hj︸ ︷︷ ︸
=δ

(N−1)
j

)
· a(N−2)

i (7)
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DIFFERENTIATING THE LOSS W.R.T.

WEIGHTS (4/5)

The formula (7) tells us two important facts:

The derivative of the loss w.r.t. a weight
between the N − 2-nd and the N − 1-st
layer is again an outer product of some
deltas (of the N − 1-st layer) and the ac-
tivations of the N − 2-nd layer.
The deltas of theN−1-st layer are given
as the derivative of the activation func-
tion times a weighted sum of deltas of
the N -th layer, i.e. the deltas are propa-
gated back through the network.
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DIFFERENTIATING THE LOSS W.R.T.

WEIGHTS (5/5)

In matrix notation, (7) can be summarized as

∂L

∂W(N−1)

(
y,a(N)) = δ(N−1) ·

(
1 | a(N−2)T ),

with
δ(N−1) = diag

(
ϕ′N−1•(net

(N−1))
)
· W̃(N)T · δ(N),

where W̃(N) is the weight matrix without the first column of bias weights.

The same trick works for computing the derivative of the loss w.r.t. to
weights between the N − 3-rd and the N − 2-nd layer, and so forth.
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BACKPROPAGATION ALGORITHM

(ONLINE VERSION)

1. Given: data set Z = {(xi,yi) | i = 1, . . . , l}, where xi ∈ RI , yi ∈ RO ;
learning rate η; network as above with some choice of initial weights.

2. For all training samples (xi,yi) (in random order) do:

a. Propagate xi through network to compute all network inputs and activa-
tions.

b. Compute δ(N).
c. Set ∆W(N) := −η · δ(N) · (1 | a(N−1)T ).
d. For all k from N − 1 to 1 do:

i. Compute δ(k) = diag
(
ϕ′k•(net(k))

)
· W̃(k+1)T · δ(k+1).

ii. Set ∆W(k) := −η · δ(k) ·
(
1 | a(k−1)T

)
.

e. Update: For all k from 1 to N do
i. W(k) := W(k) + ∆W(k).

3. Return to 2. if stopping condition not fulfilled
4. Output: weights W(1), . . . ,W(N).
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BACKPROPAGATION ALGORITHM

(BATCH VERSION)

1. Given: data set Z = {(xi,yi) | i = 1, . . . , l}, where xi ∈ RI , yi ∈ RO ; learning rate
η; network as above with some choice of initial weights.

2. Set ∆W(1), . . . ,∆W(N) to zero matrices.
3. For all training samples (xi,yi) do:

a. Propagate xi through network to compute all network inputs and activations.
b. Compute δ(N).

c. Set ∆W(N) := ∆W(N) − η · δ(N) · (1 | a(N−1)T ).
d. For all k from N − 1 to 1 do:

i. Compute δ(k) = diag
(
ϕ′k•(net(k))

)
· W̃(k+1)T · δ(k+1).

ii. Set ∆W(k) := ∆W(k) − η · δ(k) ·
(
1 | a(k−1)T

)
.

4. Update: For all k from 1 to N do

a. W(k) := W(k) + ∆W(k).

5. Return to 2. if stopping condition not fulfilled
6. Output: weights W(1), . . . ,W(N).
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BACKPROPAGATION ALGORITHM

(COMMENTS)

When implementing the algorithm (any variant), it would be in-
efficient to expand the vector ϕ′k•(net(k)) to a diagonal matrix.
Instead, this should be implemented by elementwise multipli-
cation.
One pass through the training set is called a training epoch.
The first variant is called online learning because the weights
are updated for each sample individually. This local update
performs one gradient descent step with the aim to reduce the
loss for this sample. The randomization of the order of training
samples is necessary to avoid that the result is biased to the
order of samples.
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BACKPROPAGATION ALGORITHM

(COMMENTS; cont'd)

The second variant is called batch learning because the local
updates are summed up for all samples before weights are up-
dated. This global update performs one gradient descent step
with the aim to reduce the empirical error for the entire training
set.
As mentioned before, training in mini batches is common, too.
Online learning and mini batches do not consider the exact gra-
dient, but an approximation that depends on the random choice
of samples. This is called stochastic gradient descent.
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BACKPROPAGATION ALGORITHM:

SUMMARY

Forward pass: Set activation of input layer to input vector. For each layer
(from first hidden layer to output layer), compute net input as product
of activation with weight matrix and apply activation function to net
input for each unit.

Backward pass: Perform forward pass and compute deltas for output
layer. For each layer (from last hidden layer to first hidden layer), com-
pute deltas as elementwise products of the activations’ derivatives and
the product of the transpose of the weight matrix times the deltas of
the next layer (the one “to the right”). The weight updates are outer
products of the deltas of the “right layer” and the activations of the “left
layer”.
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MULTI-LAYER PERCEPTRONS

APPLIED TO CLASSIFICATION

Assume we are given a data set Z = {(xi, yi) | i = 1, . . . , l}.
If we have a binary classification problem, i.e. yi ∈ {0, 1} or yi ∈
{−1,+1} (in this case, replace−1’s by 0’s), we can use a single output
neuron (O = 1).
If we are given a problem with M > 2 classes, i.e. yi ∈ {1, . . . ,M},
we can use a network with O =M output neurons. The labels have to
be mapped to M -dimensional output vectors yi in the following way:

yij =

1 if yi = j

0 otherwise

When predicting a new sample x, the output neuron with the highest
activation determines the class prediction.
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MULTI-LAYER PERCEPTRONS

APPLIED TO CLASSIF. (cont'd)

Though sigmoid activation functions are possible and not so uncommon for
multi-class problems with more than 2 output neurons, the activations need not
sum up to 1, therefore, they cannot be used as estimates of class probabilities.
For multi-class classification, it is more common to use the softmax activation
function:

a
(N)
i =

exp
(
net

(N)
i

)∑O
j=1 exp

(
net

(N)
j

)
If we use the softmax activation function in conjunction with the multi-class
cross entropy loss

L(y,a(N)) = −
∑O

i=1
yi · ln(a

(N)
i ),

the deltas of the output layer again simplify to δ(N) =
(
a(N) − y

)
.
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MULTI-LAYER PERCEPTRONS

APPLIED TO REGRESSION

Assume we are given a data set Z = {(xi,yi) | i = 1, . . . , l}, where xi ∈ RI

and yi ∈ RO (in the simplest case O = 1)
There are two ways to make multi-layer perceptrons usable for regression:

1. Transforming/scaling all desired output vectors yi to [0, 1]O

2. The better option is to use linear neurons in the output layer, i.e., ϕN (x) =

x is used, while the other neurons remain unchanged; in this case, the
outputs of the N − 1-st layer can be understood as basis functions; the
output is then a linear combination of these basis functions.

The most common loss function is the quadratic loss.
Multi-layer perceptrons are universal approximators, however, this is only a
theoretical result with minor practical value.
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ANOTHER USAGE SCENARIO:

AUTOENCODERS

Assume we are given a data set X = {xi | i = 1, . . . , l}, where
xi ∈ Rd. (only inputs, no targets!)
Now consider a multi-layer perceptron with I = d input neurons and
O = d output neurons and suppose that we train the network with the
training set Z = {(xi,xi) | i = 1, . . . , l}, i.e. the network is trained to
produce its input as output. Such a network is called autoencoder.
If the number of units in each hidden layer is smaller than d or if other
precautions against overfitting are taken (see later), then such an au-
toencoder learns an efficient representation of the data set.
It is also possible to train an autoencoder on a data set whose input
vectors have been perturbed by noise. Then the autoencoder learns
to recover original data from noisy data. Such a network is commonly
called denoising autoencoder.
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PRACTICAL CONSIDERATIONS (1/4)

Input scaling: It is advisable to standardize all inputs to the same
range, e.g. to [−1, 1] or to mean 0 and variance 1. This ensures
that all input features have the same prior importance. Other-
wise large input features are overrated and it might take long to
properly adjust the weights for small input features.

Initial weights: A common strategy is to use small random values,
e.g. drawn from a uniform distribution over [−0.1, 0.1]. Weights
around 0 result in net inputs around 0. Therefore, the network is
almost linear in the beginning. Moreover, the derivatives of the
sigmoid activation function is maximal around 0, which speeds
up learning in the beginning.
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PRACTICAL CONSIDERATIONS (2/4)

Number of hidden layers: For most learning tasks, two hidden
layers are sufficient. For simpler tasks, even one or no hid-
den layer may be sufficient. Larger numbers of hidden layers
would make sense for more difficult tasks, but appropriate pre-
cautions have to be taken against overfitting. Moreover, training
becomes increasingly difficult for deeper networks (see later).

Numbers of hidden units: Too few hidden units result in under-
fitting. Too many hidden units may result in overfitting unless
appropriate precautions, such as, regularization are taken (see
later). Moreover, pruning or growing strategies can be applied
during training.
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PRACTICAL CONSIDERATIONS (3/4)

Learning rates: Typically, learning rates have to be low for online learning,
e.g. 0.1 or 0.01. For batch training, it is common to use something like,
e.g., η = 0.7

l
. The best choice, however, is to adapt the learning rate

during training. This can be done by help of the Hessian (advanced
topic, see literature).

Online vs. batch: With an appropriately chosen learning rate (or an adap-
tive learning rate), online learning is known to converge faster than
batch learning (see literature). It is also possible to choose a strategy
in between: by training in mini-batches.

Selective δ propagation: Learning can be sped up by marking samples
with sufficiently large deltas and only considering those for a certain
number of epochs.
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PRACTICAL CONSIDERATIONS (4/4)

Momentum term: In order to avoid oscillations, it is possible to
augment updates with the previous update, i.e. w := w+∆w+

µ ·∆wold, where ∆wold is the weight update of the previous it-
eration/epoch. µ is the momentum parameter that controls the
influence of the previous update.

Stopping criteria: The following stopping criteria can be used
(possibly in combination):

Maximal number of epochs/iterations reached
Empirical error below certain threshold
Relative improvement of empirical below certain threshold
Maximal weight change below certain threshold
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REGULARIZATION (1/4)

Support vector machines include a capacity term in its objective: the
flatness of discriminant/regressor function (which corresponds to mar-
gin maximization for classification). In theory, this capacity term aims
to avoid overfitting by limiting model complexity.
The neural networks considered so far have no such built-in mecha-
nism against overfitting.
In neural networks, complexity is mainly controlled by the architecture
of the network (number of hidden layers along with numbers of neu-
rons in hidden layers).
Since it is hard to find the optimal architecture for a given learning
task, an option would be to allow for a larger (more complex) network,
but to control its model complexity by appropriate additional measures
during training.
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REGULARIZATION (2/4)

Early stopping: As mentioned above, if we start from initial weights
around 0, the neurons’ activation is nearly linear. So the model com-
plexity is low in the beginning. During the course of training, weights
will become larger and the neurons’ activation becomes more non-
linear, i.e. the model complexity grows. The idea of early stopping is
to quit learning when the right model complexity is reached. There are
no well-founded strategies for that. Instead, the use of a validation set
is more or less the only option.

Training with noise: In order to avoid that the networks adapts too much
to individual training samples (overfitting), noise is added either to the
inputs or to the weights during training. Different strategies are avail-
able for that (see literature).
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REGULARIZATION (3/4)

Weight decay: As mentioned above, weights around 0 correspond to low complex-
ity models. A higher model complexity necessitates higher weights (in terms
of their absolute values). Therefore, a mechanism that favors weights around
0 can be used to control model complexity. In other words, we add λ · Ω(W)

to the learning objective, where the regularization term Ω(W) measures the
overall size of the weights, W is the set of all weights (resp. weight matrices)
in the network and λ is the regularization parameter that controls the influence
of the regularization term. A basic variant is Tikhonov regularization in which
Ω(W) is the (halved) sum of squares of all weights. This results in a deriva-
tive of ∂Ω

∂w
(k)
ji

(W) = w
(k)
ji resp. ∂Ω

∂W(k) (W) = W(k). Hence, the update in

backpropagation changes to

W(k) := W(k) + ∆W(k) − λ ·W(k),

where −λ ·W(k) obviously tends to push the weight matrix towards 0.
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REGULARIZATION (4/4)

Growing and pruning strategies: We already noted that the numbers of
hidden neurons control the complexity of the network. Growing starts
from a small (unterfitted) network and successively increases model
complexity by adding hidden neurons until the right model complexity
is reached. The best known algorithm is cascade correlation (see liter-
ature). Pruning, on the other hand, is concerned with removing unnec-
essary neurons from an already trained (possibly overfitted) network.
Two well-known strategies are Optimal Brain Damage (OBD) and the
Optimal Brain Surgeon (OBS). Both methods rely on second-order
derivatives (Hessian) to estimate the relative importance of neurons
(advanced topic, see literature).
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ALTERNATIVE LEARNING

ALGORITHMS
As backpropagation with a constant learning rate converges slowly in many cases,
add-ons and alternatives have been established:

Adaptive learning rate: The learning rate is not constant, but varied according to
some strategy/heuristics.

Second-order methods: methods that not only use first derivatives, but also
second-order derivatives (Newton method) or approximations of second-order
derivatives (quasi-Newton methods, BFGS, Levenberg-Marquardt).

Resilient backpropagation (Rprop): only the signs of gradients are taken into ac-
count to determine the direction of the weight update; the absolute amount of
update is specific for each weight and changes for each iteration. The more up-
dates appear consistently in the same direction, the more the amount grows.
The more the updates oscillate, the more the amount is shrunk.
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PRO'S AND CON'S OF

ARTIFICIAL NEURAL NETWORKS

+ Universal
+ Relatively easy to apply
– Black box
– Only applicable for vectorial data
– Large effort for training
– Solution is not guaranteed to be a global minimum, but only a

local one
– Large number of different variants and parameters; thorough

parameter selection is not feasible because of large number of
parameters and long training times.
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DEEP NETWORKS: MOTIVATION

Neural networks that are deep (many hidden layers) and broad
(many neurons in each hidden layers) would allow for repre-
senting, storing, and recognizing many complex patterns.
However, there are practical obstacles to the application of
standard backpropagation (and similar variants) to such net-
works:

� Overfitting is highly likely to occur (which could possibly be
counteracted with some regularization).

� Backpropagation cannot be used for training more than 2–
3 hidden layers because of vanishing gradients (see next
page).
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THE VANISHING GRADIENT

PROBLEM

We have seen above that

∂L

∂W(k−1)

(
y,a(N)) = δ(k−1) ·

(
1 | a(k−2)T )

= diag
(
ϕ′k−1•(net

(k−1))
)
· W̃(k)T · δ(k) ·

(
1 | a(k−2)T ),

i.e. each backward propagation step includes a multiplication with deriva-
tives of activation functions. If we have back-propagated deltas from the
N -th layer to the N − q-th layer, we have performed such multiplications
q times. Since the maximal value of the derivative of the sigmoid/logistic
function is 1

4
, this means that the magnitude of the deltas (and therefore

the magnitude of the gradients and the updates) decreases exponentially
layer by layer. This makes backpropagation training of deep networks in-
tractable, as weights at the back are updated extremely slowly.
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DEEP LEARNING

Deep learning is a class/framework of strategies for training
deep networks that are aimed to learn multiple levels of rep-
resentations of the data and to allow for accurate predictions
from these representations.
In the first successful supervised applications, deep learning
was a two-step procedure:

Pre-training: levels of representations are learned layer by
layer (unsupervised or supervised).

Fine-tuning: a supervised learning algorithm is applied that
makes predictions from the activations of the last layer of
the pre-trained network. Typically a single-layer ANN is
used, but any other predictor would be possible too.
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PRE-TRAINING AND FINE-TUNING

Pre-training: hidden layer no. 1

HIDDEN

TRAINING

INPUT
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PRE-TRAINING AND FINE-TUNING
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PRE-TRAINING AND FINE-TUNING
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PRE-TRAINING AND FINE-TUNING
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PRE-TRAINING AND FINE-TUNING
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METHODS FOR PRE-TRAINING

Restricted Boltzmann machine (RBM): A simple stochastic neural network with
an input layer and one hidden layer that are connected in both directions with
symmetric weights; RBMs aim to learn a probability distribution over the inputs.
The learning algorithm uses sampling of inputs and hidden activations along
with gradient descent.

Autoencoders: A (denoising) autoencoder with one hidden layer is trained in each
pre-training step. After training, the output layer of the autoencoder is discarded
and only the hidden layer remains. In the subsequent step, another autoen-
coder is trained with the inputs being the activations of the hidden neurons of
the previously trained autoencoder.

Supervised pre-training: A network with one hidden layer is trained in each pre-
training step. After training, the output layer is discarded and only the hidden
layer remains. In the subsequent step, another network is trained with the
inputs being the activations of the hidden neurons of the previous network.
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DEEP LEARNING (cont'd))

Unsupervised deep learning only consists of unsupervised pre-
training and omits fine-tuning.
In the meantime, it has become common to apply deep learn-
ing in a purely supervised fashion, i.e. without pre-training.
In order to avoid the vanishing gradient problem and to facil-
itate meaningful data representations, appropriate regulariza-
tion measures need to be employed (see below).
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HOW TO LEARN GOOD

REPRESENTATIONS?

The success of a deep network is determined by how meaningful the
representations in the hidden layers are.
What is a meaningful representation?

� Each hidden unit corresponds to a specific pattern (hidden) in the
data.

� Different hidden units correspond to different patterns, i.e. the pat-
terns are disentangled. Otherwise, further representations are dif-
ficult to learn and/or the final supervised learning in the fine-tuning
step is difficult.

In the following, we highlight a few approaches aimed at meaningful repre-
sentations.
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LEARNING SPARSE

REPRESENTATIONS

Disentangling of representations can also be
achieved by ensuring sparse activation, i.e. only a
fraction of hidden neurons are activated for a given
input.

Dropout: during training, activations are randomly
set to 0 (typically with a probability of 0.5);

Rectified linear units (ReLU): instead of a sig-
moid activation function, a function is used that
gives 0 below a certain threshold. The most
common choice is ϕ(x) = max(0, x).

These approaches allow for training a deep network
directly without pre-training.
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CONVOLUTIONAL NEURAL

NETWORKS (CNNs): MOTIVATION

In principle, classical feed-forward neural networks (fully con-
nected networks) could be used for image analysis by simply
connecting the pixels to input units.
However, if at all, this only makes sense for small aligned im-
ages (e.g. in character recognition).
For the analysis of larger and more complex images, this stan-
dard architecture is not useful.
Instead, it is common to have stacked layers of units that oper-
ate on small overlapping patches/windows. Such networks are
called convolutional neural networks (CNNs).
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CNNs: ARCHITECTURE

The first convolutional layer usually consists of multiple units that op-
erate on small image patches (3×3, 5×5, or 7×7).
Each unit corresponds to one simple feature of a patch. Such units
are often called filters.
The activations of all units are computed for all patches, thereby cre-
ating a feature map of the image.
Convolutional layers can be stacked.
It can be useful to down-sample feature maps by local max pooling
(e.g. with non-overlapping 2×2 windows).
Such networks can either have fully connected layers on top (e.g. for
image classification) or can also be fully convolutional (output is an
image; e.g. for segmentation of detected objects).
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CNNs: ARCHITECTURE (cont'd)

Input image (10×10)

Feature map (8×8)

Convolution/filter (3×3)
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CNNs: ARCHITECTURE (cont'd)
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CNNs: ARCHITECTURE (cont'd)
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CNNs: ARCHITECTURE (cont'd)

Input image (10×10)

Feature map (8×8)

Convolution/filter (3×3)

Input image (10×10)

Feature maps (8×8)

Convolution/filter (3×3)

Input image (10×10)

Feature maps, first layer (8×8)

Feature maps, second layer (6×6)

Convolution/filter (3×3)

Convolution/filter (3×3)

Input image (10×10)

Feature maps (8×8)

Downsampled feature maps (4×4)

Convolution/filter (3×3)

Max pooling mask (2×2)



371Unit 5: Artificial Neural Networks

CNNs: TRAINING

Fully connected layers are trained as usual.
In convolutional layers, each feature map/filter has only one set
of weights and all windows contribute weight updates. This is
called weight sharing.
In may pooling layers, the error signal is only propagated to the
input from which the maximal activation came.
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CONVOLUTIONAL NETWORK:

EXAMPLE (M.D. Zeiler & R. Fergus; arXiv, 2013)

Two layers of a convolutional network: hypothetical inputs maximizing ac-
tivation and real images that lead to a high activation of the considered
neuron
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DEEP NETWORKS: THE HYPE

Although the foundations of deep learning have been layed 15–
20 years ago, a major hype emerged only recently in the ma-
chine learning community.
Deep networks have won numerous competitions in music,
speech and image recognition, drug discovery, and other fields.
Deep learning has been called “. . . the biggest data science
breakthrough of the decade” (J. Howard).
The New York Times covered the subject twice with front-page
articles in 2012.
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DEEP NETWORKS: THE HYPE (cont'd)

Major companies, such as, Google, Microsoft, Apple, facebook,
etc. have recently invested in deep learning and are using deep
networks in their products and services.
Google has acquired companies specialized in deep learning:
DNNresearch (founded by G. Hinton, U. Toronto; March 2013;
price not revealed) and Deepmind (London-based company
founded by D. Hassabis; January 2014; price approx. $400–
650m)
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DEEP LEARNING: SUCCESS STORIES

Have become standard in object recognition in images; Ima-
geNet Challenge dominated by CNNs since several years
NIH Tox21 Challenge on predicting toxicity of chemical struc-
tures won by deep learning system
Deep learning is an essential ingredient in recent attempts to
autonomous driving, e.g. for semantic segmentation and even
end-to-end learning of driving decisions
AlphaGo: first system to play Go on the same level as world-
class players
Generating image captions
DeepArt: paint images in given style
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EXAMPLE: SEMANTIC

SEGMENTATION
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EXAMPLE: TOX21 CHALLENGE (1/3)

Computational challenge set up by the US agencies NIH, EPA,
and FDA
Unprecedented multi-million-dollar effort
12,000 compounds tested experimentally for twelve different
toxic effects
Goal: predict toxicity computationally
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EXAMPLE: TOX21 CHALLENGE (2/3)

Input features:

40,000 very sparse features: Extended Connectivity Finger-
Print (ECFP4) presence count of chemical sub-structures
5,057 additional features:

� 2,500 toxicophore features
� 200 common chemical scaffolds
� various chemical descriptors
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EXAMPLE: TOX21 CHALLENGE (3/3)

Deep learning-based solution
by JKU’s Institute of Bioinfor-
matics won the grand chal-
lenge, both panels (nuclear
receptor panel and stress re-
sponse panel), and six single
prediction tasks.
The hierarchical representa-
tion of deep networks allowed
for the identification of novel
toxicophores.
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DEEP LEARNING: COMMENTS

Without any doubt, deep networks are the most powerful tools
for audio and image recognition and other fields, also outper-
forming support vector machines.
Despite the practical successes, the theoretical foundations
why and under which conditions deep networks work are lag-
ging far behind.
The spectrum of variants is hard to survey, and the choice of
good parameters is both crucial and tricky.
Learning good representations of complex data, such as, high-
res images, requires excessive amounts of training data and
excessive computational power (supercomputers, GPUs).
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TIME SERIES/SEQUENCE ANALYSIS

WITH NEURAL NETS?

Feedforward neural networks
require vectorial inputs.
Therefore, they cannot be
applied to time series or
sequences directly.
One option is to apply them to
(sliding) windows.
The obvious disadvantage of
this simple approach is that
windows are treated indepen-
dently and no learning across
windows can take place.
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WITH NEURAL NETS?

Feedforward neural networks
require vectorial inputs.
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sequences directly.
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The obvious disadvantage of
this simple approach is that
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RECURRENT NEURAL NETS (RNNs)

Recurrent neural networks (RNNs) provide an alternative,
where “recurrent” means that the network has connection cy-
cles.
There are several different RNN architectures.
After each evaluation (for one window, in time step t), the acti-
vations are kept and potentially used as inputs in time step t+1;
so the generalization of the forward pass is straightforward for
RNNs.
The backpropagation algorithm can also be generalized to
RNNs; this is typically called backpropagation through time.
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RECURRENT NEURAL NETS (cont'd)

Example of RNN with output sequence:

Input Sequence

Output Sequence
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RECURRENT NEURAL NETS (cont'd)

Example of RNN with output sequence:

Input Sequence

Output Sequence

Example of RNN with single output/target (output emitted only in last step):

Input Sequence

Output / target
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RNNs AND VANISHING GRADIENTS

Standard RNNs with sigmoid activations are particularly prone
to the vanishing gradient problem (actually, this problem has
been formulated/discussed for RNNs first): errors/deltas de-
cline (or explode) quickly when back-propagating through time.
The consequence is that only short time lags between inputs
and output signals can be learned correctly (up to about 10
time steps).
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LONG SHORT-TERM MEMORY (LSTM)

In order to overcome the vanishing gradient problem in RNNs, Hochre-
iter and Schmidhuber (1997) have introduced Long Short-Term Mem-
ory (LSTM) networks.
Apart from a standard input unit, an LSTM memory cell has three main
components:

1. A linear self-connected memory unit (the linear activation facili-
tates constant error flow and thereby avoids vanishing gradients)

2. A multiplicative input gate to protect the memory cell from irrele-
vant inputs

3. A multiplicative output gate to protect the outputs (or other con-
nected untis) from currently irrelevant memory contents
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ARCHITECTURE OF AN LSTM

MEMORY CELL
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LONG SHORT-TERM MEMORY (LSTM;

cont'd)

LSTM memory units are trained with a so-called truncated
backpropagation algorithm.
Special update rules are necessary to account for the multi-
plicative gates.
By avoiding the vanishing gradient problem, LSTM networks
can learn across time lags of 1,000 or more time steps.
The LSTM memory cell is just a building block. LSTM memory
cells can be combined in various ways (see examples below).
Since the introduction of LSTM, various variants have been in-
troduced (e.g. forget gates, peepholes).
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EXTREMELY SIMPLE LSTM NET FOR

TIME SERIES ANALYSIS
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LSTM NETWORK FOR SEQUENCE

CLASSIFICATION
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LSTM: THE CURRENT HYPE

Some benchmark records of 2014 achieved by LSTM:

Text-to-speech synthesis (Fan et al., Microsoft, Interspeech 2014)
Language identification (Gonzalez-Dominguez et al., Google, Interspeech
2014)
Large vocabulary speech recognition (Sak et al., Google, Interspeech 2014)
Prosody contour prediction (Fernandez et al., IBM, Interspeech 2014)
Medium vocabulary speech recognition (Geiger et al., Interspeech 2014)
English to French translation (Sutskever et al., Google, NIPS 2014)
Audio onset detection (Marchi et al., ICASSP 2014)
Social signal classification (Brueckner & Schulter, ICASSP 2014)
Arabic handwriting recognition (Bluche et al., DAS 2014)
Image caption generation (Vinyals et al., Google, 2014)
Video to textual description (Donahue et al., 2014)
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LSTM: THE CURRENT HYPE (cont'd)

LSTM @ Google:

Neural Machine Translation System (NMT)
Google Voice Transcription (Android speech recognizer)

LSTM @ Microsoft:

Photo-real talking head with deep bidirectional LSTM
Spoken language understanding using LSTM
Text-to-speech synthesis with bidirectional LSTM-based RNN

LSTM @ facebook:

Text analysis

LSTM @ Apple:

Siri
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EXAMPLE: IMAGE CAPTIONS
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OPEN-SOURCE SOFTWARE

FRAMEWORKS (SELECTION)

CAFFE: by Berkeley Vision and Learning Center; interfaces for C++, com-
mand line, Python, and MATLAB;

LASAGNE: lightweight interface for Theano (see below);
MXNet: by Distributed (Deep) Machine Learning Community; interfaces

for C++, Python, Julia, Matlab, JavaScript, Go, R, and Scala;
TensorFlow: by Google Brain; Python interface;
Theano: by Université de Montréal; Python interface;
Torch: by R. Collobert, K. Kavukcuogl, and C. Farabet; based on the Lua

programming language; interface for Lua and C;

All of these frameworks support running code on GPUs (via CUDA); beside
fully connected networks, all feature CNNs and RNNs.
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