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DECISION TREES: INTRODUCTION

A decision tree is a classifier that classifies samples “by asking
questions successively”; each non-leaf node corresponds to a
question, each leaf corresponds to a final prediction.
Decision tree learning is concerned with partitioning the train-
ing data hierarchically such that the leaf nodes are hopefully
homogeneous in terms of the target class.
Decision trees have mainly been designed for categorical data,
but they can also be applied to numerical features.
Decision trees are traditionally used for classification (binary
and multi-class), but regression is possible, too.
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DECISION TREE LEARNING

All decision tree learning algorithms are recursive, depth-first
search algorithms that perform hierarchical splits.
There are three main design issues:

1. Splitting criterion: which splits to choose?
2. Stopping criterion: when to stop further growing of the tree?
3. Pruning: whether/how to collapse unnecessarily deep sub-

trees?

The two latter are especially relevant for adjusting the complex-
ity of decision trees (underfitting vs. overfitting).
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DECISION TREE LEARNING (cont'd)

1. Given: training set Z = {(xi, yi) | i = 1, . . . , l}
2. Call DecTree(Z, Root, {all possible splits})
3. DecTree(Z, N , I)

a. If stopping criterion is fulfilled, exit.
b. Determine split i ∈ I such that splitting criterion is maximal.
c. Divide Z into disjoint subsets Zi,j according to the split i.
d. For all j such that Zi,j 6= ∅

Generate new node Nj

Call DecTree(Zi,j , Nj , I\{i})
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SPLITTING:

CATEGORICAL FEATURES

Binary split: ZL = {(x, y) ∈ Z | xi = c}, ZR = {(x, y) ∈ Z | xi 6= c}
Split according to entire feature: Zj = {(x, y) ∈ Z | xi = cj}

Typically, all possible splits w.r.t. all features are considered, but either bi-
nary or entire feature splits.

Example: consider a categorical attribute i with values {A, B, C}.
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SPLITTING:

NUMERICAL FEATURES

Apply threshold c to i-th feature, i.e.

ZL = {(x, y) | xi < c},ZR = {(x, y) | xi ≥ c}.

Typically, all possible splits w.r.t. all features are considered, where
thresholds are chosen as mean values of “neighboring” values oc-
curring in the data.

Example: if the values 0, 0.1, 0.4, 0.8, and 1.2 occur in the data for
a numerical feature, the following thresholds are considered: 0.05,
0.25, 0.6, and 1. For large data sets with many different values for
each feature, this is unpractical. Instead, fine-grained binnings of
the ranges of the features can be considered.
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COMMON SPLITTING CRITERIA

Classification:

Information gain
Gini impurity (gain)

Regression:

variance reduction
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INFORMATION GAIN

For any (sub)set of data Z, let us define the relative proportions of
samples belonging to the k-th class (of classes 1, . . . ,M ) as

pk(Z) =
|{(x, y) ∈ Z | y = k}|

|Z|
.

Then the entropy of Z w.r.t. the target is defined as

H(Z) = −
M∑
k=1

pk(Z) · log
(
pk(Z)

)
.

The entropy is maximal if the classes are uniformly distributed in the
set Z. It is 0 (minimal) if all samples of Z belong to one single class.
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INFORMATION GAIN (cont'd)

The information gain of employing the i-th split for partitioning Z into sets
Zi,1, . . . ,Zi,Ki is then defined as

gE(Z, i) = H(Z)−
Ki∑
j=1

|Zi,j |
|Z| ·H(Zi,j).

Comments:

Typically, in each step, all possible splits are considered and the one
with the highest information gain is selected.
The information gain is nothing else but the Kullback-Leibler diver-
gence.
Information gain is the standard splitting criterion in the decision tree
algorithms ID3, C4.5, and C5.0.
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GINI IMPURITY (GAIN)

With the notations above, the Gini impurity of Z is defined as

IG(Z) =

M∑
k=1

pk(Z) ·
(
1− pk(Z)

)
= 1−

M∑
k=1

pk(Z)
2

This value is maximal if the classes are uniformly distributed in the set Z. It
is 0 (minimal) if all samples of Z belong to one single class.
The Gini (impurity) gain of employing the i-th split for partitioning Z into sets
Zi,1, . . . ,Zi,Ki is then defined as

gG(Z, i) = IG(Z)−
Ki∑
j=1

|Zi,j |
|Z| · IG(Zi,j).

This is the standard splitting criterion employed by the decision tree algo-
rithm CART for classification.
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VARIANCE REDUCTION

For any (sub)set of data Z = {(xi, yi) | i = 1, . . . , l}, let us denote
the vector of target values as y(Z) = (y1, . . . , yl). The reduction
of variance of employing the i-th split for partitioning Z into sets
Zi,1, . . . ,Zi,Ki

is then defined as

gV (Z, i) = Var
(
y(Z)

)
−

Ki∑
j=1

Var
(
y(Zi,j)

)
.

This is the standard splitting criterion employed by the decision tree

algorithm CART for regression.
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STOPPING CRITERIA: WHEN TO QUIT

FURTHER SPLITTING?

Maximum depth reached
Minimum number of samples in current node under limit
Splitting gain below limit

[details: see literature / software documentation]
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PRUNING DECISION TREES

Reduced error pruning: recursively remove nodes the removal of
which does not lead to a decrease of prediction performance
(on training set or validation set).

Cost-complexity pruning: recursively remove the sub-tree the re-
moval of which leads to the smallest increase of error per re-
moved leaf. This is repeated until only the root tree remains.
Of the entire sequence of trees, the tree is used as final model
that gives the best prediction performance (on training set or
validation set).

[details: see literature / software documentation]
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COMPUTING PREDICTIONS

The tree recursively partitions/splits the training set into subsets, each of
which is associated with a leaf node. This “assignment” of samples to leaf
nodes is the basis for making predictions with decision trees: For a new in-
put x, traverse through the tree by answering the questions associated with
each node until a leaf node is reached to which the sample x is assigned.

Classification: assign the class to the leaf node that appears most promi-
nently among the training samples associated with this leaf node; al-
ternatively: compute relative frequencies of classes in the leaf node
and use these frequencies as estimates of the conditional probabili-
ties p(y = k | x).

Regression: use the mean target value of samples associated with the
leaf node.
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EXAMPLE: IRIS DATA SET

Petal.Length< 2.45

Petal.Width< 1.75
setosa    

versicolor virginica 
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EXAMPLE: IRIS DATA SET
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EXAMPLE: IRIS DATA SET
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DECISION TREES AS RULE BASES

Every path from the tree root to a leaf can be interpreted as a rule,
where each split corresponds to the fulfillment/non-fulfillment of a
condition/predicate.

Example (Iris data set): the decision tree from the previous slide
can be interpreted as follows:

IF Petal.Length < 2.45 THEN Class = setosa

IF Petal.Length ≥ 2.45 & Petal.Width < 1.75 THEN Class = versicolor

IF Petal.Length ≥ 2.45 & Petal.Width ≥ 1.75 THEN Class = virginica
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EXAMPLE: REGRESSION DATA SET
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EXAMPLE: REGRESSION DATA SET
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x2< 0.7267
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0.083730.2046
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0.3732
0.4081 0.6673

0.6766

0.5787 0.8847
1.019 1.383
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ADVANTAGES OF DECISION TREES

Simple and computationally efficient
Built-in feature selection
Interpretable models
Can be applied to categorical and numerical attributes
Scaling-invariant for numerical features
Can applied both to classification (genuine multi-class support)
and regression



297Unit 4: Random Forests

DISADVANTAGES OF DECISION

TREES

Greedy splitting may lead to sub-optimal solutions. Finding an
optimal tree is actually NP-complete.
Only axis-parallel splits of numerical features (though there are
variants that consider linear combinations of numerical fea-
tures, too)
Shallow trees are not accurate (high bias), deep trees overfit
(high variance). This is the classical bias-variance trade-off like
for any other machine learning method, but it is more difficult to
address for decision trees (stopping criteria, pruning).
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RANDOM FORESTS

Ensemble methods are quite common in machine learning:

� Instead of a single model, multiple models are trained.
� When making predictions, the results of these models are

aggregated (e.g. averaged, voting, etc.).

The motivation of aggregating multiple models is to reduce vari-
ance, i.e. to avoid overfitting.
Random forests are ensembles of decision trees.
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RANDOM FORESTS: MOST COMMON

VARIANT

Use CART (Classification and Regression Trees) for training
the single trees, i.e. binary splits with Gini impurity gain (for
classification) / variance reduction (for regression) as splitting
criterion.
For each tree, samples are chosen randomly from the training
set (typically with replacement).
For each split, only a sub-sample of randomly chosen features
is considered.
Trees are grown to full size and not pruned.
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EXAMPLE: IRIS DATA SET
(1000 TREES)
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EXAMPLE: REGRESSION DATA SET

True function:
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RANDOM FORESTS VS. OVERFITTING

It can be proved (cf. Breiman) that random forests do not tend
to overfit if the number of trees increases.
This, however, does not mean that random forests cannot over-
fit generally. Like for any other machine learning method, train-
ing errors can be much smaller than the real generalization er-
ror (test error), especially if the number of trees is not large.
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OUT-OF-BAG ESTIMATES

Random forests allow for assessing the generalization perfor-
mance on the basis of training data only.
For each sample, the error can be computed by considering
only those trees that have not used this sample in their training
sub-sample.
Then the overall out-of-bag error can be computed by averag-
ing the out-of-bag errors of all samples.
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MEASURING VARIABLE IMPORTANCE

Mean Gini impurity decrease: for all features, average the Gini
impurity gains of all splits in all trees that involve this feature;

Mean accuracy decrease:

1. Compute out-of-bag error for each sample.
2. For each feature separately, consider random permutations

and compute the out-of-bag errors for the data set with the
permuted feature.

3. Then the importance score is computed by averaging the
differences before and after permuting the feature (upon
normalization by the standard deviation of the differences).
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EXAMPLE: VARIABLE IMPORTANCES

FOR IRIS DATA SET (1000 TREES)
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STRATIFICATION FOR UNBALANCED

CLASS DISTRIBUTIONS

The sub-samples used for training the individual trees are as
(un)balanced as the original data set.
Therefore, larger classes will receive more emphasis by the
final random forest.
A simple strategy to equalize the importance of classes and,
thereby, to improve balanced accuracy instead of standard ac-
curacy is to stratify the classes when sampling.
Example: suppose we have a data set with 1000 samples, 900
of which are negative and 100 of which are positive. Then we
can always draw 100 negative and 100 positive samples for
training trees.
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CONCLUDING REMARKS

Random forests are a very powerful machine learning tools.
Advantages:

+ Only few hyperparameters and easy to use
+ Built-in feature selection (+ variable importance measures)
+ Possibility to correct for unbalanced class distributions
+ Relatively robust against overfitting
+ Scale-invariant
+ Training and predictions can be parallelized
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CONCLUDING REMARKS (cont'd)

Disadvantages:

− Computationally expensive
− Not very interpretable (unlike single trees)

That they are robust against overfitting does not mean that the
training error is an estimate for the generalization error! Use
out-of-bag errors or the test set method / cross validation to
assess the generalization performance of random forests!


