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Chapter 1

Introduction

1.1 Machine Learning Introduction

This course is part of the curriculum of the master in computer science (in particular the majors
“Computational Engineering” and “Intelligent Information Systems”) and part of the master in
bioinformatics at the Johannes Kepler University Linz.

Machine learning is currently a major research topic at companies like Google, Microsoft,
Amazon, Facebook, AltaVista, Zalando, and many more. Applications are found in computer
vision (image recognition), speech recognition, recommender systems, analysis of Big Data, in-
formation retrieval. Companies which have their domain in the world wide web like companies
offering search engines, social networks, videos, information, or connecting people with specific
interest use machine learning techniques to analyze their data. Machine learning methods are used
to annotate web pages, images, videos, and sound recordings in web data. They can find spe-
cific objects in images and detect a particular music style if only given the raw data. Therefore
Google, Microsoft, Facebook are highly interested in machine learning methods. Machine learn-
ing methods attracted the interest of companies offering products via the web. These methods
are able to identify groups of similar users, to predict future behavior of customers, and can give
recommendation of products in which customers will be interested based previous costumer data.

Machine learning has major applications in biology and medicine. Modern measurement tech-
niques in both biology and medicine create a huge demand for new machine learning approaches.
One such technique is the measurement of mRNA concentrations with microarrays and sequenc-
ing techniques. The measurement data are first preprocessed, then genes of interest are identified,
and finally predictions made. Further machine learning methods are used to detect alternative
splicing, nucleosome positions, gene regulation, etc. Alongside neural networks the most promi-
nent machine learning techniques relate to support vector machines, kernel approaches, projection
method and probabilistic models like latent variable models. These methods provide noise re-
duction, feature selection, structure extraction, classification / regression, and assist modeling.
In the biomedical context, machine learning algorithms categorize the disease subtype or predict
treatment outcomes based on DNA characteristics, gene expression profiles. Machine learning
approaches classify novel protein sequences into structural or functional classes. For analyzing
data of association studies, machine learning methods extract new dependencies between DNA
markers (SNP - single nucleotide polymorphisms, SNV - single nucleotide variants, CNV - copy
number variations) and diseases (Alzheimer, Parkinson, cancer, multiples sclerosis, schizophrenia
or alcohol dependence).

The machine learning course series comprises:

1
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“Basic Methods of Data Analysis”: this course gives a smooth introduction to machine
learning with examples in R ; it covers summary statistics (mean, variance), data summary
plots (boxplot, violin plot, scatter plot), basic methods to analyze multivariate data (principal
component analysis and clustering), and linear models (least squares regression, ANOVA,
ANCOVA, logistic regresssion, Poisson regression, Ridge regression, LASSO, elastic net).

“Machine Learning: Supervised Methods”: classification and regression techniques, time
series prediction, kernel methods, support vector machines, neural networks, deep learning,
deep neural and belief networks, ARMA and ARIMA models, recurrent neural networks,
LSTM

“Machine Learning: Unsupervised Methods”: maximum likelihood estimation, maximum
a posterior estimation, maximum entropy, expectation maximization, principal component
analysis, statistical independence, independent component analysis, independent compo-
nent analysis, multidimensional scaling (Kruskal’s or Sammon’s map), locally linear em-
bedding, Isomap, hierarchical clustering, mixture models, k-means, similarity based clus-
tering (affinity propagation), biclustering, factor analysis, sparse codes, population codes,
kernel PCA, hidden Markov models (factorial HMMs and input-output HMMs), Markov
networks and random fields, restricted Boltzmann machines, auto-associators, unsupervised
deep neural networks

“Theoretical Concepts of Machine Learning”: estimation theory (unbiased and efficient
estimator, Cramer-Rao lower bound, Fisher information matrix), consistent estimator, com-
plexity of model classes (VC-dimension, growth, annealed entropy), bounds on the gen-
eralization error, Vapnik and worst case bounds on the generalization error, optimization
(gradient based methods and convex optimization), Bayes theory (posterior estimation, er-
ror bounds, hyperparameter optimization, evidence framework), theory on linear functions
(statistical tests, intervals, ANOVA, generalized linear functions, mixed models)

In this course the most prominent machine learning techniques are introduced and their math-
ematical basis and derivatives are explained. If the student understands these techniques, then the
student can select the methods which best fit to the problem at hand, the student is able to optimize
the parameter settings for the methods, the student can adapt and improve the machine learning
methods, and the student can develop new machine learning methods.

Most importantly, students should learn how to chose appropriate methods from a given pool
of approaches for solving a specific problem. To this end, they must understand and evaluate the
different approaches, know their advantages and disadvantages as well as where to obtain and how
to use them. In a step further, the students should be able to adapt standard algorithms for their own
purposes or to modify those algorithms for particular applications with certain prior knowledge or
problem-specific constraints.

1.2 Course Specific Introduction

Data analysis and visualization are essential to most fields in science and engineering. The goal of
this course is to provide students with a basic tool chest of methods for pre-processing, analyzing,
and visualizing scientific data.
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This course introduces basic concepts of data analysis by examples. The theoretical back-
ground of the introduced methods is not covered in this course but in other courses.

1.3 Examples in R

The examples are presented in R . In order to present plots and graphics it is necessary to use a
software environment, where the methods are ready to use and the results can be visualized. For
the course it is not necessary to install R on your computer. However, to try out the methods, play
with different parameter settings, and to get a feeling for the methods, we recommend to install
R on your computer.

R is free and an implementation of the S language which has been used by statisticians and data
analysts for two decades. R is probably the most widely used software tool for bioinformatics and
became popular due to its data handling (e.g. importing microarray data), statistical algorithms,
machine learning / data modeling implementations and integrated data visualization. One of the
largest sources of R tools for bioinformatics is the Bioconductor Project (www.bioconductor.org)
which will be utilized in this course. These days R is increasingly popular in machine learning
even outside bioinformatics e.g. for modeling the financial market or for forecasting.

R has the advantages:

it is free and open source with a large community,

it is flexible and extensible,

it has implementations of major machine learning and statistical methods,

it has graphics for data visualization,

it has convenient data handling tools, and

it has matrix and vector calculation tools.

To install R , you should download it from http://cran.r-project.org/ for Windows, Linux, or
MacOS X. First, the R base has to be installed and then the packages. The R base can be found
at the main web page but also under “R Sources” (the R source code to compile) and under “R
Binaries” (pre-compiled binary files). The packages are located in “Packages” and can be installed
subsequently.

For Linux, you have to decide whether to install binaries or the source. To install the binaries,
one has to know the Linux installation (Ubuntu, RedHat, Debian, Suse). The source code is
R-2.10.1.tar.gz and can be compiled using “make” and “Makefiles”. After installation, you
can run R in the command line by typing R.

For Windows, we recommend to install the binaries. The binary for the R base is R-*.exe
which is an executable and installs itself. After installation, you can run the RGui by a desktop
click or run R in the command line by typing R.

R is installed with the following manuals:

"An Introduction to R "

http://cran.r-project.org/
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"The R Language Definitions"

"R Installation and Administration"

"Writing R Extensions"

"R Data Import and Export"

The packages are in the following repositories:

1. CRAN

2. CRAN (extras)

3. BioC software

4. BioC annotation

5. BioC experiment

6. BioC extra

7. R-Forge

“CRAN” and “R-Forge” supply R packages and “BioC” supplies the Bioconductor packages
(http://www.bioconductor.org).

For installing the packages, first the repositories, where the packages are found must be chosen.
This can be done by the R function setRepositories() which is called by setRepositories()
at the command line. Then a Gui should open, where you can select the repositories.

To install the packages, use the R function install.packages() by typing install.packages()
into the command line. Then a Gui should open which asks for the mirror, where you can choose
the Austrian mirror http://cran.at.r-project.org/.

Alternatively, you can also install the Bioconductor packages by command lines in R :

R> source("http://www.bioconductor.org/biocLite.R")
R> biocLite("PACKAGE-NAME")

To install the packages under a Windows system, you can go to the menu “packages” and first
choose a download site by the button “Set CRAN mirror” or by the command chooseCRANmirror().
For example, the Austrian mirror http://cran.at.r-project.org/ may be chosen.

Then set the repositories by the button “Select repositories” in the menu “packages” or by the
command setRepositories().

The packages can be installed by the according button “Install packages” in the menu “pack-
ages” or by the command install.packages().

Alternatively, you can also install the Bioconductor packages by command lines in R :

R> source("http://www.bioconductor.org/biocLite.R")
R> biocLite("PACKAGE-NAME")

http://www.bioconductor.org
http://cran.at.r-project.org/
http://cran.at.r-project.org/
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1.4 Data-Driven or Inductive Approach

The conventional approach to solve problems with the help of computers is to write programs
which solve the problem. With this approach the programmer must understand the problem, find
a solution appropriate for the computer, and implement this solution on the computer. We call
this approach deductive because the human deduces the solution from the problem formulation.
However in biology, chemistry, biophysics, medicine, and other life science fields a huge amount
of data is produced which is hard to understand and to interpret by humans. A solution to a
problem may be found by statistical methods or by a machine that learns. Statistics tries to explain
variability in the data in order to draw conclusions and to make decisions. Machine learning tries
to find patterns and structures in the data. Statistical and machine learning methods automatically
find descriptions of the data, regularities in the data, characteristics of the data, and dependencies
between parts of the data. The knowledge about the extracted characteristics, regularities, and
structures can be used to solve the problem at hand. We call this approach inductive. Statistics and
machine learning is about inductively solving problems by using computers.

In this course we present tools and basic techniques for analyzing data with statistical and
machine learning methods. We demonstrate these tools with examples and explain how the results
should be interpreted. Furthermore, we discuss strengths and weaknesses of the approaches for
different kinds of data. In particular we discuss which tool should be used for which kind of tasks
and for which kind of data.
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Chapter 2

Representing Observations

Observations and measurements of the real world objects are represented as data on a computer.
Subsequently, these data are analyzed to explain variation and to find structures in the data. These
analyzes allow to perform forecasting and classification, where the outcome of measurements of
the objects and future events are predicted. On the other hand, data analyzes allows to charac-
terize and categorize the objects and find relation between them or to other objects: they reveal
unknown states of the objects, relations between the objects, processes involving the objects and
other objects, etc.

2.1 Feature Extraction, Selection, and Construction

Features or characteristics of objects must be extracted from the original data that are obtained
from measurements or recordings of the objects. The process of generating features from the raw
data is called feature extraction. In many applications features are directly measured, like length,
weight, etc. However, for other applications feature extraction is necessary like the extraction of
features from an image, like the length or width of an object in an image.

For some tasks a huge number of features is available if they are automatically measured or
extracted. Examples in bioinformatics are data produced by the RNA microarray technique which
contains simultaneous measurements of the expression level of 20,000 genes Hochreiter et al.
[2006]. The number of features are even larger for genotyping measurements by cDNA arrays
Clevert et al. [2011] or by next generation sequencing Klambauer et al. [2012, 2013]. Further
examples are bio-techniques, like peptide arrays, protein arrays, mass spectrometry, etc., which
produce high-dimensional data Mahrenholz et al. [2011], Schwarzbauer et al. [2012]. The tech-
niques simultaneously measure many features as they are not designed for a specific task. Thus,
for a specific task many measurements may be irrelevant. For example, only a few genes may be
important for a specific biological question, e.g. detecting cancer related genes or predicting the
outcome of a cancer therapy Talloen et al. [2007], Kasim et al. [2010], Talloen et al. [2010]. To
chose relevant features to solve the task at hand is called feature selection Hochreiter and Ober-
mayer [2004, 2005]. An feature selection example is given in Fig. 2.1, where one variable is
related to the classification task and the other is not. Feature selection is a very important step in
bioinformatics both to construct appropriate models but also, sometimes more importantly, to gain
insight into biological processes.

The first step of data analysis is to select the relevant features or chose a model which auto-
matically identifies the relevant features. Fig. 2.2 shows the design cycle for generating a model

7
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Figure 2.1: Relevant vs. irrelevant feature. A simple classification problem with two features.
Feature 1 (var. 1) is noise and feature 2 (var. 2) is correlated to the classes. Between the upper
right figure and lower left figure only the axis are exchanged. The upper left figure gives the class
histogram along feature 2, whereas the lower right figure gives the histogram along feature 1. The
correlation to the class (corr) and the performance of the single variable classifier (svc) is given.
Copyright c© 2006 Springer-Verlag Berlin Heidelberg.
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Figure 2.2: The design cycle for machine learning in order to solve a certain task. Copyright c©
2001 John Wiley & Sons, Inc.

with statistical or machine learning methods. After collecting the data and extracting the features,
the relevant features are selected.

The problem of selecting the right features / variables can be difficult. Fig. 2.3 shows an
example where single features cannot improve the classification performance but a combination
of features improves it. Fig. 2.4 shows an example where the feature’s mean values and variances
in the left sub-figure are equal to the same values in the right sub-figure. However, the direction
of the variances of the features differs in the sub-figures which leads to different performances in
classification.

Features that are not correlated with the target can be important for constructing a good model
and, therefore, should be selected. On the other hand, features with large correlation to the target
may be not important for constructing a good model and should not be selected. For example,
given the values of the left hand side in Tab. 2.1, the target t is computed from two features f1 and
f2 as t = f1 + f2. All values have mean zero and the correlation coefficient between t and f1 is
zero. In this case f1 should be selected because it has negative correlation with f2. The top ranked
feature may not be correlated to the target, e.g. if it contains target-independent information which
can be removed from other features. The right hand side of Tab. 2.1 depicts another situation,
where t = f2 + f3. f1, the feature which has highest correlation coefficient with the target (0.9
compared to 0.71 of the other features) should not be selected because it is correlated to all other
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Figure 2.3: Only a combination of features helps. An XOR problem with two features, where each
single feature is neither correlated to the outcome nor helpful for classification. Only both features
together improve the classification performance.

Figure 2.4: Features with different variance. The left and right sub-figure both show two classes.
The feature’s mean values and variances are equal in both sub-figures. However, the direction
of the variances of the features differs in the sub-figures leading to different performances in
classification.
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f1 f2 t f1 f2 f3 t

-2 3 1 0 -1 0 -1
2 -3 -1 1 1 0 1

-2 1 -1 -1 0 -1 -1
2 -1 1 1 0 1 1

Table 2.1: Examples of features-target correlations. Left hand side: the target t is t = f1 + f2,
however f1 is not correlated with t. Right hand side: t = f2 + f3, however f1 has highest
correlation coefficient with the target.

features.

In some tasks it is helpful to combine some features to a new feature, that is to construct
features. To create new features from the existing features is called feature construction. For ex-
ample, for gene expression data combining values to a meta-gene value gives more robust features
because the noise is “averaged out”. In this example, genes that are always activated simulta-
neously because they belong to the same pathway may be combined to a more robust feature
which corresponds to a pathway activation. A popular way of feature construction is principal
component analysis (PCA) or independent component analysis (ICA). These linear feature con-
struction or projection methods will be introduced later. The components of PCA or ICA are new
constructed features, which, however, are often difficult to interpret. PCA and ICA can be gen-
eralized to non-linear feature construction methods Hochreiter and Schmidhuber [1997a,c, 1998,
1999a,d,b,c].

Another way to construct features is to use kernel methods. The original vectors of features
are mapped into another space where implicitly new features are created. Besides this very generic
kernel-based way, often non-linear features are constructed using prior knowledge of the problem
to solve. For example, in bioinformatics a sequence of nucleotides or amino acids may be char-
acterized by their similarity to other sequences. To compute these similarities alignment methods
that include biological knowledge are used. These similarity scores are non-linear functions of the
original sequence elements Hochreiter et al. [2007].

For some tasks objects are not measured individually but together with another object. We
encountered such an example by alignment algorithms in bioinformatics, where a sequence is
characterized by its similarity to other sequences. Another example are web pages which are
described by their link structure: each link is described by two web pages. If an article is described
by its citations of other articles, then we have again pairs of objects. Very prominent in these days
are social networks were a user is described by her interactions with other users. These data
are dyadic data where objects are characterized by their relation to other objects and for which
specialized machine learning methods were developed Hochreiter and Obermayer [2002, 2003,
2006].

In the next sub-sections some data sets are presented in order to give an intuition of the kind
of features that typically appear in real world data.
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Figure 2.5: Examples of Iris flowers.

2.2 Example 1: Anderson’s Iris Data Set

The Iris flower data set or Fisher’s Iris data set is a multivariate data set introduced by Sir Ronald
Fisher (1936) as an example of discriminant analysis Fisher [1936]. Iris is a genus of 260–300
species of flowering plants with showy flowers (see Fig. 2.5). The name stems from the Greek
word for a rainbow, as the flower colors have a broad variety. The three species of the data set
are Iris setosa (Beachhead Iris), Iris versicolor (Larger Blue Flag, Harlequin Blueflag), and Iris
virginica (Virginia Iris). This data set is sometimes called Anderson’s Iris data set because Edgar
Anderson collected the data to quantify the morphologic variation of Iris flowers of three related
species Anderson [1935]. Two of the three species were collected in the Gaspe Peninsula “all from
the same pasture, and picked on the same day and measured at the same time by the same person
with the same apparatus” Anderson [1935].

Four features were measured from each sample: the length and the width of the sepals and
petals, in centimeters(see Fig. 2.6). For each of the three species 50 flowers were measured (see
part of the data in Tab. 2.2). Based on these four features, Fisher developed a linear discriminant
model to distinguish the species from each other.
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Figure 2.6: Flowerparts petal and septal are depicted and marked.

Table 2.2: Part of the iris data set with features sepal length, sepal width, petal length, and petal
width.

No. Sepal Petal Species

Length Width Length Width

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
54 5.5 2.3 4.0 1.3 versicolor
55 6.5 2.8 4.6 1.5 versicolor

101 6.3 3.3 6.0 2.5 virginica
102 5.8 2.7 5.1 1.9 virginica
103 7.1 3.0 5.9 2.1 virginica
104 6.3 2.9 5.6 1.8 virginica
105 6.5 3.0 5.8 2.2 virginica
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2.3 Example 2: Multiple Tissues Microarray Data Set

This data set consists of microarray data from the Broad Institute “Cancer Program Data Sets”
which was produced by Su et al. [2002]. The data contains gene expression profiles from human
and mouse samples across a diverse set of tissues, organs, and cell lines. The goal was to have a
reference for the normal mammalian transcriptome. The microarray platforms were Affymetrix
human (U95A) or mouse (U74A) high-density oligonucleotide arrays. The authors profiled the
gene expression level from 102 human and mouse samples and selected 5,565 genes. Gene selec-
tion is an important first step when analyzing microarray data Hochreiter and Obermayer [2004,
2005], Talloen et al. [2007], Kasim et al. [2010], Talloen et al. [2010].

The samples predominantly come from a normal physiological state in the human and the
mouse. The data set represents a preliminary, but substantial, description of the normal mam-
malian transcriptome. Mining these data may reveal insights into molecular and physiological
gene function, mechanisms of transcriptional regulation, disease etiology, and comparative ge-
nomics. Hoshida et al. [2007] used this data set to identify subgroups in the samples by using
additional data of the same kind. The four distinct tissue types are:

breast (Br),

prostate (Pr),

lung (Lu),

and colon (Co).

These tissue types are indicated in the data set.

2.4 Example 3: Breast Cancer Microarray Data Set

Also this data set consists of microarray data from the Broad Institute “Cancer Program Data Sets”
which was produced by van’t Veer et al. [2002]. Goal of van’t Veer et al. [2002] was to find a gene
signature to predict the outcome of a cancer therapy, that is, to predict whether metastasis will
occur. A signature of 70 genes has been discovered. We removed array S54, because we identified
it as an outlier. Thereafter, the data set contains 97 samples for which 1213 gene expression values
are provided — these genes were selected by the authors.

Hoshida et al. [2007] found 3 subclasses and verified that 50/61 cases from class 1 and 2 were
estrogen receptor (ER) positive and only 3/36 from class 3. The subclasses were reconfirmed by
an independent second breast cancer data set. The three subclasses are indicated in the data set.

2.5 Example 4: Diffuse Large-B-Cell Lymphoma

Another microarray data set from the Broad Institute “Cancer Program Data Sets” which was
produced by Rosenwald et al. [2002]. The gene expression profile of diffuse large-B-cell lym-
phoma (DLBCL) was measured. Goal was to predict the survival after chemotherapy. The data
set consists of 180 DLBCL samples with 661 preselected genes.
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Hoshida et al. [2007] divided the data set into three subclasses:

“OxPhos” (oxidative phosphorylation),

“BCR” (B-cell response), and

“HR” (host response).

These subclasses were confirmed on independent DLBCL data. We mark these subclasses in the
data set.

2.6 Example 5: US Arrests

This data set contains statistics, in arrests per 100,000 residents, for assault, murder, and rape in
each of the 50 US states in 1973. Also given is the percent of the population living in urban areas.

A data consists of 50 observations with 4 features / variables:

Murder: Murder arrests (per 100,000),

Assault: Assault arrests (per 100,000),

UrbanPop: Percent urban population,

Rape: Rape arrests (per 100,000).

2.7 Example 6: EU Stock Markets

Time series are another kind of data sets. Specific to time series is that the observations are depen-
dent. Therefore it is possible to use a model which directly accesses past data or which memorizes
past data in order to predict future observations Hochreiter and Schmidhuber [1997b,d], Hochreiter
[1997].

This data set contains the daily closing prices of major European stock indices: Germany DAX
(Ibis), Switzerland SMI, France CAC, and UK FTSE. The data are sampled in business time, i.e.,
weekends and holidays are omitted. The data were kindly provided by Erste Bank AG, Vienna,
Austria. A multivariate time series with 1860 observations and 4 variables that correspond to the
4 stock indices is provided.

2.8 Example 7: Lung Related Deaths

Three time series giving the monthly deaths from lung related diseases bronchitis, emphysema and
asthma in the UK during 1974–1979. The counts are for both sexes, only males, and only females.
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2.9 Example 8: Sunspots

Monthly mean relative sunspot numbers from 1749 to 1983. Collected at Swiss Federal Observa-
tory, Zürich until 1960, then Tokyo Astronomical Observatory. During each month the number of
sunspots are counted.

2.10 Example 9: Revenue Time Series

Freeny’s data on quarterly revenue and explanatory variables. The time series has 39 observations
on quarterly revenue (lagged 1Q) from 1962, 2Q, to 1971, 4Q. Furthermore, explanatory variables
are supplied which include price index, income level, and market potential.

2.11 Example 10: Case-Control Study of Infertility

The data reports infertility after spontaneous and induced abortion. The data is from a matched
case-control study.

1. education:

0 = 0-5 years

1 = 6-11 years

2 = 12+ years

2. age: age in years of case

3. parity count

4. number of prior induced abortions

0 = 0

1 = 1

2 = 2 or more

5. case status:

1 = case

0 = control

6. number of prior spontaneous abortions:

0 = 0

1 = 1

2 = 2 or more

7. stratum



Chapter 3

Summarizing Univariate and Bivari-
ate Data

In this chapter we focus on the two most simple cases of data: univariate data and bivariate data.
Univariate data is only a set of numbers, that is, a set of scalars. Each number corresponds to an
observation. The observations for bivariate data are described by a pair of numbers, that is, each
observations is described by two values.

3.1 Summarizing Univariate Data

We present tools to summarize univariate data, that is, a set of numbers or a set of scalars. Such
data are produced by single measurements of for example the weight, the height, the amplitude,
the temperature, etc. Instead of reporting all data points, in most cases it is more appropriate to
summarize the data and report numerical values like where are the data located (the center), what
is the variability of the data etc.

3.1.1 Measuring the Center

A univariate data set x consists of a set of scalar numbers x = {x1, x2, . . . , xn}. For a discrete
probability distribution of a random variable X , the mean or expected value is equal to the sum
over every possible value weighted by the probability of that value; that is, it is computed by
taking the product of each possible value x of X and its probability Pr(x), and then adding all
these products together:

µ =
∑
x∈X

x Pr(x) . (3.1)

For continuous probability distributions we have

µ =

∫
X
x Pr(x) dx , (3.2)

where Pr(x) is a density.

The sample mean, empirical mean, or arithmetic mean of samples (x1, x2, . . . , xn) is

x̄ =
1

n

n∑
i=1

xi . (3.3)

17
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The sample mean approximates the mean / expected value. Other means are the geometric mean
(n-th root of the product of the numbers) and harmonic mean. The arithmetic mean is larger or
equal to the geometric mean which is in turn larger or equal to the harmonic mean.

The median separates the higher half of a data from the lower half or, in the continuous case,
is the value, where the probability mass is 0.5. For a finite set of samples, the sample median
can be found by sorting the samples and then selecting the middle sample for an odd number of
samples, or calculating the mean of the two middle samples for an even number of samples. The
median is used in robust statistics as it is not affected by outliers. If less than 50% of the samples
are outliers, then the median still works. With the Lebesgue-Stieltjes integral the median m is the
value for which

Pr(X ≤ m) ≥ 1

2
and Pr(X ≥ m) ≥ 1

2
(3.4)

or ∫
(−∞,m]

dF (x) ≥ 1

2
and

∫
[m,∞)

dF (x) ≥ 1

2
. (3.5)

For continuous probability density functions this is

Pr(X ≤ m) = Pr(X ≥ m) =

∫ m

−∞
f(x) dx =

1

2
. (3.6)

For unimodal distributions, the median m and the mean x̄ lie within (3/5)1/2 standard devia-
tions (see later) of each other:

|m − x̄|
σ

≤ (3/5)1/2 ≈ 0.7746 . (3.7)

For distributions with finite variance we have

|µ − m| = |E(X − m)| ≤ E (|X − m|) (3.8)

≤ E (|X − µ|)

≤
√

E((X − µ)2) = σ .

The first and third inequality stem from Jensen’s inequality applied to the absolute-value and the
square function, each of which is convex. The second inequality comes from

m = arg min
a

E(|X − a|) . (3.9)

This means that the ratio between median-mean distance and variance is smaller than 1 in contrast
to the lower upper bound of 0.7746 for unimodal distributions for the sample mean.

The mode is the sample that appears most often in the data. The mode of a discrete probability
distribution is the value x at which its probability mass function is maximal. This is the most
typical sample and the sample that is most likely to be randomly chosen. The mode of a continuous
probability distribution is the sample x at which its probability density function is maximal, that
is, the global density peak.

mode = arg max
x

Pr(x) or arg max
x

f(x) . (3.10)
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Table 3.1: Overview of mean, median, and mode.

Type Description Example Result

Arithmetic mean Sum of values of a data set di-
vided by number of values: x̄=

1
n

∑n
i=1 xi

(1+2+2+3+4+7+9) / 7 4

Median Middle value separating the
greater and lesser halves of a
data set

1, 2, 2, 3, 4, 7, 9 3

Mode Most frequent value in a data set 1, 2, 2, 3, 4, 7, 9 2

The median and the mode lie within 31/2 standard deviations of each other:

|m − mode|
σ

≤ 31/2 ≈ 1.732 . (3.11)

Tab. 3.1 gives an overview of the mean, median, and mode with examples. Fig. 3.1 shows a
comparison of mean, median, and mode of two log-normal distributions with different skewness.

We have

the mean minimizes the average squared deviation (L2-norm),

the median minimizes average absolute deviation (L1-norm),

the mid-range (0.5 times the range — see later) minimizes the maximum absolute deviation
(L∞-norm).

The median minimizes the average absolute deviation as we show in the following. The aver-
age absolute deviation is

E(|x− a|) =

∫ ∞
−∞
|x− a| p(x) dx =

∫ a

−∞
(a− x) p(x) dx +

∫ ∞
a

(x− a) p(x) dx .

(3.12)

Setting the derivative with respect to a to zero gives

∂E(|x− a|)
∂a

=

∫ a

−∞
p(x) dx −

∫ ∞
a

p(x) dx = 0 , (3.13)

which leads to

1 − 2

∫ ∞
a

p(x) dx = 0 (3.14)∫ ∞
a

p(x) dx =
1

2
.
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Figure 3.1: Comparison of mean, median, and mode of two log-normal distributions with different
skewness.
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This optimal value is the median a = m. The second derivative is larger than zero:

∂2E(|x− a|)
∂a2

= p(a) − (−p(a)) = 2 p(a) ≥ 0 . (3.15)

Therefore the median minimizes the average absolute deviation.

In Appendix A we show that for symmetric distributions the mean is equal to the median,
which is equal to the symmetry point.

Furthermore, we show in Appendix A that both the mean and the median of samples from a
Gaussian distribution should be estimated by the empirical mean. However for a Laplace distribu-
tion, both the mean and the median should be estimated by the empirical median.
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3.1.2 Measuring the Variability

We now describe the spread of the data around the center. The range of a data set x is defined as
largest observation minus smallest observation:

range = maxx − minx . (3.16)

The range take only the largest and the smallest observation into account, while all other observa-
tions are ignored.

The n deviations from the sample mean are the differences (x1 − x̄), (x2 − x̄), . . . , (xn − x̄).
The average deviation is zero because

n∑
i=1

(xi − x̄) =

n∑
i=1

xi − n x̄ = n x̄ − n x̄ = 0 . (3.17)

The unbiased sample variance is denoted by s2 and is defined as

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 . (3.18)

The data x contain (n − 1) pieces of information ((n − 1) degrees of freedom or df) on the
deviations. One degree of freedom was used up by the empirical mean x̄. If we know x̄ and
the (n − 1) deviations (xi − x̄), 1 ≤ i ≤ (n − 1), then we can calculate x1, . . . , xn−1 and
xn = nx̄−

∑n−1
i=1 xi, therefore also the deviation (xn − x̄). The biased sample variance is

1

n

n∑
i=1

(xi − x̄)2 . (3.19)

The unbiased sample standard deviation (sd) is s =
√
s2. The variance s2 and the standard

deviation s indicate the variability of the data. The larger the variance or the sd, the larger the data
variability. The standard deviation is an estimate of how much a sample will deviate from the data
center. sd is the size of a typical deviation from the mean.

The population variance σ2 is

σ2 =
∑
x∈X

(x − µ)2 Pr(x) (3.20)

and continuous probability distributions

σ2 =

∫
X

(x − µ)2 Pr(x) dx . (3.21)

The population standard deviation is σ.

In Appendix A we show that for a Gaussian distribution the biased variance (factor 1/n) has
a lower mean squared error than the unbiased variance (factor 1/(n − 1)). The same holds for
the Laplace distribution. This means that the biased sample variance is on average closer to the
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Figure 3.2: The quartiles of a distribution are depicted. Figure from R. Peck and Devore [2009].

population variance than the unbiased sample variance even if the biased sample variance makes
a systematic error by underestimating the population variance.

The median was introduced as a more robust estimate of the data center than the mean, that
is, it is not as much affected by outliers as the mean. We now introduce a robust estimate of the
variability of the data.

A robust measure of variability is the interquartile range. It is based on quantities called
quartiles. The lower quartile separates the bottom 25% of the data set from the upper 75% (the
median of the lower half), and the upper quartile separates the top 25% from the bottom 75% (the
median of the upper half). The middle quartile is the robust measure of the data center, the median.
Fig. 3.2 shows the quartiles of a distribution. The interquartile range is the upper quartile minus
the lower quartile. That is the range which contains 50% of the data around the center.

3.1.3 Summary Statistics

We revisit the iris data set from Section 2.2 and consider the feature “sepal length”. We compute
center and variability of “sepal length” in the software environment R :

x <- iris[,"Sepal.Length"]
mean(x)
[1] 5.843333

median(x)
[1] 5.8

var(x)
[1] 0.6856935

sd(x)
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[1] 0.8280661
sqrt(var(x))
[1] 0.8280661

quantile(x)
0% 25% 50% 75% 100%

4.3 5.1 5.8 6.4 7.9
summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.300 5.100 5.800 5.843 6.400 7.900

We now look at the iris species separately:

iS <- iris$Species == "setosa"
iV <- iris$Species == "versicolor"
iG <- iris$Species == "virginica"
xS <- x[iS]
xV <- x[iV]
xG <- x[iG]
summary(xS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.300 4.800 5.000 5.006 5.200 5.800

summary(xV)
Min. 1st Qu. Median Mean 3rd Qu. Max.

4.900 5.600 5.900 5.936 6.300 7.000
summary(xG)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.900 6.225 6.500 6.588 6.900 7.900

We see that the centers of versicolor are larger than the centers of setosa, and that the centers
of virginica are larger than the centers of versicolor. The same figure can be seen for the upper
quartile and for the maximum.

Now we do the same for petal length.

x1 <- iris[,"Petal.Length"]
mean(x1)
[1] 3.758

median(x1)
[1] 4.35

var(x1)
[1] 3.116278

sd(x1)
[1] 1.765298

quantile(x1)
0% 25% 50% 75% 100%

1.00 1.60 4.35 5.10 6.90
summary(x1)



3.1. Summarizing Univariate Data 25

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.600 4.350 3.758 5.100 6.900

x1S <- x1[iS]
x1V <- x1[iV]
x1G <- x1[iG]
summary(x1S)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.400 1.500 1.462 1.575 1.900

summary(x1V)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 4.00 4.35 4.26 4.60 5.10

summary(x1G)
Min. 1st Qu. Median Mean 3rd Qu. Max.

4.500 5.100 5.550 5.552 5.875 6.900

We see a similar figure as with the sepal length. Interestingly, the maximum of setosa is below
the minimum of virginica and versicolor. This means that we can identify the species setosa in the
set of three species if we only measure the petal length.

The z-score or the standardized data is

z =
x − x̄

s
. (3.22)

The z score measures for each data point x how many standard deviations it is away from the
mean. z is positive if x is larger than the mean and negative otherwise.

The quartiles can be generalized to the r-th percentile. The r-th percentile of a data set is the
value for which r percent of the observations are smaller or equal to this value.

Reliability or variance of the descriptive values. The numerical measures do not include a
reliability value or a variance estimation. In particular for few observations the numerical measures
may be misleading because their variance is large. If these values would be assessed a second time
then the outcome may be quite different. For example, the mean booting time of my new notebook
is 10 minutes. I tried it only 3 times (it is new). The first boot took 30 minutes as all hardware and
software programs were initialized and confirmed. The other two boots took only few seconds.
This shows that outliers may have large effect on the numerical measures if only few examples
are available. Therefore, the number of observations and the variation of the single measurements
should be considered when reporting summary statistics.

3.1.4 Boxplots

The summary statistics can be visualized by boxplots. Boxplots are box-and-whisker plots of the
given observations and visualize different values simultaneously. The default statistics, which are
shown for the boxplot in R , are:

the median as horizontal bar

the box ranging from the lower to the upper quartile
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Figure 3.3: Boxplot of the feature sepal length of the iris data set.

whiskers range from the maximal to the minimal observations without the outliers

outliers as points; outliers are observations that have larger deviation than fact times the
interquartile range from the upper or lower quartile. In R default is fact=1.5.

Fig. 3.3 shows a boxplot of the sepal length of the iris data set. This boxplot was created by
the R command:

boxplot(x,main="Iris sepal length",ylab="Sepal Length in centimetres")

Fig. 3.4 shows boxplots of the sepal length of the iris data set per species. These boxplots were
created by the R command:

boxplot(x ~ unclass(iris$Species),main="Iris sepal length",
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Figure 3.4: Boxplots of sepal length per species of the iris data set.

+ names=c("setosa","versicolor","virginica"),
+ xlab="Species",ylab="Sepal Length in centimetres")

The boxplots show that setosa can be distinguished from the other two species by the sepal
length in most cases. The sepal length of virginica is on average and in most cases larger than the
sepal length of versicolor.

We move on to the the next feature, the petal length. Fig. 3.5 shows the boxplot of the petal
length of the iris data set. This boxplot was created by the R command:

boxplot(x1,main="Iris petal length",ylab="Petal Length in centimetres")

Fig. 3.6 shows boxplots of the petal length of the iris data set per species. These boxplots were
created by the R command:
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Figure 3.5: Boxplot of the feature petal length of the iris data set.
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Figure 3.6: Boxplots of petal length per species of the iris data set.

boxplot(x1 ~ unclass(iris$Species),main="Iris petal length",
+ names=c("setosa","versicolor","virginica"),xlab="Species",
+ ylab="Petal Length in centimetres")

The boxplots show that setosa can be distinguished from the other two species by the petal
length in all cases. Setosa has clearly shorter petal lengths than the other two species. The petal
length of virginica allows a better discrimination to versicolor than the sepal length. In summary,
petal lengths can much better discriminate the species than sepal lengths.
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Figure 3.7: Histograms of sepal and petal lengths. Green vertical lines mark peaks in the his-
tograms.

3.1.5 Histograms

A histogram is a graphical representation of the distribution of data. Tabulated frequencies are
shown as adjacent rectangles which erect over discrete intervals (bins). The area of the rectangle
is equal to the frequency of the observations in the interval. For equidistant bins the area of
the rectangles is proportional to the height of the rectangles, therefore, to the frequency of the
observations in the according bin.

Histograms help to assess the extent of spread or variation of the observations, the general
shape allows to determine location of peaks, further low density regions or outliers may be found.
Thus, histograms may give an informative overview of the observations. Fig. 3.7 shows the his-
tograms of sepal and petal lengths. For petal length a gap is visible between short and long petals.
We already know that the species setosa has shorter petals then the other two species, therefore, we
known the reason for this gap. In R the command hist() provides simple histogram plots. We
plotted the histograms with the R package ggplot2. Appendix B lists the code which produced
the histograms in Fig. 3.7.
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Figure 3.8: Kernel density estimator. The blue density is approximated by the average of the red
kernel densities.

3.1.6 Density Plots

Smoothing the surface of a histogram leads to a probability density function. In general, probabil-
ity density functions are obtained by kernel density estimation (KDE) which is a non-parametric
(except for the bandwidth) method also called Parzen-Rosenblatt window method.

A kernel density estimator f̂h has the following form:

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
, (3.23)

where K(.) is the kernel (symmetric, positive function that integrates to one) and h > 0 is the
bandwidth. Fig. 3.8 depicts a kernel density estimator where the blue density is approximated by
the average of the red kernel densities. This means that the red kernels are scaled by 1

n , where n
is the number of data points (R code in appendix). The locations xi of the kernels are 30, 32, 35,
65, and 75, while the bandwidth is h = 10.

The most tricky part of KDE is the bandwidth selection. If the bandwidth is too small, then
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the density has many peaks and is wiggly. If the bandwidth is too large, then the peaks vanish and
details are no longer visible. A practical estimation of the bandwidth for Gaussian kernels is the
rule-of-thumb (Silverman’s rule):

h =

(
4σ̂5

3n

) 1
5

≈ 1.06 σ̂ n−1/5 , (3.24)

where σ̂ is the standard deviation of the observations. The closer the true density is to a Gaussian,
the better the bandwidth estimation.

We demonstrate the density estimation on the iris data set from Section 2.2. Fig. 3.9 shows
the densities of sepal lengths per species of the iris data set. The estimate uses Gaussian kernels
with rule-of-thumb bandwidth adjustment. The densities show that the species differ in their sepal
length as the peaks of the densities and their location show. Setosa has the least overlap with the
other species. However, versicolor and virginica have a considerable overlap of density mass even
if their peaks are clearly separated.

Fig. 3.10 shows the densities of petal lengths per species of the iris data set. Setosa has no
overlap with the other species and the density is very narrow (small variance). Versicolor and
virginica have less overlap than with sepal length and can be separated quite well.

Appendix B lists the code which produced the densities in Figs. 3.9 and 3.10.
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Figure 3.9: Densities of sepal lengths per species of the iris data set. Dashed lines mark peaks of
the densities.
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Figure 3.10: LEFT: Densities of petal lengths per species of the iris data set. RIGHT: The same
densities as on the left hand side but zoomed in. Dashed lines mark peaks of the densities.
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Figure 3.11: Violin plots of sepal lengths per species of the iris data set.

3.1.7 Violin Plots

A violin plot is a combination of a boxplot and a density estimation. The violin plot enhances a
box plot by a rotated kernel density plot at each side. Fig. 3.11 shows violin plots of the sepal
lengths of the iris data set and Fig. 3.12 shows violin plot of the petal lengths. The R code for
producing Fig. 3.11 is

library(vioplot)
vioplot(x ~ unclass(iris$Species),main="Iris sepal length",
+ names=c("setosa","versicolor","virginica"),
+ xlab="Species",ylab="Sepal Length in centimetres")
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Figure 3.12: Violin plots of petal lengths per species of the iris data set.
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3.2 Summarizing Bivariate Data

We next consider how to describe bivariate data, that is, data which has two scalar variables.
Bivariate data is a set of pairs of data points in most cases called x and y. The data is given
as {(y1, x1), (y2, x2), . . . , (yn, xn)}. For some application x and y can be distinguished: y is the
response or dependent variable and x is the explanatory variable, independent variable, regressor,
or feature. In this situations the assumption is that the response y is influenced or even caused by
x. Often causality is introduced because the assumption is that y is (partly) caused by x. Without
prior knowledge or certain assumptions, statistical or machine learning methods cannot determine
causality but only dependencies, relations, or structures in the data.

3.2.1 Scatter Plot

A scatter plot shows each observation as a point, where the x-coordinate is the value of the first
variable and the y-coordinate is the value of the second variable.

The R command

plot(anscombe[,1:2],main = "Anscombe Data",pch = 21,bg = c("red"),
+ cex=2,xlab="feature 1",ylab="feature 2")

produced the scatter plot in Fig. 3.13. Since the values of feature 1 and feature 2 are identical,
the points are on the 45 ◦ diagonal. In cases that feature 1 and feature 2 are linearly dependent,
the points are on an line (see Fig. 3.14). Fig. 3.15 shows a scatter plot for linearly dependent
features but with noise. The points deviate from the line due to the noise. Fig. 3.16 shows a
scatter plot for linearly dependent features (upper right matrix) and independent features (lower
left matrix). Fig. 3.17 shows a scatter plot for non-linearly dependent features. The points lie on a
one-dimensional curve. Fig. 3.18 shows a matrix of scatter plots for the Anscombe data produced
by the R command:

pairs(anscombe[,c(1,2,5,6,7,8)], main = "Anscombe Data",
+ pch = 21, bg = c("red"))
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Figure 3.13: Scatter plot of data with two features.
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Figure 3.14: Scatter plots of linearly dependent features.
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Figure 3.15: Scatter plot of noisy linearly dependent features. The blue line is the extracted linear
dependency from which points deviate because of the noise.
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Figure 3.16: Scatter plots of linearly dependent and independent features. Upper right matrix
shows scatter plots of linearly dependent features while the lower left matrix shows scatter plots
of independent features.
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Figure 3.17: Scatter plot of non-linearly dependent features. The points lay on a one-dimensional
curve.
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Figure 3.18: Matrix of scatter plots for the Anscombe data.
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3.2.2 Correlation

We saw that two variables are linearly dependent if their points are on a line (see Fig. 3.13).
Variables are to some degree linearly dependent if their points lie around a line (see Fig. 3.15).
The more the points are on the line, the higher is the linear dependence.

For the bivariate data (y1, x1), (y2, x2), . . . , (yn, xn) Pearson’s sample correlation coefficient
r is a measure of the linear correlation (dependence) between the two variables x and y:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.25)

or equivalently with z-scores

r =
1

n− 1

n∑
i=1

(zx)i(zy)i . (3.26)

Pearson’s population correlation coefficient is denoted by ρ. For a perfect linear dependency
xi = ayi the correlation coefficient is r = 1 or r = −1. Since x̄ = aȳ, the numerator has the
factor a while the denominator has the factor |a|, therefore only the sign of a is kept as a factor.

The correlation coefficient of the variables in Fig. 3.15 is r = 0.82 obtained by the R code:

cor(anscombe[,c(1,5)])
x1 y1

x1 1.0000000 0.8164205
y1 0.8164205 1.0000000

Using z-scores that is

1/(length(anscombe[, 1])-1)*
+ crossprod(scale(anscombe[,1]),scale(anscombe[, 5]))

[,1]
[1,] 0.8164205

In the Anscombe data set, the correlations between x1 and y1, x1 and y2, as well as x1 and y3
are almost the same. However the correlations between y1, y2, and y3 are considerably lower:

cor(anscombe[,c(1,5,6,7)])
x1 y1 y2 y3

x1 1.0000000 0.8164205 0.8162365 0.8162867
y1 0.8164205 1.0000000 0.7500054 0.4687167
y2 0.8162365 0.7500054 1.0000000 0.5879193
y3 0.8162867 0.4687167 0.5879193 1.0000000

The correlation measures the extent of association, but association does not imply causality.
Two correlated variables may be related to a third variable. John Paulos gave the following exam-
ple in ABCNews.com:

“Consumption of hot chocolate is correlated with low crime rate, but both are re-
sponses to cold weather.”
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3.2.3 Test for Correlation

For a bivariate normal population, the test of independence is a test for a correlation coefficient of
ρ = 0. The test is a t-test with the null hypothesis H0 that ρ = 0. The test is only valid if both
variables are drawn from a normal distribution.

The test statistic is

t =
r√
1−r2
n−2

. (3.27)

The degree of freedom is df = n− 2.

The Student t-distribution with df degrees of freedom has the density

f(x) =
Γ((df + 1)/2)√

dfπΓ(df/2)

(
1 +

x2

df

)−(df+1)/2

. (3.28)

In R the p-value can be computed by the command:

1-pt(t,df=n-2)

pt() is the probability function of the Student t-distribution.

The correlation between x1 and y1 of the Anscombe data set is r = 0.8164205 which gives a
p-value of:

r=0.8164205
t=r/(sqrt((1-r^2)/9))
t
[1] 4.241455
1-pt(t,9)
[1] 0.001084815

That means the p-value is smaller than 0.0011.

For the correlation between y1 and y3 of the Anscombe data set is r = 0.4687167 which gives
for the p-value:

r=0.4687167
t=r/(sqrt((1-r^2)/9))
t
[1] 1.591841
1-pt(t,9)
[1] 0.07294216

That means the correlation is not significant for a level of 0.05.
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Figure 3.19: Linear regression of bivariate data. The blue line is the fitted regression line with
intercept a = 2 and slope b = 0.5.

3.2.4 Linear Regression

The goal is to fit a line to bivariate data as shown in Fig. 3.15 in order to extract information about
the relation of the two variables from the fitted line. In regression one variable is used to predict
or to estimate the second variable.

The functional relationship between the variables x and y for linear regression is

y = a + b x , (3.29)

where a is the intercept and b is the slope. Fig. 3.19 shows a regression curve with a = 2 and
b = 0.5. The value a is obtained by x = 0, therefore the line intersects the y-axis at a value of
y = 2 = a. b = 0.5 means that an increase of x of one unit leads to an increase of y of half a unit.

We have to define a goodness of fit criterion or objective which is a quality criterion for fitting.
These criteria is important to find the line which fits the data best. The most widely used objective
is the sum of the squared deviations between the y values and the regression line. The least squares
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objective is

n∑
i=1

(
yi − (ã + b̃ xi)

)2
(3.30)

for some candidate intercept ã and candidate slope b̃.

The line which minimizes this objective (called “least squares”) is the least squares line. The
values â and b̂ which minimize the objective, the least squares criterion, are

b̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1 xi yi −

1
n

∑n
i=1 xi

∑n
j=1 yj∑n

i=1(x2
i )−

1
n(
∑n

i=1 xi)
2

(3.31)

=
xy − x̄ ȳ

x2 − x̄2
=

Cov(x, y)

Var(x)
= rxy

sy
sx

and

â = ȳ − b̂ x̄ . (3.32)

Here rxy is the correlation coefficient between x and y, sx is the standard deviation of x, and sy
the standard deviation of y.

From

y = a + b x (3.33)

follows that

x =
1

b
(y − a) = −a

b
+

1

b
y . (3.34)

This relation does not hold for the estimated variables.

If the variables x and y are interchanged, then, in general, the estimated functional dependency
changes. Least squares on y as desired function output is different from least squares on x as
desired function output. The objective is different. If we denote the estimated slope with y as
output by by and the estimated slope with x as output by bx, then we have: b̂y = rxy sy/sx and
b̂x = rxy sx/sy. We see b̂y 6= 1/b̂x, because rxy 6= 1/rxy, except for rxy = 1. For example, a
horizontal line with constant y-values around which observations are located, cannot be inverted
to a function of x with y as variable.

The estimated regression line is

y = â + b̂ x , (3.35)

which can be reformulated as

y − ȳ

sy
= rxy

x − x̄

sx
(3.36)

or with z-scores

zy = rxy zx . (3.37)



3.2. Summarizing Bivariate Data 47

The correlation coefficient rxy is the slope of the regression line of the standardized data points.
Scaling rxy gives the least squares slope b̂. For the standardized data, the intercept vanishes be-
cause all data are centralized around the origin.

If the error terms

ε̂i = yi − â − b̂ xi (3.38)

are normally distributed, then b̂ is normally distributed with mean b and variance σ2/
∑

(xi− x̄)2,
where σ2 is the variance of the error terms.

Furthermore, the sum of squared error terms is distributed proportionally to χ2 with (n − 2)
degrees of freedom, and independently from b̂. Thus the t-statistic

t =
b̂ − b

sb̂
∼ tn−2 , (3.39)

has a Student’s t-distribution with (n− 2) degrees of freedom. We used

sb̂ =

√
1

n−2

∑n
i=1 ε̂

2
i∑n

i=1(xi − x̄)2
. (3.40)

This t-statistic allows constructing confidence intervals for both a and b. Further, we can
construct a confidence interval for rxy, which allows to express how confident we are that the two
variables are linearly related.

The R2 statistic is the fraction of variance explained by the model also called the coefficient of
determination:

R2 = 1 −
∑n

i=1 ε̂
2
i∑n

i=1(yi − ȳ)2
. (3.41)

The linear least squares regression in R gives for the data in Fig. 3.19:

res <- lm(y ~ x)
summary(res)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-2.55541 -0.64589 0.05834 0.66114 2.42824

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.09223 0.12103 17.29 <2e-16 ***
x 0.46427 0.03417 13.59 <2e-16 ***
---
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Figure 3.20: An outlier observation is far to the right but has large influence on the regression
line. (a) scatter plot for the full sample; (b) residual plot for the full sample; (c) scatter plot when
the outlier observation is deleted; (d) residual plot when the outlier observation is deleted. Figure
from R. Peck and Devore [2009].

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.014 on 98 degrees of freedom
Multiple R-squared: 0.6532, Adjusted R-squared: 0.6496
F-statistic: 184.6 on 1 and 98 DF, p-value: < 2.2e-16

The confidence intervals are supplied as standard error and the t-statistic is supplied together
with a p-value. Furthermore, the R2 statistic is given.

An outlier can have large influence on the fitting of a regression line. Fig. 3.20 shows a fitting
with an outlier in Fig. 3.20(a) and without the outlier in Fig. 3.20(c). The residuals are shown in
Fig. 3.20(b) with the outlier and in Fig. 3.20(d) without the outlier. The single outlier observation
has a large effect on the slope which is estimated by a least squares fit. Interestingly, the outlier
does not possess the largest residual. Therefore, identification of outliers by residuals after a least
squares fit is not always possible.

Next we show Anscombe’s 4 regression data sets. These data sets have the same statistical
properties (mean, variance, correlation, regression line, etc.), yet are quite different. Fitting the 4
data sets by a regression line lead to almost the same line:
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$lm1
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000909 1.1247468 2.667348 0.025734051
x1 0.5000909 0.1179055 4.241455 0.002169629

$lm2
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.000909 1.1253024 2.666758 0.025758941
x2 0.500000 0.1179637 4.238590 0.002178816

$lm3
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0024545 1.1244812 2.670080 0.025619109
x3 0.4997273 0.1178777 4.239372 0.002176305

$lm4
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0017273 1.1239211 2.670763 0.025590425
x4 0.4999091 0.1178189 4.243028 0.002164602

Fig. 3.21 shows the regression line and the data to which it is fitted. The data sets are quite
different, yet lead to the same regression line. Consequently, the statistical properties and the
regression line do not fully characterize the data set.
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Figure 3.21: Anscombe’s 4 regression data sets which show that the same line is fitted but the
observations are quite different.
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Summarizing Multivariate Data

We now move on to data with more than two variables. This is the most common case in data
analysis as in general more than two features can be extracted from the raw data. Further, feature
construction allows to create new features. In some cases the number of features is very large like
for gene expression profiles, where for each gene we have measurement — humans have 20,000
genes.

Multivariate data can be summarized by descriptive and generative methods. In the descrip-
tive framework (see Fig. 4.1) the model maps or transforms observations to another representation
which has desired characteristics in terms of components, factors, or codes. Typical cases are
projection methods (principal component analysis, independent component analysis, projection
pursuit). Projection methods can be described as matrix factorizations, where the matrix of obser-
vations is represented by the factor matrix multiplied by the inverse mapping matrix. Goal of the
descriptive framework is to represent the observations in an appropriate way, e.g. by a desired den-
sity of the components, by a low dimensional representation, by high variance of the components
(large information), by non-Gaussian components, or statistically independent components. For
most descriptive methods the dimensionality of the original data is higher than for the representa-
tions, that is, the number of factors / components. Descriptive methods are used to represent the
input compactly and non-redundantly for data storage or transmission, for data visualization, or
for feature selection. In machine learning, besides for data visualization, descriptive methods are
used as preprocessing methods for subsequent data analysis. Goal in these cases is dimensionality
reduction and feature selection in order to obtain simpler models with higher generalization capa-
bility. Further simpler models and in particular models with few features are easier to interpret. In
biology simpler models give more insights into the biological processes and allow to create new
hypotheses.

In the generative framework (see Fig. 4.2) the goal is to model or to simulate the real world
by generating model samples with the same underlying distribution as the real world observations.
The selected models describe or represent the data generation process. The data generation process
has random components which drive the process and are included into the model. Important for
the generative approach is to include into the model as much prior knowledge about the real world
domain as possible. Prior knowledge restricts the degree of freedom in the model class and,
thereby, achieves higher modeling quality. Advantages of generative models:

determining model parameters which are important for experts like calcium concentration
in a cell, distribution of ion channels on the cell membrane, rate of a metabolic process, pH
value, etc.,

51
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target

world

model

Figure 4.1: The descriptive framework is depicted. Observations are mapped through a model to
factors/components/codes which have desired properties like a target density, low dimensionality,
high variance, large information, non-Gaussianity, or independent components.

generating new simulated observations,

simulating the data generation process in unknowns regimes (new parameter setting),

assessing the noise and the signal in the data which may supply noise and quality measures
for the measurements like the signal-to-noise ratio,

supplying distributions and error bars for latent variables (factors and components) and ob-
servations, e.g. the 95% confidence interval of factors,

detection of outliers as very unlikely observations,

detection and correction of noise in the observations.

If a descriptive model has a unique inverse, then the generative framework can be applied in
the descriptive context. Within the generative framework a model is selected which models the
observations. Subsequently, the inverse model of the model selected by the generative approach
gives descriptive model. Density estimation, projection pursuit and vector quantization can be
treated is such a way Hinton and Sejnowski [1999], Attias [1999]. Example of descriptive meth-
ods that do not have inverse models are principal curves Mulier and Cherkassky [1995], Ritter
et al. [1992], which are a nonlinear generalization of principal components Hastie and Stuetzle
[1989]. The first and most basic methods, that we will present are descriptive models like prin-
cipal component analysis or multidimensional scaling. However generative models will also be
considered like density estimation, factor analysis, independent component analysis, generative
topographic mapping, etc.
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world
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Figure 4.2: The generative framework is depicted. A noise source “drives” the model and produces
model samples which should match the distribution of the observations.
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Figure 4.3: Matrix of scatter plots for the Anderson’s iris data.

4.1 Matrix of Scatter Plots

A first approach to summarize multivariate data is to apply bivariate data summarization to all
pairs of variables. However this is only feasible for few variables / features because the number
of combinations increases quadratically with the number of features. For the iris data set from
Section 2.2 we produce a matrix of scatter plots by the R command:

pairs(iris[1:4], main = "Anderson’s iris data of 3 species",
+ pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

The result is shown in Fig. 4.3. For the 4 features of this data set the pairings of variables can be
comprehended by a human.
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4.2 Principal Component Analysis

Principal Component Analysis (PCA) Jöreskog [1967], Everitt [1984], Neal and Dayan [1997] also
known as Karhunen-Loéve transform (KTL) or as Hotelling transform makes a transformation of
the coordinate system so that the data has largest variance along the first coordinate, the second
largest data variance is along the second coordinate, etc. The coordinates, that are vectors, are
called principal components. Fig. 4.4 shows the principal components of a two-dimensional data
set and Fig. 4.5 shows how the projection onto the first principal component is extracted from data
points.

Figure 4.4: Principal component analysis for a two-dimensional data set. Left: the original data
set. Right: The first principal component is shown as the line from lower left to upper right. The
second principal component is orthogonal to the first component.

PCA is a very useful tool to summarize multivariate data because the first principal components
capture most of the variation in the data. Therefore, they capture the most prominent structures in
the data. Plotting observations by their projection onto the first two principal components often
gives a first insight into the nature of the data.

Instead of a single scalar x, an observation is now represented as a vector x ofm features: x =
(x1, x2, . . . , xm). The data consisting of n observations {x1,x2, . . . ,xn} can be summarized in
a data matrix X of size n ×m which means n rows and m columns. The rows of X contain the
n observations (each row contains one observation), while the columns contain the m features.
We assume that the columns of X , that are the features, have zero sample mean. Otherwise, the
feature mean must be subtracted from each feature of each observation.

4.2.1 The Method

The m×m sample covariance matrix C of the features across the observations is defines as

Cst =
1

n

n∑
i=1

xis xit , (4.1)

where xis = (xi)s and xit = (xi)t. For an unbiased estimate of the covariance matrix a factor
1

n−1 instead of 1
n should be used. The covariance matrix C can be expressed as

C =
1

n
XTX =

1

n
UDm U

T , (4.2)
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Figure 4.5: Principal component analysis for a two-dimensional data set. The projection onto
the first principal component is extracted for data points. The points are projected onto the first
component and then the distance to the origin is measured.

where U is an orthogonal m × m matrix and Dm is an m × m diagonal matrix. This decom-
position of C into U and Dm is the eigendecomposition or spectral decomposition of C. This
decomposition exists because C is a symmetric positive definite matrix. The diagonal entries of
Dm are called eigenvalues and the column vectors ui = [U ]i are called eigenvectors. We assume
that the eigenvalues ofDm are sorted decreasingly, so that the first value is the largest eigenvalue.
C as a symmetric real matrix is always diagonalizable and, since it is positive definite, its eigen-
values are larger than or equal to zero. In the context of PCA, the eigenvectors ui are called the
principal components, where the first principal component corresponds to the largest eigenvalue.

We assume that n ≥ m and that at least m linear independent observations exist, in order
to ensure that C has full rang. To ensure n ≥ m, typically feature selection is performed prior
to a PCA analysis. Unsupervised feature selection may be based on variability, signal strength
measured by the range, correlation between features (only one feature is kept if two features are
highly correlated), non-Gaussianity, etc.

The singular value decomposition (SVD) of an n×m matrixX is

X = V D UT , (4.3)

where U is an orthogonal m × m matrix, V an orthogonal n × n matrix, and D is a diagonal
(diagonal for the first m rows) n × m matrix with positive entries, the singular values. The
diagonal values ofD are sorted decreasingly, so that the first value is the largest value (the largest
singular value), the second value is the second largest value, etc. Computing XTX , we see that
Dm = DT D (the eigenvalues are the singular values squared) and U is the same orthogonal
matrix as in the eigendecomposition. SVD is often used to perform PCA.
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For performing PCA, it is sufficient to know U , because the projection of feature vector x
onto the principal directions is given by UTx. Therefore, the data X is projected onto U , which
gives Y :

Y = X U = V D . (4.4)

We see that the SVD automatically provides the PCA projections viaV D. For single observations
x that is

y = UTx . (4.5)

In principle, PCA is a matrix decomposition problem:

X = Y UT , (4.6)

where U is orthogonal, Y T Y = Dm (the y are orthogonal, that is they are decorrelated), and
the eigenvalues ofDm are sorted decreasingly. For single observations that is

x = U y . (4.7)

The SVD allows an outer product representation of the matrixX:

X =

m∑
i=1

Dii viu
T
i = (4.8)

m∑
i=1

yiu
T
i ,

where ui is the i-th orthogonal column vector of U , vi is the i-th orthogonal column vector of V ,
and yi = Dii vi.

Iterative methods for PCA are sometimes to prefer if the dimension m is large or if on-line
methods should be implemented. Most famous is Oja’s rule Oja [1982]. If the current projection
is

t = uTx (4.9)

then Oja’s rule is

unew = u + η
(
t x − t2 u

)
, (4.10)

where η is the learning rate.

The eigenvectors of C are the fixed points of Oja’s rule and only the eigenvector with largest
eigenvalue is a stable fixed point.

Ex(unew) = u + η Ex
(
x(xTu) − (uTx)(xTu) u

)
(4.11)

= u + η
(
Ex(xxT )u −

(
uTEx(xxT )u

)
u
)

= u + η
(
Cu − (uTCu) u

)
.

If u is and eigenvector of C with eigenvalue λ then

Ex(unew) = u + η (λu − λ u) = u . (4.12)

Therefore each eigenvector of C is a fixed point of Oja’s rule.
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4.2.2 Variance Maximization

The first principal component u1 is the direction of the maximum possible data variance:

u1 = arg max
‖u‖=1

n∑
i=1

(
uT xi

)2
. (4.13)

This can easily be seen because

n∑
i=1

(
uTxi

)2
=

n∑
i=1

(
uTxi

) (
xTi u

)
= (4.14)

uT
n∑
i=1

xix
T
i u = n uTCu .

With C =
∑m

i=1 λiuiu
T
i , u =

∑m
i=1 aiui, and

∑m
i=1 a

2
i = 1 we have

uTCu =
m∑
i=1

λia
2
i (4.15)

and
∑m

i=1 a
2
i = 1. The value

∑m
i=1 λia

2
i is maximal for a1 = 1 and all other ai = 0, because all

λi > 0 and λ1 is the largest eigenvalue.

Furthermore, principal components correspond to the direction of the maximum possible vari-
ance orthogonal to all previous components. If we remove the subspace of all previous components
1, . . . , k:

xki = xi −
k−1∑
t=1

(
uTt xi

)
ut (4.16)

then the k-th principal component is the direction of the maximum data variance:

uk = arg max
‖u‖=1

n∑
i=1

(
uT xki

)2
. (4.17)

This can inductively been proved analog to the first principal component. Since the components
are sorted, the first l components span the l-dimensional subspace with maximal data variance.

4.2.3 Uniqueness

Is PCA unique or not, that is, is there only one PCA solution. Multiple solutions may fulfill the
PCA criteria. We consider the decomposition

X = Y UT , (4.18)

where U is orthogonal, Y T Y = Dm with Dm as m-dimensional diagonal matrix, and the
eigenvalues ofDm are sorted decreasingly.
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PCA is unique up to signs, if the eigenvalues of the covariance matrix are different from
each other.

Begin proof
To prove this statement, assume another representation

X = Y ′U ′T , (4.19)

where U ′ is orthogonal, (Y ′)TY ′ = D′m with D′m as m-dimensional diagonal matrix, and the
eigenvalues ofD′m are sorted decreasingly.

If eigenvalues of Dm are different from each other, then at most one eigenvalue can be zero.
If one eigenvalue of Dm is zero, the observations do not have any variance in the direction of the
according eigenvector. This direction is unique, becomes principal component um, and can be
removed from the data. Subsequent, we can perform PCA on the remaining (m− 1)-dimensional
space, where all eigenvalues are larger than zero.

We assume that all eigenvalues of Dm (therefore also of Y ) are larger than zero. Therefore a
matrixA = Y −1Y ′ exists with

Y ′ = Y A . (4.20)

We obtain

X = Y UT = Y ′ U ′T = Y A U ′T (4.21)

after multiplying with Y −1 from the left we get

UT = AU ′T . (4.22)

Since U and U ′ are orthogonal, we obtain

I = UTU = AU ′U ′TAT = AAT . (4.23)

Therefore A is an orthogonal matrix and

U ′ = U A . (4.24)

We obtain

D′m = (Y ′)T Y ′ = AT Y T Y A = AT DmA . (4.25)

Thus, the eigenvalues of D′m match the diagonal elements of Dm. Further the i-th eigenvalue λi
of the covariance matrix C is λi = Dii. According to our assumption, the eigenvalues are sorted
in both D′m and Dm. The sorting is unique, because we assumed mutually different eigenvalues.
Therefore we have

D′m = Dm . (4.26)

It follows that

ADm = Dm A (4.27)
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and

[ADm]ij = aij Djj = aij dii = [Dm A]ij (4.28)

which gives

aij (Djj − Dii) = 0 . (4.29)

For i 6= j our assumption is that Djj 6= Dii (λj = Djj), therefore we deduce aij = 0 . Hence,
A is diagonal and orthogonal. Consequently, A is diagonal and contains only ones and minus
ones on its diagonal. Thus, PCA is unique up to signs, if the eigenvalues are mutually different.
End proof

4.2.4 Properties of PCA

The projection of the data on the first principal component (PC) has maximal variance of all
possible one-dimensional projections. That means u1 maximizes

uT C u s.t. ‖u‖ = 1 . (4.30)

The first l PCs maximize

l∑
i=1

uTi C ui s.t. uTi uj = δij . (4.31)

The projections onto PCs have zero means:

1

n

n∑
i=1

uTk xi = uTk

(
1

n

n∑
i=1

xi

)
= uTk 0 = 0 . (4.32)

The projections onto PCs are mutually uncorrelated (second moment), that is, they are or-
thogonal to each other. We already expressed this by Y TY = I but it can also be seen
at

1

n

n∑
i=1

(uTt xi) (uTs xi) =
1

n

n∑
i=1

(uTt xi) (xTi us) (4.33)

=
1

n

n∑
i=1

uTt (xi x
T
i ) us

= uTt

(
1

n

n∑
i=1

xi x
T
i

)
us

= uTt C us = λs u
T
t us = 0 .

For the last equation we used C =
∑m

j=1 λjuju
T
j . Therefore correlation coefficients be-

tween projections of the observations onto PCs are zero.
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The sample variance of the k-th projection is equal to the k-th eigenvalue of the sample
covariance matrix C

1

n

n∑
i=1

(
uTk xi

)2
=

1

n

n∑
i=1

uTk
(
xix

T
i

)
uk (4.34)

= uTk

(
1

n

n∑
i=1

xi x
T
i

)
uk

= uTk C uk = λk u
T
k uk = λk .

where λk is the k-th eigenvalue of the covariance matrix C.

PCs are ranked decreasingly according to their eigenvalues which are the variances in the
PC directions.

The first l PCs minimize the mean-squared error.

The representation of x by x̂ with the first l PCs is

x̂ =
l∑

k=1

uk u
T
k x , (4.35)

where

C =
m∑
k=1

λk uk u
T
k . (4.36)
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For the approximation of x by x̂, the mean-squared error is

E
(
‖x − x̂‖2

)
= E

(
xTx − 2 xT x̂ + x̂T x̂

)
(4.37)

= E

(
Tr
(
xxT

)
− 2 Tr

(
l∑

k=1

uk u
T
k xx

T

)
+ Tr

(
l∑

k=1

uk u
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λk Tr
(
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T
k

)
=
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λk Tr
(
uTk uk

)
=

m∑
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λk .

where λk is the square root of the k-th eigenvalue of C or the k-th singular value ofX .

Each representation of the data by projections to other l vectors (u′)k will have a larger
mean squared error. Using the transformations of the last equation, we obtain for the mean
squared error

Tr

(
C −

l∑
k=1

(u′)k(u
′)TkC

)
. (4.38)

If (u′)k =
∑m

i=1 bkiui with
∑m

i=1 b
2
ki = 1.



4.2. Principal Component Analysis 63

The mean squared error for projection onto the l vectors (u′)k is

Tr

(
C −

l∑
k=1

(u′)k(u
′)TkC

)
(4.39)

=

m∑
i=1

λi −
l∑

k=1

m∑
i=1

b2kiλi

=
m∑
i=1

λi

(
1 −

l∑
k=1

b2ki

)
.

The Hessian matrix of this objective with respect to the parameters bki has negative eigen-
values, therefore this is a strict concave function. The maximum principle states that the
minimum of this objective is found on the boundary. That means bki = 0 or bki = 1. There-
fore the (u′)k are a permutation of uk.

∑m
k=l+1 λ

′
k ≥

∑m
k=l+1 λk where equality is only

achieved if the λ′k is a permutation of λk for l + 1 ≤ k ≤ m. Therefore the first l vectors
(u′)k are a permutation of the first l uk. If we assume that the eigenvectors are sorted ac-
cording to the eigenvalues, then (u′)k = Buk for 1 ≤ k ≤ l. Thus, a projection onto other
l vectors than the principal components leads to a larger mean squared error than those of
PCA.

4.2.5 Examples

4.2.5.1 Iris Data Set

We revisit the iris data set from Section 2.2 and perform PCA on this data. The R command
princomp() supplies the PCA solution:

xp <- princomp(iris[,1:4],scores=TRUE)
summary(xp)
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 2.0494032 0.49097143 0.27872586 0.153870700
Proportion of Variance 0.9246187 0.05306648 0.01710261 0.005212184
Cumulative Proportion 0.9246187 0.97768521 0.99478782 1.000000000

We see that the first principal component explains 92% of the variance in the data. This means that
the features are correlated and the variance driving this correlation is captured by principal com-
ponent 1. Probably PC1 expresses the size of the blossom which is reflected in all four features.

Fig. 4.6 shows scatter plots for pairs of principal components, more precisely, scatter plots of
the projection of the observations to pairs of PCs. The R command was

irisPC <- xp$scores
## irisPC <- sweep(as.matrix(iris[,1:4]),2,xp$center)%*%xp$loadings
lP <- length(colnames(irisPC))
colnames(irisPC) <- paste(colnames(irisPC),rep("(",lP),
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+ as.character(round(100*xp$sdev^2/sum(xp$sdev^2))),rep("%)",lP),sep="")
op <- par(mfrow = c(3, 2), mar = 0.1+c(4,4,1,1), oma = c(0, 0, 2, 0))
plot(irisPC[,c(1,2)], main = "PC1 and PC2",pch = 21,
+ bg = c("red", "green3","blue")[unclass(iris$Species)])
plot(irisPC[,c(1,3)], main = "PC1 and PC3",pch = 21,
+ bg = c("red", "green3","blue")[unclass(iris$Species)])
plot(irisPC[,c(1,4)], main = "PC1 and PC4",pch = 21,
+ bg = c("red", "green3","blue")[unclass(iris$Species)])
plot(irisPC[,c(2,3)], main = "PC2 and PC3",pch = 21,
+ bg = c("red", "green3","blue")[unclass(iris$Species)])
plot(irisPC[,c(2,4)], main = "PC2 and PC4",pch = 21,
+ bg = c("red", "green3","blue")[unclass(iris$Species)])
plot(irisPC[,c(3,4)], main = "PC3 and PC4",pch = 21,
+ bg = c("red", "green3","blue")[unclass(iris$Species)])
par(op)

Only PC1 helps to separate the species.

4.2.5.2 Multiple Tissue Data Set

We apply PCA to the multiple tissue microarray data set which is described in Section 2.3. Gene
expression values for different tissue types for human and mouse are measured. The data set
contains 102 samples for each of which expression values of 5,565 genes are available. Four
distinct tissue types are indicated in the data: breast (Br), prostate (Pr), lung (Lu), and colon (Co).
We want to see if PCA allows to identify these tissue types.

The projections to the principal components are obtained via a singular value decomposition:

sv <- svd(t(XMulti))
PCS <- sv$u%*%diag(sv$d)

The variable PCS contains the projections to the principal components.

Fig. 4.7 shows scatter plots for pairs of principal components, i.e. the projections of the obser-
vations to pairs of PCs. PC1 separates the prostate samples (green) from the rest. PC2 separates
the colon samples (orange) but also breast samples (red). PC3 separates some lung samples (blue).

Next we perform variance filtering before PCA. For microarray data, variance filtering is jus-
tified because genes that are differentially expressed across the samples have higher variance. For
such genes the noise variance and the variance due to the signal add up. Therefore, genes with
largest variance are assumed to contain a signal and to have higher signal-to-noise ratio. The
following filtered data sets are considered:

vv <- diag(var(t(XMulti)))
length(which(vv>2))
101

length(which(vv>4))
13
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Figure 4.6: PCA applied to Anderson’s iris data. The matrix shows scatter plots for pairs of
principal components.
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length(which(vv>5))
5

XMultiF1 <- t(XMulti[which(vv>2),]) # 101
XMultiF2 <- t(XMulti[which(vv>4),]) # 13
XMultiF3 <- t(XMulti[which(vv>5),]) # 5

For the 101 genes with the highest variance, Fig. 4.8 shows scatter plots for pairs of principal
components, i.e. the projections of the observations to pairs of PCs. Principal component 1 sepa-
rates the prostate samples (green) from the rest. PC2 separates the colon samples (orange) from
the rest. PC3 separates the breast samples (red) from the rest and at the same time lung samples
(blue) from the rest. PCA on the filtered data set separates the tissues better than PCA on the
whole data set.

PCA on the multiple tissue data with 13 genes that have largest variance is shown in Fig. 4.9.
PC1 separates the prostate samples (green) from the rest. PC2 separates the colon samples (orange)
from the rest. PC3 separates the breast samples (red) from the rest at one side but at the other side
time lung samples (blue).

PCA on the multiple tissue data with 5 genes that have largest variance is shown in Fig. 4.10.
Still PC1 separates the prostate samples (green) from the rest. However other tissues are difficult
to separate. Four out of the 5 genes are highly correlated and give the same signal. Probably this
signal is indicative for the prostate tissue.

cor(XMultiF3)
ACPP KLK2 KRT5 MSMB TRGC2

ACPP 1.000000000 0.97567890 -0.004106762 0.90707887 0.947433227
KLK2 0.975678903 1.00000000 -0.029900946 0.89265825 0.951841913
KRT5 -0.004106762 -0.02990095 1.000000000 -0.05565599 0.008877815
MSMB 0.907078869 0.89265825 -0.055655985 1.00000000 0.870922667
TRGC2 0.947433227 0.95184191 0.008877815 0.87092267 1.000000000

In the GeneCards database http://www.genecards.org we find:

ACPP “is synthesized under androgen regulation and is secreted by the epithelial cells
of the prostate gland.”

further we find

KLK2 “is primarily expressed in prostatic tissue and is responsible for cleaving pro-
prostate-specific antigen into its enzymatically active form.”

and

MSMB “is synthesized by the epithelial cells of the prostate gland and secreted into
the seminal plasma.”

We now select genes which are not so closely correlated to each other. Toward this end we
first cluster (see later in the course) the genes and then select one prototype from each cluster:

http://www.genecards.org
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hc1 <-hclust(dist(t(XMultiF1)))
ct <- cutree(hc1,h=25)
table(ct)
ct
1 2 3 4 5 6 7 8 9 10

21 14 12 21 6 4 2 9 3 9

l1 <- length(table(ct))
sel <- c()
for(i in 1:l1) {
+ sel <- c(sel,which(ct==i)[1])
+ }
XMultiF4 <- XMultiF1[,sel]

These 10 genes are not as closely related as the genes which are selected based on variance
alone:

cor(XMultiF4)
ABP1 ACPP AKR1C1 ALDH1A3 ANXA8 APOD

ABP1 1.00000000 -0.1947766 -0.04224634 -0.21577195 -0.2618053 -0.3791812658
ACPP -0.19477662 1.0000000 -0.22929893 0.88190657 -0.2978638 0.4964638048
AKR1C1 -0.04224634 -0.2292989 1.00000000 -0.07536066 0.4697886 -0.1793466620
ALDH1A3 -0.21577195 0.8819066 -0.07536066 1.00000000 -0.1727669 0.4113925823
ANXA8 -0.26180526 -0.2978638 0.46978864 -0.17276688 1.0000000 -0.1863923785
APOD -0.37918127 0.4964638 -0.17934666 0.41139258 -0.1863924 1.0000000000
BST2 -0.02752210 -0.1858633 0.03341592 -0.18706898 0.1672327 0.0001475666
CA12 -0.03390577 -0.5266892 0.20825388 -0.55430511 0.1535930 -0.0861446268
CLDN3 0.33206818 0.3547601 -0.52997065 0.24516720 -0.6819272 0.2272871855
IGHA1 -0.14341643 -0.2835074 0.45479347 -0.08918854 0.2726503 -0.1157383141

BST2 CA12 CLDN3 IGHA1
ABP1 -0.0275221025 -0.03390577 0.3320682 -0.14341643
ACPP -0.1858633000 -0.52668918 0.3547601 -0.28350737
AKR1C1 0.0334159199 0.20825388 -0.5299707 0.45479347
ALDH1A3 -0.1870689799 -0.55430511 0.2451672 -0.08918854
ANXA8 0.1672327418 0.15359297 -0.6819272 0.27265032
APOD 0.0001475666 -0.08614463 0.2272872 -0.11573831
BST2 1.0000000000 0.08971880 -0.1918497 0.16460367
CA12 0.0897187966 1.00000000 -0.3170681 0.17639489
CLDN3 -0.1918497331 -0.31706813 1.0000000 -0.39690211
IGHA1 0.1646036701 0.17639489 -0.3969021 1.00000000

Fig. 4.11 shows the PCA result. The tissues are not as well separated as with maximizing the
variance of the genes because some highly variable genes are missed. Tissues can be separated
but not with the same quality as with more genes.

Feature selection based on hierarchical clustering and variance maximization within one clus-
ter:
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hc1 <-hclust(dist(XMulti))
ct <- cutree(hc1,h=16)
table(ct)
ct

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
682 126 1631 742 347 797 196 104 44 35 5 8 12 5 12 14 5 71
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
22 8 16 32 48 72 2 93 22 22 56 9 54 7 4 2 16 26
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
3 8 42 1 9 1 7 14 1 2 8 3 2 20 3 2 9 7

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
3 2 1 5 2 2 1 1 1 3 9 3 3 3 3 1 2 3

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
1 1 1 1 2 2 1 3 1 2 1 1 2 1 2 2 1 1

91 92
1 1

l1 <- length(table(ct))
sel <- c()
for(i in 1:l1) {
clas <- which(ct==i)
M <- which.max(diag(var(t(XMulti[clas,]))))
sel <- c(sel,clas[M])
}
XMultiF5 <- t(XMulti[sel,])

For each cluster the gene with maximal variance is selected. Fig. 4.12 shows the PCA result for
feature selection based on hierarchical clustering, which gave 92 genes. Results are very similar
to variance based feature selection. However one improvement is visible. PC3 separates breast
samples (red) from lung samples (blue) which was not achieved by the other projections.

Feature selection based on hierarchical clustering but now the distance between genes is based
on their correlation:

# Genes 2964 and 4663 are constant !!
# First remove these genes
XMultiC <- XMulti[-c(2964,4663),]
D <- 1 - abs(cor(t(XMultiC)))
D <- as.dist(D)
hc1 <-hclust(D)
ct <- cutree(hc1,h=0.999)
l1 <- length(table(ct))
sel <- c()
for(i in 1:l1) {
clas <- which(ct==i)
M <- which.max(diag(var(t(XMultiC[clas,]))))
sel <- c(sel,clas[M])
}
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Figure 4.7: PCA applied to multiple tissue data. PC1 separates the prostate samples (green) from
the rest. PC2 separates the colon samples (orange) from the rest. PC3 separates some lung samples
(blue).

XMultiF7 <- t(XMultiC[sel,])

Fig. 4.13 shows the PCA result for feature selection based on hierarchical clustering based on the
correlation coefficient matrix. For each of the 95 clusters the gene with maximal variance was
selected. Again, the results are very similar to variance based feature selection. PC3 separates
breast samples (red) from lung samples (blue) almost as good as in previous example.
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Figure 4.8: PCA applied to multiple tissue data with 101 most variable genes. PC1 separates the
prostate samples (green) from the rest. PC2 separates the colon samples (orange) from the rest.
To the left, PC3 separates the breast samples (red) from the rest but, to the right, it also separates
lung samples (blue).
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Figure 4.9: PCA applied to multiple tissue data with 13 most variable genes. Again PC1 separates
the prostate samples (green) from the rest. However, the separation of colon samples (orange)
by PC2 is worse than with 101 genes. Also the separation of the breast samples (red) and lung
samples (blue) by PC3 is worse that with 101 genes.
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Figure 4.10: PCA applied to multiple tissue data with 5 most variable genes. Still PC1 separates
the prostate samples (green) from the rest. However other tissues were not separated.
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Figure 4.11: PCA applied to multiple tissue data with 10 genes which are not too closely corre-
lated.
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Figure 4.12: PCA applied to multiple tissue data with 92 genes selected by hierarchical clustering.
PC3 separates breast samples (red) from lung samples (blue) which was not achieved by the other
projections.
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Figure 4.13: PCA applied to multiple tissue data with 95 genes selected by hierarchical clustering
on the correlation coefficient matrix. PC3 separates breast samples (red) from lung samples (blue)
almost as good as in previous example.
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4.3 Clustering

One of the best known and most popular unsupervised learning techniques is clustering. “Clusters”
in the data are regions where observations group together or, in other words, regions of high
data density. Often these clusters are observations which stem from one “prototype” via noise
perturbations. The prototype may represent a certain situation in the real world which is repeated
but has slightly different environments or is measured with noise, so that, the feature values for
this situation differ for each occurrence.

Clustering extracts structures in the data and can identify new data classes which were un-
known so far. An important application of clustering is data visualization, where in some cases
both down-projection and clustering are combined, e.g. as for self-organizing maps which were
previously considered. If observations are represented by their prototypes then clustering is a data
compression method called “vector quantization”.

4.3.1 k-Means Clustering

4.3.1.1 The Method

Probably the best known clustering algorithm is k-means clustering Forgy [1965], Hartigan [1972,
1975], Hartigan and Wong [1979]. k-means assumes k clusters but we denote the number of
clusters by l to keep the notation that we used for other methods.

The only parameters are the cluster centers in contrast to mixture clustering which has as
parameters cluster centers, cluster covariance, cluster weight, i.e. number of points in the cluster.

The cluster membership is determined very simple: xi belongs to the cluster j with the closest
center µj , i.e. the smallest Euclidean distance ‖xi − µj‖ to xi.

cxi = arg min
k
‖xi − µk‖ . (4.40)

Only the centers are updated:

µnew
j =

1

nj

n∑
i=1, j=cxi

xi (4.41)

nj =

n∑
i=1, j=cxi

1 , (4.42)

where nj is the number of data points assigned to cluster j. Therefore µnew
j is the mean of the

data points assigned to cluster j. The k-means clustering algorithm is given in Alg. 4.1.

The k-means clustering:

fast,

robust to outliers (covariance),

simple (can be an advantage or a disadvantage),
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Algorithm 4.1 k-means

Given: data {x} = (x1,x2, . . . ,xn), number of clusters l

BEGIN initialization
initialize the cluster centers µj , 1 ≤ j ≤ l

END initialization

BEGIN Iteration

Stop=false
while Stop=false do

for (i = 1 ; i ≥ n ; i+ +) do
assign xi to the nearest µj

end for
for (j = 1 ; j ≥ l ; j + +) do

µnew
j =

1

nj

n∑
i=1, j=cxi

xi

end for
if stop criterion fulfilled then

Stop=true
end if

end while
END Iteration
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prone to the initialization.

For example, consider an initialization which places one center near several outliers which are
separated from the rest of the data points. The other data points have other cluster centers closer
to them. Then this outlier cluster will remain in each iteration at the outliers even if other cluster
are not modeled. This behavior can be serious in high dimensions.

We define the softmax membership with parameter b as

wj(xi) =
‖xi − µj‖−2/(b−1)∑l
k=1 ‖xi − µk‖−2/(b−1)

. (4.43)

and obtain as update rule

µnew
j =

∑n
i=1wj(xi) xi∑n
i=1wj(xi)

. (4.44)

This algorithm is called fuzzy k-means clustering and described in Alg. 4.2.

Algorithm 4.2 Fuzzy k-means

Given: data {x} = (x1,x2, . . . ,xn), number of clusters l, parameter b

BEGIN initialization
initialize the cluster centers µj , 1 ≤ j ≤ l, and wj(xi) so that

∑l
j=1wj(xi) = 1, wj(xi) ≥ 0.

END initialization

BEGIN Iteration

Stop=false
while Stop=false do

µnew
j =

∑n
i=1wj(xi) xi∑n
i=1wj(xi)

wj(xi) =
‖xi − µj‖−2/(b−1)∑l
k=1 ‖xi − µk‖−2/(b−1)

if stop criterion fulfilled then
Stop=true

end if
end while

END Iteration

4.3.1.2 Examples

We demonstrate k-means on an artificial data set in two dimensions with five clusters. The five
cluster data set was generated as follows:
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x <- rbind(
matrix(rnorm(100, sd = 0.2), ncol = 2),
matrix(rnorm(100, mean = 1, sd = 0.2), ncol = 2),
matrix(rnorm(100, mean = -1, sd = 0.2), ncol = 2),
matrix(c(rnorm(100, mean = 1, sd = 0.2),

rnorm(100, mean = -1, sd = 0.2)), ncol = 2),
matrix(c(rnorm(100, mean = -1, sd = 0.2),

rnorm(100, mean = 1, sd = 0.2)), ncol = 2))
colnames(x) <- c("x", "y")
k=5

Fig. 4.14 shows the result of k-means with k = 5 where an optimal solution is found. Filled
circles mark the cluster centers. Local minima are shown in Fig. 4.15 and Fig. 4.16. In both cases
one cluster explains two true clusters while one true cluster is divided into two model clusters.
Fig. 4.17 shows a local minimum, where three model clusters share one true cluster.

We apply k-means with k = 8 to the five cluster data set. In this case the number of model
clusters does not match the number of true clusters. Therefore the solution will always be worse
than the optimal solution with the correct number of clusters. Fig. 4.18 shows a solution where
three true clusters are shared by pairs of model clusters. Fig. 4.19 shows a solution where one true
cluster is shared by 3 model clusters and another by 2 model clusters. This solution is very typical
and another example is presented in Fig. 4.20. Fig. 4.21 shows a solution where a true cluster is
shared by four model clusters. The remaining true clusters are correctly explained by one model
cluster.
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Figure 4.14: k-means clustering of the five cluster data set with k = 5 where filled circles mark
the cluster centers. An optimal solution is found.
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Figure 4.15: k-means clustering of the five cluster data set with k = 5 where filled circles mark
the cluster centers. A local minimum is found.
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Figure 4.16: k-means clustering of the five cluster data set with k = 5 where filled circles mark
the cluster centers. A local minimum is found.
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Figure 4.17: k-means clustering of the five cluster data set with k = 5 where filled circles mark
the cluster centers. A local minimum is found where three model cluster share one true cluster.
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Figure 4.18: k-means clustering of the five cluster data set with k = 8 where filled circles mark
the cluster centers. True clusters are shared by pairs of model clusters.
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Figure 4.19: k-means clustering of the five cluster data set with k = 8. Typical case where one
true cluster is shared by 3 model clusters and another by 2 model clusters.



86 Chapter 4. Summarizing Multivariate Data

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

●
●

●●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●

●● ●●
●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●● ●●

●
●

●

●
●

●

● ●

●

●
●

●
● ●

●

●

● ●

●

● ●

●

●

●
●

●
●

● ●

●

●

●●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

●

●

●
●

●

●

●

●

Figure 4.20: k-means clustering of the five cluster data set with k = 8. Another example of the
situation like Fig. 4.19.
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Figure 4.21: k-means clustering of the five cluster data set with k = 8. A true cluster is shared by
four model clusters.
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Figure 4.22: Down-projection of the iris data set to two dimensions by PCA. The true classes are
marked by colors.

We apply k-means to the Iris data set. To remind the reader, the down-projection onto two
dimensions by PCA is again given in Fig. 4.22, where the true classes are marked by colors.
Fig. 4.23 shows a typical solution of k-means applied to the Iris data set. The solution is quite
good, only at the border assignments are made wrong. Fig. 4.24 gives another typical solution
of k-means for the Iris data set. This solution is not good as two components share a cluster.
Important question is whether the quality of these solutions can be distinguished if the true classes
are not known.
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Figure 4.23: k-means clustering of the Iris data set. The first typical solution where filled circles
are cluster centers. The solution is quite good, only at the border assignments are made wrong.
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Figure 4.24: k-means clustering of the Iris data set. The second typical solution where filled
circles are cluster centers. This solution is not good as two components share a cluster.
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Figure 4.25: Down-projection of the multiple tissue data set to two dimensions by PCA. The true
classes are marked by colors.

We apply k-means to the multiple tissues data set. To remind the reader, the down-projection
onto two dimensions by PCA is again given in Fig. 4.25, where the true classes are marked by
colors. For the down-projection the 101 features with the largest variance are used. k-means
is applied to the full data set. Fig. 4.26 shows the typical solution of k-means applied to the
multiple tissues data set. This solution appears in almost all cases. The classes are almost perfectly
identified. Fig. 4.27 gives another solution of k-means for the multiple tissues data set. This
solution is not as good as the solution in Fig. 4.26. Another suboptimal solution is shown in
Fig. 4.28.
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Figure 4.26: k-means clustering of the multiple tissue data set with k = 4. Filled circles are cluster
centers. This is the solution found in almost all initializations. The classes are almost perfectly
identified.
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Figure 4.27: k-means clustering of the Iris data set with k = 4. This solution is not as good as the
typical solution from Fig. 4.26.
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Figure 4.28: k-means clustering of the Iris data set with k = 4. Again, this solution is not as good
as the typical solution from Fig. 4.26.
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Figure 4.29: Example of hierarchical clustering of animal species where the result is given as a
dendrogram (corresponding tree).

4.3.2 Hierarchical Clustering

4.3.2.1 The Method

So far we did not consider distances and structures between the clusters. Distances between clus-
ters help to evaluate the clustering result and single clusters. In particular it would help to decide
whether clusters should be merged or not. Hierarchical clustering supplies distances between
clusters which are captured in a dendrogram. Fig. 4.29 depicts a dendrogram as the result of
hierarchical clustering. Hierarchical clustering can be performed

agglomerative, that is, bottom up, where the clustering starts with all clusters having a single
observations and then clusters are merged until only one cluster remains

divisive, that is, top down, where the clustering starts with one cluster and clusters are split
until only clusters with a single observation remain.

In Bioinformatics the method “Unweighted Pair Group Method using arithmetic Averages”
(UPGMA) applies hierarchical clustering in order to construct a phylogenetic tree. In machine
learning the UPGMA method is called agglomerative hierarchical clustering, where the closest
clusters are merged to give a new cluster. Agglomerative hierarchical clustering is initialized by
clusters that consist of a single observation. Then clusters are iteratively merged until only one
cluster remains.

Agglomerative hierarchical clustering can be used with different distance measures between
clusters A and B:

dmin(A,B) = mina∈A,b∈B ‖a − b‖ (single linkage)
dmax(A,B) = maxa∈A,b∈B ‖a − b‖ (complete linkage)
davg(A,B) = 1

nA nB

∑
a∈A

∑
b∈B ‖a − b‖ (average linkage)

dmean(A,B) = ‖ā − b̄‖ (average linkage)

, (4.45)
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where nA (nB) is the number of elements in A (B) and ā (b̄) is the mean of cluster A (B). For the
element distance ‖.‖ any distance measure is possible like the Euclidean distance, the Manhattan
distance, or the Mahalanobis distance.

For clusters with a single element these distance measures are equivalent, however for clusters
with more than one element there is a difference.

complete linkage dmax avoids that clusters are elongated in some direction, that is, the small-
est distance between points may remains small. This means that the cluster may not be well
separated.

single linkage dmin ensures that each pair of elements, where one is from one cluster and the
other is from another cluster, has a minimal distance. The result of single linkage guarantees
that after a cut of the hierarchical clustering tree, the distance between clusters has a minimal
value. In machine learning single linkage clustering is relevant for leave-one-cluster-out
cross-validation. Leave-one-cluster-out cross-validation assumes that a whole new group of
objects is unknown and left out. Therefore in the training set there is no object that is similar
to a test set object. Leave-one-cluster-out cross-validation is known from protein structure
prediction.

average linkage davg is the “Unweighted Pair Group Method using arithmetic Averages”
(UPGMA) method.

Instead of starting with clusters containing a single object bottom up clustering can start top
down, that is, starting with a single cluster containing all objects. Such divisive or top down
clustering methods are based on graph theoretic considerations. First the minimal spanning tree is
built. Then the largest edge is removed which gives two clusters. Now the second largest edge can
be removed and so on. It might be more appropriate to compute the average edge length within a
cluster and find the edge which is considerably larger than other edges in the cluster. This means
long edges are selected locally as an edge that does not fit to the cluster structure and not globally.
At node level, the edge of each node can be determined which is considerably larger than other
edges of this node. The inconsistent (considerably larger) edges can be removed stepwise and new
clusters are produced.

4.3.2.2 Examples

We perform hierarchical clustering on the US Arrest data set from Subsection 2.6. We test the dis-
tance measures “ward”, “single”, “complete”, “average”, “mcquitty”, “median”, and “centroid”.
For hierarchical clustering we use the R function hclust and plot the results by the following
commands (shown for “ward”):

hc <- hclust(dist(USArrests), method="ward")
opar <- par(cex=0.7,font=2)
plot(hc, hang = -1,main=paste("Hierarchical Clustering US Arrests: ",
+ "ward",sep=""))
par(opar)
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Figure 4.30: Hierarchical clustering of the US Arrest data set using Ward’s minimal variance
which gives compact, spherical clusters.

Fig. 4.30 shows the results agglomerative hierarchical clustering using Ward’s minimal vari-
ance as distance which gives compact, spherical clusters. Fig. 4.31 shows the results for single
linkage which gives similar clusters with a minimal distance. Fig. 4.32 shows the results for com-
plete linkage (minimal spanning tree) which is a “friends of friends” clustering. Fig. 4.33 shows
the results for average linkage, which corresponds to UPGMA in bioinformatics (distance between
averages of cluster elements). Fig. 4.34 shows the results for the McQuitty distance. Fig. 4.35
shows the results for median distance which is not a monotone distance measure. Fig. 4.36 shows
the results for centroid distance which is also not a monotone distance measure.
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Figure 4.31: Hierarchical clustering of the US Arrest data set using single linkage which gives
similar clusters with a minimal distance.
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Figure 4.32: Hierarchical clustering of the US Arrest data set using complete linkage (minimal
spanning tree) which is a “friends of friends” clustering.
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Figure 4.33: Hierarchical clustering of the US Arrest data set using average linkage.
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Figure 4.35: Hierarchical clustering of the US Arrest data set using median distance (not mono-
tone).
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Figure 4.36: Hierarchical clustering of the US Arrest data set using centroid distance (not mono-
tone).
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Figure 4.37: Hierarchical clustering of the five cluster data set. With all distance measures the
optimal solution is found.

Next we apply hierarchical clustering to the five cluster data set. Fig. 4.37 shows the result for
Ward’s distance which is perfect. The results do not change if other distance measures than Ward’s
are used. To determine the clusters, the dendrogram has to be cut by the R function cutree().
We used following code:

hc <- hclust(dist(x), method="ward")
cl <- cutree(hc,k=5)
plot(x, col = cl,main=paste("Hierarchical Clustering Five Cluster: ","ward",sep=""))

We apply hierarchical clustering to the iris data set. Fig. 4.38 shows the results for the distance
measures Ward, average linkage, complete linkage, and single linkage for 3 and 5 components.
Ward with 3 components performs well and average linkage with 3 components is worse. How-
ever, hierarchical clustering has problems to separate the close iris species. For 5 components
either equal large cluster or small clusters are separated. Ward divides true clusters in equal large
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Figure 4.38: Hierarchical clustering of the iris data set. Ward with 3 components performs well
and average linkage with 3 components is worse. For 5 components either equal large cluster or
small clusters are separated.

clusters while other methods separate small clusters. Single linkage separates out clusters with
large distances to other clusters which do not reflect the true clusters.

Next we apply hierarchical clustering to the multiple tissue data set. Fig. 4.39 shows the results
for the distance measures Ward, average linkage, complete linkage, and single linkage for 4 and
6 components. Ward with 4 components performs well. Again the correct number of clusters is
essential to obtain good clustering results.
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Figure 4.39: Hierarchical clustering of the multiple tissues data set. Ward with 4 components
performs well. If correct number of cluster is known, the performance is better than with wrong
number of clusters.



Chapter 5

Linear Models

In Subsection 3.2.4 we have considered linear regression for bivariate variables. We expressed one
variable y as a linear function of the other variable x:

y = a + b x . (5.1)

If fitting a linear function (a line), that is, to find optimal parameters a and b, the objective was the
sum of the squared deviations between the y values and the regression line. The line that optimized
this criterion is the least squares line. We now generalize this approach to the multivariate case.
We already noticed in the simple bivariate case that interchanging the role of x and y may result
in a different functional dependency between x and y.

The scalar variable y is called the dependent variable. We now generalize x to a vector of
features x with components xj which are called explanatory variables, independent variables,
regressors, or features.

The estimation of y from a vector of explanatory variables x is called multiple linear regres-
sion. If y is generalized to a vector y, then this is called multivariate linear regression. We focus
on multiple linear regression, that is, the case where multiple features are summarized in the vector
x.

5.1 Linear Regression

5.1.1 The Linear Model

We assume to havem features x1, . . . , xm which are summarized by the vector x = (x1, . . . , xm).
The general form of a linear model is

y = β0 +
m∑
j=1

xj βj + ε . (5.2)

This model has (m+ 1) parameters β0, β1, . . . , βm which are unknown and have to be estimated.
ε is an additive noise or error term which accounts for the difference between the predicted value
and the observed outcome y.

To simplify the notation, we extend the vector of features by a one: x = (1, x1, . . . , xm).
Consequently, we use the parameter vector β = (β0, β1, . . . , βm) to denote the linear model in
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vector notation by:

y = xTβ + ε . (5.3)

If the constant 1 is counted as independent variable, then (m+1) is both the number of parameters
and the number of the independent variables. In some textbooks this might be confusing because
m and (m+ 1) may appear in the formulas.

We assume to have n observations {(yi,xi) | 1 ≤ i ≤ n}. The yi are summarized by a vector
y, the xi in a matrix X ∈ Rn×(m+1) (xi is the i-th row of X), and the εi in a vector ε ∈ Rn. For
n observations we obtain the matrix equation:

y = X β + ε . (5.4)

5.1.2 Interpretations and Assumptions

The linear model can be applied in different frameworks, where the independent variables have
different interpretations and assumptions. The parameter estimation depends only on the noise
assumption. The task which must be solved or the study design, from which the data comes,
determines interpretations, assumptions, and design of the dependent variables.

5.1.2.1 Interpretations

One of the main differences is whether the explanatory / independent variables are random vari-
ables sampled together with the dependent variable or constants which are fixed according to the
task to solve.

Our model for bivariate data from Subsection 3.2.4 is a model with one independent variable:

yi = β0 + β1xi + εi , (5.5)

where β0 is the y-intercept and β1 the slope.

An example with 7 observations in matrix notation is

y1

y2

y3

y4

y5

y6

y7


=



1 x1

1 x2

1 x3

1 x4

1 x5

1 x6

1 x7


(
β0

β1

)
+



ε1
ε2
ε3
ε4
ε5
ε6
ε7


. (5.6)

An example for a model with two regressors is

yi = β0 + β1xi1 + β2xi2 + εi . (5.7)



5.1. Linear Regression 109

For 7 observations this model leads to following matrix equation:

y1

y2

y3

y4

y5

y6

y7


=



1 x11 x12

1 x21 x22

1 x31 x32

1 x41 x42

1 x51 x52

1 x61 x62

1 x71 x72


β0

β1

β2

 +



ε1
ε2
ε3
ε4
ε5
ε6
ε7


. (5.8)

We show an example for a cell means model or a one-way ANOVA model. We assume that
from the study design we know 3 groups and want to find the mean for each group. The model is

ygi = βg + εgi , (5.9)

where βg is the mean of group g. For example we have three groups and 3 examples for the first
group, and two examples for the second and third group. In matrix notation this example with 7
observations and three groups is

y11

y12

y13

y21

y22

y31

y32


=



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


β1

β2

β3

 +



ε11

ε12

ε13

ε21

ε22

ε31

ε32


. (5.10)

We present another example of an ANOVA model which is again a one-way ANOVA model.
We are interested in the offset from a reference group. This model is typically for a study design
with one control group or reference group and multiple treatment groups. The offset of group g
from group 1 is denoted by βg, thus β1 = 0.

ygi = β0 + βg + εgi . (5.11)

For three groups and 7 observations (3 in group g = 1, 2 in group g = 2, and 2 in group g = 3),
the matrix equation is 

y11

y12

y13

y21

y22

y31

y32


=



1 0 0
1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1


β0

β2

β3

 +



ε11

ε12

ε13

ε21

ε22

ε31

ε32


. (5.12)

The mean of the reference group is β0 and βg is the difference to the reference group. In this
design we know that β1 = 0, therefore we did not include it.

A more complicated model is the two-way ANOVA model which has two known groupings or
two known factors. Each observation belongs to a group of the first grouping and at the same time
to a group of the second grouping, that is, each observation is characterized by two factors.
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The model is

yghi = β0 + βg + αh + (βα)gh + εghi , (5.13)

where g denotes the first factor (grouping) and h the second factor (grouping), and i indicates the
replicate for this combination of factors. The term (βα)gh accounts for interaction effects between
the factors, while βg and αh are the main effects of the factors.

This model has too many parameters to possess a unique solution for the parameters if each
combination of groups is observed exactly once. One observation per combination of groups is
the minimal data set. Consequently, noise free observations can be modeled by more than one set
of parameters. Even for a large number of noise free observations the situation does not change:
there is more that one set of parameters which gives the optimal solution. The solution to this
over-parametrization is to include additional constraints which use up some degrees of freedom.
These constraints are that either

the main and interaction effect parameters sum to zero for each index (sum-to-zero con-
straint) or

all parameters that contain the index 1 are zero (corner point parametrization).

With the corner point parametrization we have

α1 = 0 (5.14)

β1 = 0 (5.15)

(βα)1h = 0 (5.16)

(βα)g1 = 0 . (5.17)

We present an example, where the first factor has 3 levels 1 ≤ g ≤ 3, the second factor has
2 levels 1 ≤ h ≤ 2, and for each combination of factors there are two replicates 1 ≤ i ≤ 2. In
matrix notation we have



y111

y112

y211

y212

y311

y312

y121

y122

y221

y222

y321

y322



=



1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 1 1 0
1 1 0 1 1 0
1 0 1 0 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 0 1 1 0 1





β0

β2

β3

α2

(βα)22

(βα)32

 +



ε111

ε112

ε211

ε212

ε311

ε312

ε121

ε122

ε221

ε222

ε321

ε322



. (5.18)
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5.1.2.2 Assumptions

The standard linear regression model has the following assumptions:

Strict exogeneity. The errors have zero mean conditioned on the regressors:

E(ε |X) = 0 . (5.19)

Therefore the errors have zero mean E(ε) = 0 and they are independent of the regressors
E(XT ε) = 0.

Linear independence. The regressors must be linearly independent almost surely.

Pr(rank(X) = m+ 1) = 1 . (5.20)

IfX does not have full rank, then estimation is only possible in the subspace spanned by the
xi. To obtain theoretical properties of the estimator, the second moments should be finite to
ensure E( 1

nX
TX) to be finite and positive definite.

Spherical errors.

Var(ε |X) = σ2 In . (5.21)

Therefore the error has the same variance in each observation E(ε2i | X) = σ2 (ho-
moscedasticity). If this is violated, then a weighted least squared estimate should be used.
Further the errors of different observations are not correlated E(εiεk |X) = 0 for i 6= k (no
autocorrelation).

Normality of the Errors. For further theoretical properties often the errors are assumed to be
normally distributed given the regressors:

ε |X ∼ N
(
0 , σ2 In

)
(5.22)

In this case the estimator is the maximum likelihood estimator, which is asymptotically efficient,
that is, it is asymptotically the best possible estimator. Further it is possible to test hypotheses
based on the normality assumption because the distribution of the estimator is known.

In many applications the samples {(yi,xi)} are assumed to be independent and identically
distributed (iid). The samples are independent,

Pr ((yi,xi) | (y1,x1), . . . , (yi−1,xi−1), (yi+1,xi+1), . . . , (yn,xn)) = Pr ((yi,xi)) , (5.23)

and are identically distributed,

Pr ((yi,xi)) = Pr ((yk,xk)) . (5.24)

For iid samples the assumptions simplify to

Exogeneity. Each error has zero mean conditioned on the regressor:

E(εi | xi) = 0 . (5.25)
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Linear independence. The covariance matrix

Var(x) = E(xxT ) =
1

n

n∑
i=1

E(xix
T
i ) = E(

1

n
XTX) . (5.26)

must have full rank.

Homoscedasticity.

Var(εi | xi) = σ2 . (5.27)

For time series models the iid assumption does not hold. In this case the assumptions are

the stochastic process {(yi,xi)} is stationary (probability distribution is the same when
shifted in time) and ergodic (time average is the population average);

the regressors are predetermined: E(xiεi) = 0 for all i = 1, . . . , n;

the (m+ 1)× (m+ 1) matrix E(xix
T
i ) is of full rank;

the sequence {xiεi} is a martingale difference sequence (zero mean given the past) with
existing second moments E(ε2ixix

T
i ).

Linear models for time series are called autoregressive models.

5.1.3 Least Squares Parameter Estimation

The residual for the i-th observation is

ri = yi − xTi β̃ , (5.28)

where β̃ is a candidate for the parameter vector β. The residual ri measures how well yi is
predicted by the linear model with parameters β̃.

To assess how well all observations are fitted simultaneously by a linear model, the squared
residuals of all observation are summed up to S, which is called the sum of squared residuals
(SSR), the error sum of squares (ESS), or residual sum of squares (RSS):

S(β̃) =
n∑
i=1

r2
i =

n∑
i=1

(
yi − xTi β̃

)2
=
(
y − Xβ̃

)T (
y − X β̃

)
. (5.29)

The least squares estimator β̂ for β minimizes S(β̃):

β̂ = arg min
β̃
S(β̃) =

(
XTX

)−1
XTy . (5.30)

The solution is obtained by setting the derivative of S(β̃) with respect to the parameter vector β̃
to zero:

∂S(β̃)

∂β̃
= 2XT

(
y − X β̃

)
= 0 . (5.31)
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The matrixX+ =
(
XTX

)−1
XT is called the pseudo inverse of the matrixX becauseX+X =

Im.

The least squares estimator is the minimal variance linear unbiased estimator (MVLUE), that
is, it is the best linear unbiased estimator. Under the normality assumption for the errors, the least
squares estimator is the maximum likelihood estimator (MLE).

Concerning notation and the parameter vector, we have the true parameter vector β, a candi-
date parameter vector or a variable β̃, and an estimator β̂, which is in our case the least squares
estimator.

5.1.4 Evaluation and Interpretation of the Estimation

5.1.4.1 Residuals and Error Variance

The estimated values for y are

ŷ = Xβ̂ = X X+y = X
(
XTX

)−1
XTy = Py , (5.32)

where

P = X
(
XTX

)−1
XT (5.33)

is a projection matrix, the hat matrix as it puts a hat on y. We have PX = X and P 2 = P .

The minimal residuals or the least squares residuals are

ε̂ = y − Xβ̂ = (In − P ) y = (In − P ) ε . (5.34)

Both P and (In − P ) are symmetric and idempotent (P = P 2).

S(β̂) is the sum of squared residuals for the least squares estimator β̂, which can be used to
estimate σ2.

S(β̂) =
(
y − Xβ̂

)T (
y − Xβ̂

)
(5.35)

= yTy − 2 β̂TXTy + β̂TXTXβ̂

= yTy − β̂TXTy = ε̂Ty ,

where we usedXTXβ̂ = XTy.

The least squares estimate for σ2 is

s2 =
1

n−m− 1
S(β̂) (5.36)

and the maximum likelihood estimate for σ2 is

σ̂2 =
1

n
S(β̂) . (5.37)
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The estimate s2 is an unbiased estimator for σ2 while the ML estimate σ̂2 is biased. Both are
asymptotically optimal, that is, unbiased and efficient. The estimator with minimal mean squared
error is

σ̃2 =
1

n−m+ 1
S(β̂) . (5.38)

The covariance of the vector of residuals is

E(ε̂ε̂T ) = (In − P ) E(ε εT ) (In − P ) (5.39)

= σ2 (In − P )2 = σ2 (In − P ) ,

where we used Eq. (5.34). Further we assumed that the residuals have the covariance structure
σ2In as the assumptions state.

5.1.4.2 Coefficient of determination

The coefficient of determination R2 is the ratio of the variance “explained” by the model to the
“total” variance of the dependent variable y:

R2 =

∑n
i=1

(
ŷi − ŷ

)2∑n
i=1 (yi − y)2 (5.40)

=
yTP TL P y

yTL y
= 1 − yT (I − P ) y

yTL y
= 1 − SSR

TSS
,

whereL = In− (1/n)1 1T , with 1 as the n-dimensional vector of ones. L is the centering matrix
which subtracts the mean from each variable. “TSS” is the total sum of squares for the dependent
variable and “SSR” the sum of squared residuals denoted by S. To account for a constant offset,
that is, the regression intercept, the data matrixX should contain a column vector of ones. In that
case R2 is between 0 and 1, the closer R2 is to 1, the better the fit.

5.1.4.3 Outliers and Influential Observations

An outlier is an observation which is worse fitted by the model than other observations, that is,
it has large error compared to other errors. An influential observation is an observation which
has large effect on the model fitting or has large effect on the inferences based on the model.
Outliers can be influential observations but need not be. Analogously, influential observations can
be outliers but need not be.

5.1.4.3.1 Outliers. We define the standardized residuals or studentized residuals ρi as

ρi =
ε̂i

σ̂
√

1 − Pii
. (5.41)

Pii are the diagonal elements of the hat matrix P defined in Eq. (5.33) and σ̂2 is an estimate
of σ2. The standardized residuals can be used to check the fitted model and whether the model
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assumptions are met or not. Such assumptions are linearity, normality, and independence. In
particular, an outlier may be detected via the standardized residuals ρi because they have the same
variance.

Another way is to do leave-one-out regression, where observation (yi,xi) is removed from the
data set and a least squares estimate performed on the remaining (n − 1) observations. The least
squares estimator β̂(i) on the data set where (yi,xi) is left out is:

β̂(i) = β̂ − ε̂i
1 − Pii

(XTX)−1xi . (5.42)

Therefore the residual of the left-out observation is

ε̂(i) =
ε̂i

1 − Pii
. (5.43)

Plotting the leave-one-out residuals against the standard residuals may reveal outliers. However
outliers can already be detected by (1 − Pii): the closer Pii to one, the more likely is the i-th
observation an outlier.

5.1.4.3.2 Influential Observations. An influential observation (yi,xi) has large effect on the
estimates β̂ orXβ̂. This means that the estimates are considerably different if observation (yi,xi)
is removed. Fig. 5.1 shows a simple linear regression with three marked outliers. Observations
1 and 3 deviate in the x-direction. Observations 2 and 3 appear as outliers in the y-direction.
Observation 1 is located close to the regression line which would be obtained without it. Thus,
it is not influential. However, observation 3 has a large effect on the regression line compared to
regression if it is removed. Thus, observation 3 is influential. Observation 2 is influential to some
degree but much less than observation 3.

With the hat matrix P we can express ŷ as ŷ = Py, therefore

ŷi =
n∑
j=1

Pijyj = Piiyi +
∑
j,j 6=i

Pijyj . (5.44)

If Pii is large, then Pij for j 6= i is small because P is idempotent. Therefore Pii is called the
leverage of yi, that is, how much yi contributes to its estimate.

The influence of the i-th observation can be measured by Cook’s distance

Di =
ρ2
i

m+ 1

Pii
1 − Pii

. (5.45)

If Di is large, the observation (yi,xi) has considerable influence on the estimates.

This distance can be written as

Di =
(β̂(i) − β̂)TXTX(β̂(i) − β̂)

(m+ 1) s2
(5.46)

=
(X β̂(i) − X β̂)T (X β̂(i) − X β̂)

(m+ 1) s2

=
(ŷ(i) − ŷ)T (ŷ(i) − ŷ)

(m+ 1) s2
.
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To investigate the influence of each observation, we begin with ŷ ¼ Hy in (9.2),
the elements of which are

ŷi ¼
Xn

j¼1

hijyj ¼ hiiyi þ
X
j=i

hijyi: (9:34)

By (9.22), if hii is large (close to 1), then the h0ijs, j = i, are all small, and yi contrib-
utes much more than the other y’s to ŷi. Hence, hii is called the leverage of yi. Points
with high leverage have high potential for influencing regression results. In general, if
an observation (yi, x0i) has a value of hii near 1, then the estimated regression equation
will be close to yi; that is, ŷi � yi will be small.

By Theorem 9.2(iv), the average value of the hii’s is (k þ 1)/n. Hoaglin and
Welsch (1978) suggest that a point with hii . 2(k þ 1)=n is a high leverage point.
Alternatively, we can simply examine any observation whose value of hii is unusually
large relative to the other values of hii.

In terms of fitting the model to the bulk of the data, high leverage points can be
either good or bad, as illustrated by points 1 and 3 in Figure 9.2. Point 1 may
reduce the variance of b̂0 and b̂1. On the other hand, point 3 will drastically alter
the fitted model. If point 3 is not the result of a recording error, then the researcher
must choose between two competing fitted models. Typically, the model that fits
the bulk of the data might be preferred until additional points can be observed in
other areas.

To formalize the influence of a point ( yi, x0i), we consider the effect of its deletion

on b and ŷ ¼ Xb̂. The estimate of b obtained by deleting the ith observation (yi, x0i)

is defined in (9.28) as b̂(i) ¼ (X0(i)X(i))�1X0(i)y(i). We can compare b̂(i) to b̂ by means

Figure 9.2 Simple linear regression showing three outliers.

236 MULTIPLE REGRESSION: MODEL VALIDATION AND DIAGNOSTICS

Figure 5.1: Simple linear regression with three marked outliers. Observations 1 and 3 deviate in
the x-direction. Observations 2 and 3 appear as outliers in the y-direction. Observation 1 is not
influential but observation 3 is. Figure from Rencher and Schaalje [2008].
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Thus, Di is proportional to the Euclidean distance between the estimate ŷ using all data and the
estimate ŷ(i) where observation (yi,xi) is removed.

More complicated but giving the same result is first to perform a leave-one-out estimate, where
each observation (yi,xi) is left out, and, subsequently, compare the estimated values to the esti-
mated values with all data.

5.1.5 Confidence Intervals for Parameters and Prediction

5.1.5.1 Normally Distributed Error Terms

If the error terms are normally distributed then the least squares estimator is a maximum likelihood
estimator which is asymptotically normally distributed:

β̂
d−→ N

(
β, σ2 (XT X)−1

)
, (5.47)

where d−→ means convergence in distribution. This means that the distribution of β̂ is increasingly
(with number of samples) better modeled by the normal distribution. This maximum likelihood
estimator is efficient and unbiased, that is, it reaches the Cramer-Rao lower bound, and therefore
is optimal for unbiased estimators.

This asymptotic distribution gives an approximated two-sided confidence interval for the j-th
component of the vector β̂:

βj ∈
[
β̂j ± tα/2,n−m−1 s

√[
(XTX)−1

]
jj

]
(5.48)

where tα/2,n−m−1 is the upper α/2 percentage point of the central t-distribution and α is the
desired significance level of the test (probability of rejecting H0 when it is true). This means we
are 100(1− α)% confident that the interval contains the true βj . It is important to known that the
confidence intervals do not hold simultaneously for all βj .

The confidence interval for the noise free prediction is

xTβ ∈
[
xT β̂ ± tα/2,n−m−1 s

√
xT (XTX)−1 x

]
. (5.49)

Again this holds only for a single prediction but not for multiple simultaneous predictions.

If noise ε is added then we have a confidence interval for the prediction:

y ∈
[
ŷ ± tα/2,n−m−1 s

√
1 + xT (XTX)−1 x

]
, (5.50)

where ŷ = xT β̂. Of course, this holds only for a single prediction but not for multiple simultane-
ous predictions.

The estimator s2 is distributed according to a chi-squared distribution:

s2 ∼ σ2

n−m− 1
χ2
n−m−1 . (5.51)
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The variance is 2σ4/(n−m− 1) and does not attain the Cramer-Rao lower bound 2σ4/n. There
is no unbiased estimator with lower variance, this means that the estimator is the minimal variance
unbiased estimator (MVUE). The estimator σ̃2 from above has the minimal mean squared error.
An advantage of s2 is that it is independent of β̂ which helps for tests based on these estimators.

A confidence interval for σ2 is given by

(n−m− 1) s2

χ2
α/2,n−m−1

≤ σ2 ≤ (n−m− 1) s2

χ2
1−α/2,n−m−1

(5.52)

at 100(1− α)% confidence.

5.1.5.2 Error Term Distribution Unknown

For unknown error distributions we still known that the least squares estimator for β is consistent,
that is, β̂ converges in probability to the true value β. The following results are obtained by the
law of large number and the central limit theorem. The estimator β̂ is asymptotically normally
distributed:

√
n (β̂ − β)

d−→ N
(
0, σ2 (XTX)−1

)
, (5.53)

which gives

β̂ ∼a N
(
β,

σ2

n
(XTX)−1

)
, (5.54)

where ∼a means asymptotically distributed. This asymptotic distribution gives an approximated
two-sided confidence interval for the j-th component of the vector β̂:

βj ∈
[
β̂j ± q

N (0,1)
1−α/2

√
1
n σ̂

2
[
(XTX)−1

]
jj

]
(5.55)

at a (1− α) confidence level. Here q is the quantile function of the standard normal distribution.

If the fourth moment of the error ε exists, the least squares estimator for σ2 is consistent and
asymptotically normal, too. The asymptotic normal distribution is

√
n(σ̂2 − σ2)

d−→ N
(
0, E(ε4) − σ4

)
, (5.56)

which gives

σ̂2 ∼a N
(
σ2 , (E(ε4) − σ4) / n

)
. (5.57)

Also the predicted response ŷ is a random variable given x, the distribution of which is deter-
mined by that of β̂:

√
n (ŷ − y)

d−→ N
(
0, σ2 xT (XTX)−1 x

)
, (5.58)

which gives

ŷ ∼a N
(
y,

σ2

n
xT (XTX)−1 x

)
. (5.59)
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This distribution gives a confidence interval for mean response y, that is, an error bar on the
prediction:

y ∈
[
xT β̂ ± q

N (0,1)
1−α/2

√
1
n σ̂

2 xT (XTX)−1 x

]
(5.60)

at a (1− α) confidence level.

5.1.6 Tests of Hypotheses

We want to test whether some independent variables (regressors) are relevant for the regression.
These tests assume the null hypothesis that models without some variables have the same fitting
quality as models with these variables. If the null hypothesis is rejected, then the variables are
relevant for fitting.

5.1.6.1 Test for a Set of Variables Equal to Zero

We remove h variables from the original model (or data) and fit a reduced model. The error is
assumed to be normally distributed. We divide the data in m − h + 1 variables (including the
constant variable) and h variables which will be removed:

X = (X1,X2) (5.61)

withX1 ∈ Rn×(m−h+1) andX2 ∈ Rn×h. Also the parameters are accordingly partitioned:

β = (β1,β2) (5.62)

with β1 ∈ Rm−h+1 and β2 ∈ Rh. We want to test the null hypothesis H0

β2 = 0 . (5.63)

We denote the least squares estimator for the reduced model that uses only X1 by β̂r ∈
Rm−h+1. In contrast, β̂1 ∈ Rm−h+1 are the first (m − h + 1) components of the least squares
estimator β̂ of the full model. We define an F statistic as follows:

F =
yT (P − P1) y / h

yT (I − P ) y / (n−m− 1)
=

(
β̂TXTy − β̂Tr X

T
1 y
)
/ h(

yTy − β̂TXTy
)
/ (n−m− 1)

, (5.64)

where β̂ is the least squares estimator of the full model and β̂r the least squares estimator of the
reduced model. The distribution of the F statistic is the following:

(i) If H0: β2 = 0 is false, then F is distributed according to F (h, n−m− 1, λ), where

λ = βT2

(
XT

2 X2 − XT
2 X1

(
XT

1 X1

)−1
XT

1 X2

)
β2 / (2σ2) . (5.65)

(ii) If H0: β2 = 0 is true, then λ = 0 and F is distributed according to F (h, n−m− 1).
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Source of Degrees of Sum of squares Mean
Variation freedom square

reduced βr df = m− h+ 1 S = β̂Tr X
T
1 y S / df

improved β df = h S = β̂TXTy − β̂Tr X
T
1 y S / df

residual df = n−m− 1 S = yTy − β̂TXTy S / df
total center df = n− 1 S = yTy − n ȳ S / df
total df = n S = yTy S / df

Table 5.1: ANOVA table for F test of H0: β2 = 0.

H0 is rejected if F ≥ Fα,h,n−m−1, where Fα,h,n−m−1 is the upper α percentage of the central
F distribution. That is, H0 is rejected if the p-value is smaller than α.

The statistic F can also be expressed by R2:

F =

(
R2 − R2

1

)
/ h

(1 − R2) / (n−m− 1)
, (5.66)

where R2 is the coefficient of determination for the full model and R2
1 is the coefficient of deter-

mination for the reduced model using only X1. It can be shown that this test is equivalently to a
likelihood ratio test.

These hypotheses tests are often summarized by the Analysis-of-Variance (ANOVA) table as
shown in Tab. 5.1.

5.1.6.2 Test for a Single Variable Equal to Zero

To test the null hypothesis H0: βj = 0, the F statistic

F =
β̂2
j

s2
[
(XTX)−1

]
jj

(5.67)

can be used. If H0: βj = 0 is true, then F is distributed according to F (1, n−m− 1). We reject
H0: βj = 0 if F ≥ Fα,1,(n−m−1) or, equivalently, if the p-value is smaller than α.

Alternatively, the t-statistic

tj =
β̂j

s
√[

(XTX)−1
]
jj

(5.68)

can be used. We reject H0: βj = 0 if |tj | ≥ tα/2,(n−m−1) or, equivalently, if the p-value is smaller
than α.

If several βj are tested for being zero, then we have to correct for multiple testing. The false
discovery rate (FDR) can be controlled by the Benjamini-Hochberg procedure Benjamini and
Hochberg [1995], Benjamini and Yekutieli [2001]. Alternatively, the familywise α level can be
adjusted by the Bonferroni approach Bonferroni [1936].
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5.1.7 Examples

5.1.7.1 Hematology Data

This data set is from Rencher and Schaalje [2008] page 252, Ex. 10.3, Table 10.1 and stems from
Royston (1983). The following six hematology variables were measured on 51 workers:

1. y: lymphocyte count,

2. x1: hemoglobin concentration,

3. x2: packed-cell volume,

4. x3: white blood cell count (×.01),

5. x4: neutrophil count,

6. x5: serum lead concentration.

The data are given in Tab. 5.2.

hemData <- matrix(c(
+ 14,13.4,39,41,25,17, 15,14.6,46,50,30,20, 19,13.5,42,45,21,18,
+ 23,15.0,46,46,16,18, 17,14.6,44,51,31,19, 20,14.0,44,49,24,19,
+ 21,16.4,49,43,17,18, 16,14.8,44,44,26,29, 27,15.2,46,41,13,27,
+ 34,15.5,48,84,42,36, 26,15.2,47,56,27,22, 28,16.9,50,51,17,23,
+ 24,14.8,44,47,20,23, 26,16.2,45,56,25,19, 23,14.7,43,40,13,17,
+ 9,14.7,42,34,22,13, 18,16.5,45,54,32,17, 28,15.4,45,69,36,24,
+ 17,15.1,45,46,29,17, 14,14.2,46,42,25,28, 8,15.9,46,52,34,16,
+ 25,16.0,47,47,14,18, 37,17.4,50,86,39,17, 20,14.3,43,55,31,19,
+ 15,14.8,44,42,24,29, 9,14.9,43,43,32,17, 16,15.5,45,52,30,20,
+ 18,14.5,43,39,18,25, 17,14.4,45,60,37,23, 23,14.6,44,47,21,27,
+ 43,15.3,45,79,23,23, 17,14.9,45,34,15,24, 23,15.8,47,60,32,21,
+ 31,14.4,44,77,39,23, 11,14.7,46,37,23,23, 25,14.8,43,52,19,22,
+ 30,15.4,45,60,25,18, 32,16.2,50,81,38,18, 17,15.0,45,49,26,24,
+ 22,15.1,47,60,33,16, 20,16.0,46,46,22,22, 20,15.3,48,55,23,23,
+ 20,14.5,41,62,36,21, 26,14.2,41,49,20,20, 40,15.0,45,72,25,25,
+ 22,14.2,46,58,31,22, 61,14.9,45,84,17,17, 12,16.2,48,31,15,18,
+ 20,14.5,45,40,18,20, 35,16.4,49,69,22,24, 38,14.7,44,78,34,16),
+ ncol=6,byrow=TRUE)
y <- hemData[,1]
x <- hemData[,2:6]

If we look at the correlation matrix

cor(hemData)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.00000000 0.23330745 0.2516182 0.79073232 0.02264257 0.08290783
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# y x1 x2 x3 x4 x5 # y x1 x2 x3 x4 x5

1 14 13.4 39 41 25 17 27 16 15.5 45 52 30 20
2 15 14.6 46 50 30 20 28 18 14.5 43 39 18 25
3 19 13.5 42 45 21 18 29 17 14.4 45 60 37 23
4 23 15.0 46 46 16 18 30 23 14.6 44 47 21 27
5 17 14.6 44 51 31 19 31 43 15.3 45 79 23 23
6 20 14.0 44 49 24 19 32 17 14.9 45 34 15 24
7 21 16.4 49 43 17 18 33 23 15.8 47 60 32 21
8 16 14.8 44 44 26 29 34 31 14.4 44 77 39 23
9 27 15.2 46 41 13 27 35 11 14.7 46 37 23 23

10 34 15.5 48 84 42 36 36 25 14.8 43 52 19 22
11 26 15.2 47 56 27 22 37 30 15.4 45 60 25 18
12 28 16.9 50 51 17 23 38 32 16.2 50 81 38 18
13 24 14.8 44 47 20 23 39 17 15.0 45 49 26 24
14 26 16.2 45 56 25 19 40 22 15.1 47 60 33 16
15 23 14.7 43 40 13 17 41 20 16.0 46 46 22 22
16 9 14.7 42 34 22 13 42 20 15.3 48 55 23 23
17 18 16.5 45 54 32 17 43 20 14.5 41 62 36 21
18 28 15.4 45 69 36 24 44 26 14.2 41 49 20 20
19 17 15.1 45 46 29 17 45 40 15.0 45 72 25 25
20 14 14.2 46 42 25 28 46 22 14.2 46 58 31 22
21 8 15.9 46 52 34 16 47 61 14.9 45 84 17 17
22 25 16.0 47 47 14 18 48 12 16.2 48 31 15 18
23 37 17.4 50 86 39 17 49 20 14.5 45 40 18 20
24 20 14.3 43 55 31 19 50 35 16.4 49 69 22 24
25 15 14.8 44 42 24 29 51 38 14.7 44 78 34 16
26 9 14.9 43 43 32 17

Table 5.2: Rencher’s hematology data Rencher and Schaalje [2008] page 252, Ex. 10.3, Table
10.1 — originally from Royston (1983). The variables are y: lymphocyte count, x1: hemoglobin
concentration, x2: packed-cell volume, x3: white blood cell count (×.01), x4: neutrophil count,
and x5: serum lead concentration.
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[2,] 0.23330745 1.00000000 0.7737330 0.27650957 0.05537581 -0.08376682
[3,] 0.25161817 0.77373300 1.0000000 0.30847841 0.07642710 0.12970593
[4,] 0.79073232 0.27650957 0.3084784 1.00000000 0.60420947 0.07147757
[5,] 0.02264257 0.05537581 0.0764271 0.60420947 1.00000000 0.03169314
[6,] 0.08290783 -0.08376682 0.1297059 0.07147757 0.03169314 1.00000000

we see that the largest correlation between the response y and an explanatory variable is 0.79
between y and x3.

5.1.7.1.1 Computing Estimates, Confidence Intervals, Tests. The mean ȳ of the response
variable y is

(by <- mean(y))
[1] 22.98039

The means of the explanatory variables x1 to x5 are:

(bx <- as.vector(colMeans(x)))
[1] 15.10784 45.19608 53.82353 25.62745 21.07843

We assume centered data and estimate the coefficients without β0 which is estimated sepa-
rately. The covariance matrix Cov(X) of the explanatory variables is

(Sxx <- var(x))
[,1] [,2] [,3] [,4] [,5]

[1,] 0.6907373 1.494431 3.255412 0.3509804 -0.2966275
[2,] 1.4944314 5.400784 10.155294 1.3545098 1.2843137
[3,] 3.2554118 10.155294 200.668235 65.2729412 4.3141176
[4,] 0.3509804 1.354510 65.272941 58.1584314 1.0298039
[5,] -0.2966275 1.284314 4.314118 1.0298039 18.1537255

The covariance Cov(y,X) between the response and the explanatory variables is

(syx <- as.vector(var(y,x)))
[1] 1.878157 5.663922 108.496471 1.672549 3.421569

We now compute

β̂ =
(
XTX

)−1
XTy . (5.69)

for the centered data, i.e. we assume thatX is centered. In this case
(
XTX

)−1
= 1/n (Cov(X))−1

is the inverse of the covariance matrix divided by the number of samples n. XTy = nCov(y,X)
is the covariance between the response and the explanatory variables multiplied by the number of
samples n. Since the number of samples n cancel, we have(

XTX
)−1

XTy = (Cov(X))−1 Cov(y,X) . (5.70)

Therefore the least squares estimate can be computed as:
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(bbeta <- solve(Sxx)%*%syx)
[,1]

[1,] -0.21318219
[2,] -0.28884109
[3,] 0.85984756
[4,] -0.92921309
[5,] 0.05380269

We assumed centered data. Now we estimate β0 using the mean of the response ȳ and the
mean of the explanatory variables:

(bbeta0 <- by-t(syx)%*%solve(Sxx)%*%bx)
[,1]

[1,] 15.65486

In our derivation of the least squares estimator, we used the formula

β̂ =
(
XTX

)−1
XTy , (5.71)

where the first column of X contains 1’s to account for the intercept. Therefore the least squares
estimate is:

x1 <- cbind(rep(1,51),x)
(b1 <- solve(crossprod(x1))%*%t(x1)%*%y)

[,1]
[1,] 15.65485611
[2,] -0.21318219
[3,] -0.28884109
[4,] 0.85984756
[5,] -0.92921309
[6,] 0.05380269

This is the same result as previously, where we first estimated the parameter for the centered data
and then adjusted β0.

S(β̂) = yTy − β̂TXTy . (5.72)

The estimate for the error variance s2 is

s2 =
1

n−m− 1
S(β̂) (5.73)

where n = 51 and m = 5 in our example. We compute s2 and the standard error s:

(s2 <- (crossprod(y)-t(b1)%*%t(x1)%*%y)/(51-6))
[,1]

[1,] 4.3729
sqrt(s2)

[,1]
[1,] 2.091148
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The coefficient of determination R2 is

R2 =

∑n
i=1 (ŷi − y)2∑n
i=1 (yi − y)2 , (5.74)

which we compute by

fitted <- x1%*%b1
(R2 <- var(fitted)/var(y))

[,1]
[1,] 0.9580513

R2 is the variance of the estimated response divided by the variance of the response.

The approximate two-sided confidence intervals for components of the vector β̂ are:

βj ∈
[
β̂j ± tα/2,n−m−1 s

√[
(XTX)−1

]
jj

]
(5.75)

where tα/2,n−m−1 is the upper α/2 percentage point of the central t-distribution and α is the
desired significance level of the test. In R we compute these confidence intervals as:

bup <- b1 - qt(0.025,45)*s*sqrt(diag(solve(crossprod(x1))))
blow <- b1 + qt(0.025,45)*s*sqrt(diag(solve(crossprod(x1))))
cbind(blow,bup)

[,1] [,2]
[1,] 3.03587336 28.2738389
[2,] -1.40187932 0.9755149
[3,] -0.71833021 0.1406480
[4,] 0.80366905 0.9160261
[5,] -1.02844916 -0.8299770
[6,] -0.09389755 0.2015029

Only for the intercept (component 1), x3 (component 4), and x4 (component 5), the confidence
intervals do not include zero.

For testing whether the components of the estimated parameter vector are significantly differ-
ent from zero, we compute the t-statistics:

tj =
β̂j

s
√[

(XTX)−1
]
jj

(5.76)

In R we compute the t-statistics as

(t <- b1/(s*sqrt(diag(solve(crossprod(x1))))))
[,1]

[1,] 2.4986561
[2,] -0.3612114
[3,] -1.3545299
[4,] 30.8271243
[5,] -18.8593854
[6,] 0.7336764
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These t-statistics together with n −m − 1 = 51 − 5 − 1 = 45 degrees of freedom allow to
compute the p-values:

2*pt(-abs(t),45)
[,1]

[1,] 1.618559e-02
[2,] 7.196318e-01
[3,] 1.823298e-01
[4,] 6.694743e-32
[5,] 5.395732e-23
[6,] 4.669514e-01

Only the intercept, x3, and x4 are significant, where the latter two are highly significant.

5.1.7.1.2 Using Predefined R Functions. We now do the same estimate using the R function
lm() which is a software for fitting linear models.

l1 <- lm(y ~ x)
l1

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x1 x2 x3 x4 x5

15.6549 -0.2132 -0.2888 0.8598 -0.9292 0.0538

anova(l1)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

x 5 4494.2 898.84 205.55 < 2.2e-16 ***
Residuals 45 196.8 4.37
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

summary(l1)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-5.6860 -0.9580 0.3767 1.0973 4.1742
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.65486 6.26531 2.499 0.0162 *
x1 -0.21318 0.59019 -0.361 0.7196
x2 -0.28884 0.21324 -1.355 0.1823
x3 0.85985 0.02789 30.827 <2e-16 ***
x4 -0.92921 0.04927 -18.859 <2e-16 ***
x5 0.05380 0.07333 0.734 0.4670
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.091 on 45 degrees of freedom
Multiple R-squared: 0.9581, Adjusted R-squared: 0.9534
F-statistic: 205.5 on 5 and 45 DF, p-value: < 2.2e-16

Only x3 and x4 are significant. The t-statistics and the p-values agree exactly with the values that
we have computed. The “Residual standard error: 2.091” agrees to our estimate as does the R2

value of 0.9581.

The confidence intervals can be assessed by the R function confint():

confint(l1)
2.5 % 97.5 %

(Intercept) 3.03587336 28.2738389
x1 -1.40187932 0.9755149
x2 -0.71833021 0.1406480
x3 0.80366905 0.9160261
x4 -1.02844916 -0.8299770
x5 -0.09389755 0.2015029

We again see that these values agree with the values, that we have computed.

We assess the AIC (Akaike information criterion) which is used to compare models. The
model with the largest values is most suited for the data.

extractAIC(l1)
[1] 6.00000 80.86343

drop1(l1, test = "F")
Single term deletions

Model:
y ~ x

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 196.8 80.863
x 5 4494.2 4691.0 232.600 205.55 < 2.2e-16 ***
---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

drop1(l1, test = "Chisq")
Single term deletions

Model:
y ~ x

Df Sum of Sq RSS AIC Pr(>Chi)
<none> 196.8 80.863
x 5 4494.2 4691.0 232.600 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5.1.7.2 Carbohydrate Diet Data

This example is from Dobson [2002], page 96, data of Table 6.3. The data are shown in Tab. 5.3
and contain for twenty male insulin-dependent diabetics: responses, age, weight, and percent-
ages of total calories obtained from complex carbohydrates. The individuals had been on a high-
carbohydrate diet for six months. Compliance with the regime was thought to be related to age (in
years), body weight (relative to “ideal” weight for height) and other components of the diet, such
as the percentage of calories as protein. These other variables are treated as explanatory variables.

We fitted a normal linear model by least squares via following R code:

calorie <- data.frame(
+ carb = c(33,40,37,27,30,43,34,48,30,38,
+ 50,51,30,36,41,42,46,24,35,37),
+ age = c(33,47,49,35,46,52,62,23,32,42,
+ 31,61,63,40,50,64,56,61,48,28),
+ wgt = c(100, 92,135,144,140,101, 95,101, 98,105,
+ 108, 85,130,127,109,107,117,100,118,102),
+ prot = c(14,15,18,12,15,15,14,17,15,14,
+ 17,19,19,20,15,16,18,13,18,14))

summary(lmcal <- lm(carb~age+wgt+prot, data= calorie))

Call:
lm(formula = carb ~ age + wgt + prot, data = calorie)

Residuals:
Min 1Q Median 3Q Max

-10.3424 -4.8203 0.9897 3.8553 7.9087

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.96006 13.07128 2.828 0.01213 *



5.1. Linear Regression 129

Carbohydrate Age Weight Protein
y x1 x2 x3

33 33 100 14
40 47 92 15
37 49 135 18
27 35 144 12
30 46 140 15
43 52 101 15
34 62 95 14
48 23 101 17
30 32 98 15
38 42 105 14
50 31 108 17
51 61 85 19
30 63 130 19
36 40 127 20
41 50 109 15
42 64 107 16
46 56 117 18
24 61 100 13
35 48 118 18
37 28 102 14

Table 5.3: Dobson’s carbohydrate diet data Dobson [2002], page 96, data of Table 6.3. Carbohy-
drate, age, relative weight, and protein for twenty male insulin-dependent diabetics.
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Figure 5.2: Dobson’s carbohydrate diet data Dobson [2002] with percentages of total calories
obtained from complex carbohydrates plotted against percentage of calories as protein.

age -0.11368 0.10933 -1.040 0.31389
wgt -0.22802 0.08329 -2.738 0.01460 *
prot 1.95771 0.63489 3.084 0.00712 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.956 on 16 degrees of freedom
Multiple R-squared: 0.4805, Adjusted R-squared: 0.3831
F-statistic: 4.934 on 3 and 16 DF, p-value: 0.01297

The feature “Protein” seems to be the feature that is most related to carbohydrates. We verify
this by a scatter plot. Fig. 5.2 shows percentages of total calories obtained from complex carbo-
hydrates plotted against percentage of calories as protein. A linear dependence is visible which
supports the finding that protein is significantly related to carbohydrate.
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5.2 Analysis of Variance

Analysis-of-variance (ANOVA) models apply linear models to compare means of responses to
different treatments. The treatments are the levels of one factor. Thus, they compare means
of different groups which are known a priori. Typically, the results of fitting linear models are
analyzed by the variance explained as shown previously. x is neither measured nor a sample
but constructed and contains dummy variables, therefore, the matrix X is called design matrix.
Typically, ANOVA models use more parameters than can be estimated, therefore X may not
have full rank. We first consider the case where observations are divided into different groups
corresponding to a factor. Then we consider the case where observations can be divided by two
ways into different groups, that is, two factors. In this case, besides the treatment, a second factor
influences the outcome of a study.

5.2.1 One Factor

The response variable, that is, the dependent variable, has now two indices: the first index gives
the group to which the observation belongs and the second index gives the replicate number for
this group. The standard case is a treatment-control study, where one group are controls and the
other group are the treatments. It is possible to analyze different treatments if they are mutually
exclusive.

The response variable is ygi with y11, y12, . . . , y1n1 , y21, y22, . . . , y2n2 , y31, . . . , yGnG , where
the j-th group has nj replicates and G denotes the number of groups. The model is

ygi = β0 + βg + εgi . (5.77)

The value β0 is a constant offset or the mean of group 1 if we force β1 = 0. The value βg is
the mean difference to the offset (or group 1). As previously εgi is an additive error term with
previously introduced assumptions.

For each group the model uses different parameters, therefore the model equation depends on
the group to which the observation belongs. The model equations are written down as a matrix
equation. For example, in a case-control study with 3 controls and 3 cases, we write:



y11

y12

y13

y21

y22

y23

 =



1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1


β0

β1

β2

 +



ε11

ε12

ε13

ε21

ε22

ε23

 . (5.78)

In matrix notation we have the linear model:

y = X β + ε , (5.79)

whereX is designed depending on the groups to which the observations y belong.
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However X has lower rank than parameters. In the example above, the 6× 3 matrix has rank
2 because rows are identical (or first column is sum of other two). The least squares estimator
cannot be computed because (XTX)−1 does not exist. The model is not identifiable, that is, for
every data set there exists more than one solution. For example, we can subtract δ from β0 and, at
the same time, add δ to β1 and β2. The solution will not change, only the parameters.

There are different ways to ensure that X has full rank and the least squares estimate can be
applied:

(i) re-parametrization using fewer parameters, e.g., corner point parametrization,

(ii) side conditions as constraints on the parameters, e.g., sum-to-zero constraints,

(iii) linear projections aTβ of parameter vector β which is estimable.

ad (i) re-parametrization:
We assume that β0 is the mean response of the controls and βg is the offset of group g to the
controls. Therefore we set β1 = 0 because controls have zero offset to themselves. We obtain:

y11

y12

y13

y21

y22

y23

 =



1 0
1 0
1 0
1 1
1 1
1 1


(
β0

β2

)
+



ε11

ε12

ε13

ε21

ε22

ε23

 . (5.80)

Setting β1 = 0 is called corner point parametrization which removes β1 from the equations.
In general corner point parametrization removes all variables that contain the index one. This
means that variables that contain the index one are considered as reference groups or as reference
group combinations.

In general, the re-parametrization is

γ = U β (5.81)

which gives with

X = Z U (5.82)

y = Z γ + ε . (5.83)

The matrix Z has full rank and U blows Z up toX , therefore, Z andX have the same rank.

ad (ii) side conditions:
We can assume that β1 +β2 = 0. If group 1 and group 2 have the same number of replicates, then
β0 is the mean over all groups. From the condition β1 +β2 = 0 we immediately obtain β2 = −β1.
This gives the matrix equation

y11

y12

y13

y21

y22

y23

 =



1 1
1 1
1 1
1 −1
1 −1
1 −1


(
β0

β1

)
+



ε11

ε12

ε13

ε21

ε22

ε23

 . (5.84)
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Variable β2 is removed from these equations.

The constraint
∑G

g=1 βg = 0 is the sum-to-zero constraint. This ensures that β0 is the overall
mean, because 1

G

∑G
g=0 βg = 1

Gβ0. The βg estimate the deviation of the mean of group g from
the overall mean. In general sum-to-zero constraints set sums over an index to zero and, thereby,
define the constant offset as the overall mean.

ad (iii) linear projection:
a = (0, 1,−1)) gives β′1 = aTβ = β1 − β2, which is estimable. This approach is of interest, if
specific questions have to be answered. In our example, the difference of the means of group 1
and group 2 may be relevant but not the means themselves. We obtain the matrix equation:

y11

y12

y13

y21

y22

y23

 =



1
1
1
−1
−1
−1

 β′1 +



ε11

ε12

ε13

ε21

ε22

ε23

 . (5.85)

The models can be used to test hypotheses. A common null hypothesis is H0: β1 = β2 =
. . . = βG, where the null hypothesis states that the means of all groups are equal. This can be
expressed by the new variables β∗1 = β1 − β2, β

∗
2 = β1 − β3, . . . , β

∗
G−1β1 − βG, which are tested

for β∗1 = β∗2 = . . . = β∗G−1 = 0. Or we introduce the constraint
∑G

g=1 βg = 0 while keeping β0.
We then can test for β1 = β2 = . . . = βG = 0, that is, deviation from the overall mean β0. Tests
for these hypotheses have been presented earlier. The reduced model has only the overall mean β0

as parameter.

5.2.2 Two Factors

We now consider the case where two factors influence the response. Consequently, the response
variable has now three indices: the first index gives the group for the first factor, the second index
the group for the second factor, and the third index gives the replicate number for this combination
of groups.

The response variable is yghi with the model

yghi = β0 + βg + αh + (αβ)gh + εghi . (5.86)

The value β0 is a constant offset. The values βg are the mean difference for the first factor and
αh the mean differences for the second factor. The new term (αβ)gh models the interaction
effects between the two factors. As always, εghi is the additive error with previously introduced
assumptions.

The following hypotheses are often tested and correspond to different reduced models:

(i) the additive model with the hypothesis H0: (αβ)gh = 0 for all g and all h:

yghi = β0 + βg + αh + εghi . (5.87)

This model should be compared to the full model.
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(ii) factor corresponding to α has no effect:

yghi = β0 + βg + εghi . (5.88)

This model should be compared to the additive model in (i).

(iii) factor corresponding to β has no effect:

yghi = β0 + αh + εghi . (5.89)

As for the model in (ii), also this model should be compared to the additive model in (i).

These models should be either tested with sum-zero constraints

(i)
∑G

g=1 βg = 0,

(ii)
∑H

h=1 αh = 0,

(iii) ∀g :
∑H

h=1(αβ)gh = 0,

(iv) ∀h :
∑G

g=1(αβ)gh = 0,

or with corner point constraints

(i) β1 = 0,

(ii) α1 = 0,

(iii) ∀g : (αβ)g1 = 0,

(iv) ∀h : (αβ)1h = 0.

We have one offset parameter β0, G factor parameters βg, H factor parameters αh, and GH
interaction parameters (αβ)gh, which sums up toGH+G+H+1 = (G+1)(H+1) parameters.
The minimal data set has only GH observations, one observation for each combination of factors.
For both sets of constraints the βg equations use up one degree of freedom, the αh use also up one
degree of freedom, the (αβ)gh equations for all g use up G degrees of freedom, and the (αβ)gh
equations for all h use up H degrees of freedom. We have to add one degree of freedom because
for corner point constraints (αβ)11 is counted twice and for sum-zero constraints the last equation
follows from the other equations. We have 1 + 1 +G+H − 1 = G+H + 1 degrees of freedom
used up. Therefore we have (G+1)(H+1)− (G+H+1) = GH free parameters. For sum-zero
constraints we show that the last equation follows from the others. From ∀g :

∑H
h=1(αβ)gh = 0

follows that
∑G

g=1

∑H
h=1(αβ)gh = 0. We have

∑H
h=1(

∑G
g=1(αβ)gh) = 0 and

∑G
g=1(αβ)gh = 0

for h < H since the last equation is not used. Thus,
∑G

g=1(αβ)gH = 0, which is the last equation.
We showed that the last equation can be deduced from the others. Therefore for both constraint
sets we have GH free parameters, as desired.

The design matrix X should have at least rank GH to distinguish all interaction effects
(αβ)gh. Thus, the least squares estimator can be computed and the according tests performed.

To simplify notations, means are denoted by
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(i) mean of group combination gh:

ȳgh =
1

ngh

ngh∑
i=1

yghi , (5.90)

where ngh are the number of replicates of group combination gh.

(ii) mean of group g:

ȳg. =
1∑H

h=1 ngh

H∑
h=1

ngh∑
i=1

yghi , (5.91)

(iii) mean of group h:

ȳ.h =
1∑G

g=1 ngh

G∑
g=1

ngh∑
i=1

yghi , (5.92)

(iv) overall mean:

ȳ.. =
1∑G,H

g,h=1,1 ngh

G∑
g=1

H∑
h=1

ngh∑
i=1

yghi . (5.93)

If we use the full design matrixX then the normal equations are

XTX

 β
α

(αβ)

 = XT y , (5.94)

where β0 is the first component of β. The matrixXTX is not invertible. However for the optimal
solution (β̂T , α̂T , (α̂β̂)T )T with sum-zero constraints or with corner point constraints the normal
equations must hold.

The normal equations can be written as: G,H∑
g,h=1,1

ngh

 β̂0 +
G∑
g=1

(
H∑
h=1

ngh

)
β̂g +

H∑
h=1

 G∑
g=1

ngh

 α̂h +

G∑
g=1

H∑
h=1

ngh(α̂β̂)gh

=

G,H∑
g,h=1,1

ngh ȳ..(
H∑
h=1

ngh

)
β̂0 +

(
H∑
h=1

ngh

)
β̂g +

H∑
h=1

ngh α̂h +
H∑
h=1

ngh(α̂β̂)gh =
H∑
h=1

ngh ȳg., 1 ≤ g ≤ G G∑
g=1

ngh

 β̂0 +

G∑
g=1

ngh β̂g +

 G∑
g=1

ngh

 α̂h +

G∑
g=1

ngh(α̂β̂)gh =

G∑
g=1

ngh ȳ.h, 1 ≤ h ≤ H

ngh β̂0 + ngh β̂g + ngh α̂h + ngh(α̂β̂)gh = nghȳgh, 1 ≤ g ≤ G, 1 ≤ h ≤ H . (5.95)
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These are 1 + G + H + GH = (G + 1)(H + 1) equations but in the worst case we have only
GH observations. The constraints use up G + H + 1 degrees of freedom, e.g. via the zero sum
conditions

G∑
g=1

β̂g = 0 , (5.96)

H∑
h=1

α̂h = 0 , (5.97)

G∑
g=1

(α̂β̂)gh = 0 , (5.98)

H∑
h=1

(α̂β̂)gh = 0 . (5.99)

We then have at least GH observations and GH free parameters and the normal equations can be
solved.

For the balanced case the number of replicates is the same for each combination of conditions.
That means

ngh = ñ . (5.100)

In this case the means simplify to:

(i) mean of group combination gh:

ȳgh =
1

ñ

ñ∑
i=1

yghi (5.101)

(ii) mean of group g:

ȳg. =
1

H ñ

H∑
h=1

ñ∑
i=1

yghi , (5.102)

(iii) mean of group h:

ȳ.h =
1

G ñ

G∑
g=1

ñ∑
i=1

yghi , (5.103)

(iv) overall mean:

ȳ.. =
1

G H ñ

G∑
g=1

H∑
h=1

ñ∑
i=1

yghi . (5.104)
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The normal equations become:

G H ñ β̂0 + H ñ
G∑
g=1

β̂g + G ñ
H∑
h=1

α̂h + ñ
G∑
g=1

H∑
h=1

(α̂β̂)gh = G H ñ ȳ..

H ñ β̂0 + H ñ β̂g + ñ

H∑
h=1

α̂h + ñ

H∑
h=1

(α̂β̂)gh = H ñ ȳg., 1 ≤ g ≤ G

G ñ β̂0 + ñ
G∑
g=1

β̂g + G ñ α̂h + ñ
G∑
g=1

(α̂β̂)gh = G ñ ȳ.h, 1 ≤ h ≤ H

ñ β̂0 + ñ β̂g + ñ α̂h + ñ (α̂β̂)gh = ñ ȳgh, 1 ≤ g ≤ G, 1 ≤ h ≤ H . (5.105)

Using the zero sum conditions

G∑
g=1

β̂g = 0 (5.106)

H∑
h=1

α̂h = 0 (5.107)

G∑
g=1

(α̂β̂)gh = 0 (5.108)

H∑
h=1

(α̂β̂)gh = 0 (5.109)

the normal equations further simplify to

G H ñ β̂0 = G H ñ ȳ..

H ñ β̂0 + H ñ β̂g = H ñ ȳg., 1 ≤ g ≤ G
G ñ β̂0 + G ñ α̂h = G ñ ȳ.h, 1 ≤ h ≤ H
ñ β̂0 + ñ β̂g + ñ α̂h + ñ (α̂β̂)gh = ñ ȳgh, 1 ≤ g ≤ G, 1 ≤ h ≤ H , (5.110)

which gives

β̂0 = ȳ..

β̂g = ȳg. − β̂0 = ȳg. − ȳ.., 1 ≤ g ≤ G
α̂h = ȳ.h − β̂0 = ȳ.h − ȳ.., 1 ≤ h ≤ H

(α̂β̂)gh = ȳgh − β̂0 − β̂g − α̂h

= ȳgh − ȳg. − ȳ.h + ȳ.. . (5.111)

These are the estimators for the means which one would use intuitively. Actually these are
unbiased estimators for the according means.
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Treatment group Control group

4.81 5.36 4.17 4.66
4.17 3.48 3.05 5.58
4.41 4.69 5.18 3.66
3.59 4.44 4.01 4.50
5.87 4.89 6.11 3.90
3.83 4.71 4.10 4.61
6.03 5.48 5.17 5.62
4.98 4.32 3.57 4.53
4.90 5.15 5.33 6.05
5.75 6.34 5.59 5.14

Table 5.4: Weights of dried plants which were grown under two conditions. The data are from
Dobson [2002], page 46, data of Table 2.7.

5.2.3 Examples

5.2.3.1 Dried Plant Weights

The first example is from Dobson [2002], page 46, data from Table 2.7. Genetically similar seeds
are randomly assigned to be raised in either a nutritionally enriched environment (treatment group)
or standard conditions (control group) using a completely randomized experimental design. After
a predetermined time, all plants are harvested, dried and weighed. The results, expressed in grams,
for 20 plants in each group are shown in Tab. 5.4 and in Fig. 5.3. The goal is to test whether there
is a difference in yield between the treatment and the control group.

We perform the analysis in R , therefore first the data set is defined:

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.98,4.90,5.75,
+ 5.36,3.48,4.69,4.44,4.89,4.71,5.48,4.32,5.15,6.34)
ctl <- c(4.17,3.05,5.18,4.01,6.11,4.10,5.17,3.57,5.33,5.59,
+ 4.66,5.58,3.66,4.50,3.90,4.61,5.62,4.53,6.05,5.14)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)

To obtain an overview of the data, we do a simple summary:

summary(ctl)
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.050 4.077 4.635 4.726 5.392 6.110
summary(trt)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.480 4.388 4.850 4.860 5.390 6.340

We see that the treatment has larger median and larger mean. Is this significant? When looking at
the data in Fig. 5.3 there could be some doubts.
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Figure 5.3: Dobson’s dried plant data: orange indicates the control and blue the treatment group.
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To answer the question whether the difference in means is significant or not, we fit a linear
model and print the ANOVA table:

lm.D9 <- lm(weight ~ group)

anova(lm.D9)
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

group 1 0.1782 0.17822 0.2599 0.6131
Residuals 38 26.0535 0.68562

The difference in means between treatment and control is not significant, i.e. the treatment did
not show more or less average yield. We plot the results of the linear model by

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(lm.D9, las = 1) # Residuals, Fitted, ...
par(opar)

and shown them in Fig. 5.4.

Next we fit a model without an intercept

lm.D90 <- lm(weight ~ group - 1) # omitting intercept
summary(lm.D90)

Call:
lm(formula = weight ~ group - 1)

Residuals:
Min 1Q Median 3Q Max

-1.67650 -0.57400 -0.05825 0.60763 1.48000

Coefficients:
Estimate Std. Error t value Pr(>|t|)

groupCtl 4.7265 0.1852 25.53 <2e-16 ***
groupTrt 4.8600 0.1852 26.25 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.828 on 38 degrees of freedom
Multiple R-squared: 0.9724, Adjusted R-squared: 0.971
F-statistic: 670.3 on 2 and 38 DF, p-value: < 2.2e-16

The intercept is replaced by the groups because always one of them is present. Therefore both
groups are significantly different from zero (sure: dried plants have a weight), however there is no
difference between the groups.
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Figure 5.4: Results of ANOVA for dried plant data.
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Control Treatment A Treatment B

4.17 4.81 6.31
5.58 4.17 5.12
5.18 4.41 5.54
6.11 3.59 5.50
4.50 5.87 5.37
4.61 3.83 5.29
5.17 6.03 4.92
4.53 4.89 6.15
5.33 4.32 5.80
5.14 4.69 5.26∑

i yi 50.32 46.61 55.26∑
i y

2
i 256.27 222.92 307.13

Table 5.5: Dried weight of plants grown under three conditions from Dobson [2002], page 101,
data of Table 6.6.

5.2.3.2 Extended Dried Plants

The second example extends the first example and is from Dobson [2002], page 101, data of
Table 6.6. The results of plant weights in grams for three groups (control, treatment A, treatment
B) are shown in Tab. 5.5 and in Fig. 5.5. Plants from treatment B group (green) seem to be larger
than the others. We will check whether this impression also holds after fitting a linear model and
analyzing the results.

The ANOVA models fitted in R are:

ctl <-c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trtA <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
trtB <- c(6.31,5.12,5.54,5.50,5.37,5.29,4.92,6.15,5.80,5.26)
group <- gl(3, length(ctl), labels=c("Ctl","A","B"))
weight <- c(ctl,trtA,trtB)
anova(lmwg <- lm(weight~group))

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

group 2 3.7663 1.8832 4.8461 0.01591 *
Residuals 27 10.4921 0.3886
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

summary(lmwg)
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Figure 5.5: Dobson’s dried plant data for three groups: orange indicates the control, blue the
treatment A, and green treatment B group. Treatment B group seem to be larger than the others.
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Call:
lm(formula = weight ~ group)

Residuals:
Min 1Q Median 3Q Max

-1.0710 -0.4180 -0.0060 0.2627 1.3690

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0320 0.1971 25.527 <2e-16 ***
groupA -0.3710 0.2788 -1.331 0.1944
groupB 0.4940 0.2788 1.772 0.0877 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6234 on 27 degrees of freedom
Multiple R-squared: 0.2641, Adjusted R-squared: 0.2096
F-statistic: 4.846 on 2 and 27 DF, p-value: 0.01591

coef(lmwg)
(Intercept) groupA groupB

5.032 -0.371 0.494

coef(summary(lmwg))#- incl. std.err, t- and P- values.
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.032 0.1971284 25.526514 1.936575e-20
groupA -0.371 0.2787816 -1.330791 1.943879e-01
groupB 0.494 0.2787816 1.771996 8.768168e-02

Group B can be distinguished best from other groups. Its coefficient has a p-value of 0.09
which is almost significant. The F -statistic and its p-value of 0.016 shows that the groups together
are significant. The estimated parameters show that group B is larger (0.494) and group A smaller
(-0.371) than the control group.

5.2.3.3 Two-Factor ANOVA Toy Example

This example for a two-way ANOVA problem is from Dobson [2002], page 106, data of Table 6.9.
The fictitious data is shown in Tab. 5.6, where factor A has 3 levels and factor B has 2 levels. This
gives 2 × 3 = 6 subgroups which form all combinations of A and B levels. Each subgroup has 2
replicates. The data is shown in Fig. 5.6.

Questions for this data set can be:

are there interaction effects?,

are there different responses for different levels of factor A?,
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Levels of factor B

Levels of factor A B1 B2 Total
A1 6.8, 6.6 5.3, 6.1 24.8
A2 7.5, 7.4 7.2, 6.5 28.6
A3 7.8, 9.1 8.8, 9.1 34.8

Total 45.2 43.0 88.2

Table 5.6: Fictitious data for two-factor ANOVA with equal numbers of observations in each
subgroup from Dobson [2002].

2 4 6 8 10 12

6
7

8
9

Dobson's Two Way ANOVA Data

Index

y

Figure 5.6: Fictitious data for two-factor ANOVA with equal numbers of observations in each
subgroup from Dobson [2002]. Levels of factor A are indicated by the interior color of the circles
while levels of factor B are indicated by the border color of the circles.
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are there different responses for different levels of factor B?

Each question corresponds to a hypothesis.

We analyze this data in R by an ANOVA table:

y <- c(6.8,6.6,5.3,6.1,7.5,7.4,7.2,6.5,7.8,9.1,8.8,9.1)
a <- gl(3,4)
b <- gl(2,2, length(a))
anova(z <- lm(y~a*b))

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

a 2 12.7400 6.3700 25.8243 0.001127 **
b 1 0.4033 0.4033 1.6351 0.248225
a:b 2 1.2067 0.6033 2.4459 0.167164
Residuals 6 1.4800 0.2467
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The is no evidence against the hypothesis that the levels of factor B do not influence the response.
Similar there is no evidence against the hypothesis that the interaction effect does not influence the
response. Therefore we conclude that the response is mainly affected by differences in the levels
of factor A.
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5.3 Analysis of Covariance

5.3.1 The Model

We now consider models that combine covariates (variables or regressors measured together with
y) and designed or dummy variables as in the ANOVA models. These models are called analysis
of covariance (ANCOVA) models. Thus, we know treatment groups but have also additional mea-
surements. The additional measurements, the covariates, reduce the error variance because some
variance is explained by them. Therefore, the unexplained variance is reduced before comparing
the means of groups which is supposed to increase the performance of the ANOVA models.

The model is

y = Xβ + Zu + ε , (5.112)

whereXb is the same as in the ANOVA model but now the covariate values Z together with their
coefficients u are added. The designed X contains zeros and ones while Z contains measured
values.

For example, a one-way balanced model with only one covariate is

ygi = β0 + βg + u zgi + εgi , 1 ≤ g ≤ G, 1 ≤ i ≤ ñ , (5.113)

where βg is the treatment effect, zgi is the covariate that was observed together with sample ygi,
and u is the coefficient or slope for zgi. With q covariates the model is

ygi = β0 + βg +

q∑
r

ur zgir + εgi , 1 ≤ g ≤ G, 1 ≤ i ≤ ñ (5.114)

which is in matrix notation

Zu =


z111 z112 . . . z11q

z121 z122 . . . z12q
...

...
...

zGñ1 zGñ2 . . . zGñq



u1

u2
...
uq

 . (5.115)

The matricesX and Z can be combined:

y = (X,Z)

(
β
u

)
+ ε . (5.116)

The normal equations are(
XT

ZT

)
(X,Z)

(
β̂
û

)
=

(
XTX XTZ
ZTX ZTZ

) (
β̂
û

)
=

(
XTy
ZTy

)
. (5.117)

We obtain two equations:

XTX β̂ + XTZ û = XTy (5.118)

ZTX β̂ + ZTZ û = ZTy . (5.119)
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Solving the first equation for β̂ gives

β̂ = (XTX)+XTy − (XTX)+XTZ û (5.120)

= β̂0 − (XTX)+XTZ û ,

where (XTX)+ denotes the pseudo inverse of (XTX) and β̂0 = (XTX)+XTy is the solution
to the normal equations of the model without covariates.

We now substitute this equation for β̂ into the second equation in order to solve for û:

ZTX
(
(XTX)+XTy − (XTX)+XTZ û

)
+ ZTZ û = ZTy . (5.121)

We define

P = X (XTX)+XT (5.122)

and obtain for û:

û =
(
ZT (I − P ) Z

)−1
ZT (I − P ) y . (5.123)

We immediately obtain a solution for β̂:

β̂ = β̂0 − (XTX)+XTZ û . (5.124)

Different hypotheses can be tested like H0: β1 = β2 = . . . = βG (equality of treatment
effects), H0: u = 0 (slope equal to zero), or H0: u1 = u2 = . . . = uq (equal slopes, homogeneity
of slopes) Rencher and Schaalje [2008]. Also two-way models with covariates can be constructed
Rencher and Schaalje [2008].

5.3.2 Examples

5.3.2.1 Achievement Scores

The data are from Dobson [2002], page 111, data of Table 6.12. The data are listed in Tab. 5.7
which is originally from Winer (1971), page 776. The responses are achievement scores measured
at three levels of a factor representing three different training methods. The covariates are aptitude
scores measured before training commenced. We want to compare the training methods, taking
into account differences in initial aptitude between the three groups of subjects. The data is plotted
in Fig. 5.7, where the data points are jittered to avoid data points covering others.

The figure shows that the achievement scores y increase linearly with aptitude x. Further the
achievement scores y are generally higher for training methods B and C if compared to A. We
want to test the hypothesis that there are no differences in mean achievement scores among the
three training methods, after adjustment for initial aptitude.

y <- c(6,4,5,3,4,3,6, 8,9,7,9,8,5,7, 6,7,7,7,8,5,7)
x <- c(3,1,3,1,2,1,4, 4,5,5,4,3,1,2, 3,2,2,3,4,1,4)
m <- gl(3,7)
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Figure 5.7: Scatter plot of Dobson’s achievement scores data. Observations are jittered to avoid
data points covering others.
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Training method
A B C

y x y x y x
6 3 8 4 6 3
4 1 9 5 7 2
5 3 7 5 7 2
3 1 9 4 7 3
4 2 8 3 8 4
3 1 5 1 5 1
6 4 7 2 7 4∑

x /
∑
y 31 15 53 24 47 19∑

x2 /
∑
y2 147 41 413 96 321 59∑

xy 75 191 132

Table 5.7: The responses are achievement scores measured at three levels of a factor representing
three different training methods. The data is from Dobson [2002] and originally from Winer
(1971), p. 776.

anova(z <- lm(y~x+m))

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

x 1 36.575 36.575 60.355 5.428e-07 ***
m 2 16.932 8.466 13.970 0.0002579 ***
Residuals 17 10.302 0.606
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Of course, the initial aptitude x is significant for the achievement scores y. More importantly, the
training methods, which are given by m, show significant differences concerning the achievement
scores. We obtain the same result by looking at the ANOVA table of different models:

z0 <- lm(y~x)
anova(z,z0)
Analysis of Variance Table

Model 1: y ~ x + m
Model 2: y ~ x

Res.Df RSS Df Sum of Sq F Pr(>F)
1 17 10.302
2 19 27.234 -2 -16.932 13.97 0.0002579 ***
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Boys Girls

Age Birthweight Age Birthweight
40 2968 40 3317
38 2795 36 2729
40 3163 40 2935
35 2925 38 2754
36 2625 42 3210
37 2847 39 2817
41 3292 40 3126
40 3473 37 2539
37 2628 36 2412
38 3176 38 2991
40 3421 39 2875
38 2975 40 3231

Means 38.33 3024.00 38.75 2911.33

Table 5.8: Birthweight and gestational age for boys and girls from Dobson [2002].

Again we see that the training methods show significant differences after adjusting for the initial
aptitude.

5.3.2.2 Birthweights of Girls and Boys

The data set is from Dobson [2002], page 30, data of Table 2.3. Birthweights (in grams) and
estimated gestational ages (in weeks) of 12 male and female babies are sampled. Tab. 5.8 shows
the data. The mean ages are almost the same for both sexes but the mean birthweight for boys is
higher than the mean birthweight for girls. The data are shown in a scatter plot in Fig. 5.8. There
is a linear trend of birth weight increasing with gestational age and the girls tend to weigh less
than the boys of the same gestational age. The question of interest is whether the rate of increase
of birthweight with gestational age is the same for boys and girls.

We analyze the data in R . First we create the data:

age <- c(40, 38, 40, 35, 36, 37, 41, 40, 37, 38, 40, 38,
40, 36, 40, 38, 42, 39, 40, 37, 36, 38, 39, 40)

birthw <- c(2968, 2795, 3163, 2925, 2625, 2847, 3292, 3473, 2628, 3176,
3421, 2975, 3317, 2729, 2935, 2754, 3210, 2817, 3126, 2539,
2412, 2991, 2875, 3231)

sex <- gl(2,12, labels=c("Male","Female"))

The scatter plot is produced by

plot(age, birthw, pch=21,bg=c("cadetblue1","darkorange")[as.numeric(sex)],
+ main="Dobson’s Birth Weight Data",cex=2)
lines(lowess(age[sex==’Male’], birthw[sex==’Male’]),
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Figure 5.8: Scatter plot of Dobson’s birthweight data. Regression lines are shown.
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+ col="cadetblue1",lwd=3)
lines(lowess(age[sex==’Female’], birthw[sex==’Female’]),
+ col="darkorange",lwd=3)
legend("topleft", levels(sex), col=c("cadetblue1","darkorange"),
+ pch=21, lty=1, bty="n",lwd=3)

For analysis we fit a linear model where the groups are male and female and the covariate is
the age:

summary(l1 <- lm(birthw ~ sex + age), correlation=TRUE)

Call:
lm(formula = birthw ~ sex + age)

Residuals:
Min 1Q Median 3Q Max

-257.49 -125.28 -58.44 169.00 303.98

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1610.28 786.08 -2.049 0.0532 .
sexFemale -163.04 72.81 -2.239 0.0361 *
age 120.89 20.46 5.908 7.28e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 177.1 on 21 degrees of freedom
Multiple R-squared: 0.64, Adjusted R-squared: 0.6057
F-statistic: 18.67 on 2 and 21 DF, p-value: 2.194e-05

Correlation of Coefficients:
(Intercept) sexFemale

sexFemale 0.07
age -1.00 -0.12

Of course, the birthweight depends on the age, which is highly significant. However also the sex
is significant at a level of 0.05. Females weigh less than males as the coefficient for females is
-163.04.

The intercept was not important, we fit the model without an intercept:

summary(l0 <- lm(birthw ~ sex + age -1), correlation=TRUE)

Call:
lm(formula = birthw ~ sex + age - 1)

Residuals:
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Min 1Q Median 3Q Max
-257.49 -125.28 -58.44 169.00 303.98

Coefficients:
Estimate Std. Error t value Pr(>|t|)

sexMale -1610.28 786.08 -2.049 0.0532 .
sexFemale -1773.32 794.59 -2.232 0.0367 *
age 120.89 20.46 5.908 7.28e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 177.1 on 21 degrees of freedom
Multiple R-squared: 0.9969, Adjusted R-squared: 0.9965
F-statistic: 2258 on 3 and 21 DF, p-value: < 2.2e-16

Correlation of Coefficients:
sexMale sexFemale

sexFemale 1.00
age -1.00 -1.00

The intercept is now attributed to the males. This is in agreement to the result in previous setting,
where the males were the reference group. Either the reference group effect or the constant offset
(the intercept) is set to zero.

We compare the models by an ANOVA table:

anova(l1,l0)
Analysis of Variance Table

Model 1: birthw ~ sex + age
Model 2: birthw ~ sex + age - 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 21 658771
2 21 658771 0 1.5134e-09

The intercept is not required.

Next we fit a more complex model which contains the interaction of factor sex with variable
age:

summary(li <- lm(birthw ~ sex + sex:age -1), correlation=TRUE)

Call:
lm(formula = birthw ~ sex + sex:age - 1)

Residuals:
Min 1Q Median 3Q Max

-246.69 -138.11 -39.13 176.57 274.28
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

sexMale -1268.67 1114.64 -1.138 0.268492
sexFemale -2141.67 1163.60 -1.841 0.080574 .
sexMale:age 111.98 29.05 3.855 0.000986 ***
sexFemale:age 130.40 30.00 4.347 0.000313 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 180.6 on 20 degrees of freedom
Multiple R-squared: 0.9969, Adjusted R-squared: 0.9963
F-statistic: 1629 on 4 and 20 DF, p-value: < 2.2e-16

Correlation of Coefficients:
sexMale sexFemale sexMale:age

sexFemale 0.00
sexMale:age -1.00 0.00
sexFemale:age 0.00 -1.00 0.00

The interaction terms (interaction of factor sex with variable age) explain significant variance in
the data. However the interaction factors are driven by age. Thus, age is now less significant as it
is divided into two interaction factors.

The ANOVA table shows

anova(li,l0)
Analysis of Variance Table

Model 1: birthw ~ sex + sex:age - 1
Model 2: birthw ~ sex + age - 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 20 652425
2 21 658771 -1 -6346.2 0.1945 0.6639

The difference between the models is not significant. Only age is separated into the combined
factors containing the sex.
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5.4 Mixed Effects Models

So far, we considered only the noise ε as random variable given x. Thus, only ε could explain the
variance of p(y | x). We now assume there is a second source of variation which is represented
by a hidden or latent variable u. If the variance of u is not known, then the parameter estimation
becomes more complicated. The error variance has to be distinguished from the variance through
u. So far the parameters could be estimated without knowing the error variance. We assumed
that the errors have the same spherical variance. Therefore this variance would factor out in the
objective and the normal equations would not change. For mixed effect models that is no longer
the case.

For each observation y there is a corresponding latent variable u:

y = xTβ + zTu + ε . (5.125)

z is a vector indicating the presence of the latent variable, which can be sampled with y or be
designed via dummy variables.

We assume that

E(u) = 0 , (5.126)

E(ε) = 0 , (5.127)

Var(u) = G , (5.128)

Var(ε) = R , (5.129)

Cov(ε,u) = 0 . (5.130)

The model in matrix notation is

y = Xβ + Zu + ε . (5.131)

The design matrix isX with β as the coefficient vector of fixed effects. u is the vector of random
effects with Z as fixed predictor matrix. Z is often used to specify group memberships or certain
measurement conditions.

We have

E(y) = Xβ , (5.132)

Var(y) = ZTGZ + R . (5.133)

These properties of y follow immediately from the assumptions.

5.4.1 Approximative Estimator

We want to find an estimator for both β and u. The estimator for u is the posterior, that is, the
distribution of u after having seen the observation, while the prior is the distribution of u without
an observation.
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5.4.1.1 Estimator for Beta

We assume that both G = σ2
uI and R = σ2I are normally distributed. Then, we approximate G

by σ̂2
uI and R by σ̂2I . We have to find an estimator σ̂2

u for σ2
u and an estimator σ̂2 for σ2. One

approach for this estimate is the restricted (or residual) maximum likelihood (REML) estimator.

We define

K = C(I − P ) = C
(
I −X(XTX)+XT

)
, (5.134)

where C is a full-rank transformation of the rows of (I − P ). We immediately see that

K X = 0 . (5.135)

We define

Σ = σ2
u ZZ

T + σ2In . (5.136)

We know the distribution ofK y:

K y ∼ N
(
0 , K ΣKT

)
. (5.137)

Using this distribution, estimators for σ2 and σ2
u can be obtained by solving the equations:

Tr
(
KT

(
K ΣKT

)−1
K
)

= yTKT
(
K ΣKT

)−1
K KT

(
K ΣKT

)−1
K y (5.138)

Tr
(
KT

(
K ΣKT

)−1
KZZT

)
= yTKT

(
K ΣKT

)−1
K ZZTKT

(
K ΣKT

)−1
K y .

(5.139)

These equations are obtained by setting the derivatives of the likelihood ofKy with respect to σ2

and to σ2
u to zero.

The solution of these equations are the estimators σ̂2 and σ̂2
u for σ2 and σ2

u, respectively. Using
these estimators, we define

Σ̂ = σ̂2
u ZZ

T + σ̂2In . (5.140)

to obtain an estimator for β as

β̂ =
(
XT Σ̂−1X

)+
XT Σ̂−1y . (5.141)

This is the estimated generalized least squares (EGLS) estimator. The EGLS estimator is only
asymptotically the minimum variance unbiased estimator (MVUE).

Similarly, an approximated estimate for the covariance of β is

Var(β̂) =
(
XT Σ̂−1X

)+
XT Σ̂−1X

(
XT Σ̂−1X

)+
. (5.142)

For full rankX that is

Var(β̂) =
(
XT Σ̂−1X

)−1
. (5.143)
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Large-sample estimator. Using this approximation for the variance, we can approximate
100(1− α)% confidence intervals by

aTβ ∈ aT β̂ ± zα/2

√
aT
(
XT Σ̂−1X

)+
a . (5.144)

Using the a = ej gives a confidence interval for βj . However this confidence interval is not valid
for a small number of samples. For a small number of samples we use a different approach.

Small-sample estimator. For

t =
aT β̂√

aT
(
XT Σ̂−1X

)+
a

(5.145)

often a t-distribution with unknown degrees of freedom is assumed. The task is to estimate the
degrees of freedom to compute confidence intervals or p-values. Different approaches exist to
estimate the degrees of freedom Rencher and Schaalje [2008].

5.4.1.2 Estimator for u

If u is normally distributed, then we know the posterior p(u | y).

We use the following connection between two normally distributed variables:

u ∼ N (µu,Σuu) , y ∼ N (µy,Σyy) , (5.146)

Σuv = Cov(y,u) and Σvu = Cov(u,y) :

u | y ∼ N
(
µu + ΣvuΣ

−1
yy (y − µy) , Σuu − ΣvuΣ

−1
yy Σuv

)
The covariance between u and y is

Cov(u,y) = Cov(u , Xβ + Zu + ε) = G ZT . (5.147)

and we have

E(u) = 0 , (5.148)

Var(u) = G , (5.149)

E(y) = Xβ , (5.150)

Var(y) = ZTGZ + R . (5.151)

Therefore we obtain

u | y ∼ N
(
G ZT

(
ZTGZ + R

)−1
(y − Xβ) , G − G ZT

(
ZTGZ + R

)−1
Z GT

)
.

(5.152)

This posterior can be computed if G, R, and β are known. We can use above approximation
for these values

G = σ̂2
uI, (5.153)

R = σ̂2I, (5.154)

ZTGZ + R = Σ̂ (5.155)

to estimate the posterior.
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5.4.2 Full Estimator

Here we consider the full estimator and not only an approximation. Henderson’s “mixed model
equations” (MME) are:(

XTR−1X XTR−1Z
ZTR−1X ZTR−1Z + G−1

)(
β̂
û

)
=

(
XTR−1y
ZTR−1y

)
. (5.156)

The solutions to these equations are best linear unbiased estimates (BLUE).

Mixed effect models can also be fitted by the EM algorithm. Variance components are consid-
ered as unobserved variables which are estimated in the E-step. The M-step maximizes the other
parameters. For example, the R function lme() (“linear mixed effect”) of the R package nlme
(“non-linear mixed effect”) implements such an EM algorithm.

ForR = σ2I we obtain for the MME(
XTX XTZ
ZTX ZTZ + σ−2 G−1

)(
β̂
û

)
=

(
XTy
ZTy

)
. (5.157)

5.5 Generalized Linear Models

So far, we assumed spherical and often normal errors. However other distributions may be possi-
ble — even discrete or count distributions. For example with counts the error corresponds to the
deviation from the mean count. The error-free model is obtained by the expectation of the obser-
vation yi: E(yi) = µi = xTi β. We now generalize this relation by introducing a link function g.
The link function g relates the mean E(yi) = µi to the linear component g(µi) = xTi β.

Generalized linear models require

(i) a random component or an error distribution which specifies the probability distribution of the
response y,

(i) a systematic component which is a linear function of the explanatory variables / regressors,

(i) a link function which determines the functional relation between the expectation of the random
variable and the systematic component, i.e. the linear function.

For the exponential dispersion model with the natural parameter θi and dispersion parameter
φ, the density is

f(yi | θi, φ) = exp

(
yiθi − b(θi)

a(φ)
+ c(yi, φ)

)
, (5.158)

where

b(θi) = a(φ) ln

∫
exp

(
yiθi
a(φ)

+ c(yi, φ)

)
dyi . (5.159)
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The function b is a normalizing constant (in yi) that ensures f to be a distribution:

∫
f(yi | θi, φ) dyi =

∫
exp

(
yiθi
a(φ) + c(yi, φ)

)
dyi∫

exp
(
yiθi
a(φ) + c(yi, φ)

)
dyi

= 1 . (5.160)

Using this density we can derive Rao and Toutenburg [1999]:

E(yi) = µi = b′(θi) (5.161)

Var(yi) = b′′(θi) a(φ) . (5.162)

These equations can be derived as follows. For the mean we have

∂b(θi)

∂θi
= a(φ)

∫
(yi/a(φ)) exp

(
yiθi
a(φ) + c(yi, φ)

)
dyi∫

exp
(
yiθi
a(φ) + c(yi, φ)

)
dyi

(5.163)

= a(φ)

∫
(yi/a(φ)) exp

(
yiθi
a(φ) + c(yi, φ)

)
dyi

exp(b(θi)/a(φ))

=

∫
yi exp

(
yiθi − b(θi)

a(φ)
+ c(yi, φ)

)
dyi

= µi .

and for the variance we obtain

∂2b(θi)

∂θ2
i

= − 1

a(φ)

(∫
yi exp

(
yiθi
a(φ) + c(yi, φ)

)
dyi

)2

(∫
exp

(
yiθi
a(φ) + c(yi, φ)

)
dyi

)2 + (5.164)

1

a(φ)

∫
y2
i exp

(
yiθi
a(φ) + c(yi, φ)

)
dyi∫

exp
(
yiθi
a(φ) + c(yi, φ)

)
dyi

=
1

a(φ)

(
− µ2

i + E(y2
i )
)

=
1

a(φ)
Var(yi) .

The log-likelihood is

lnL =
n∑
i=1

lnLi =
n∑
i=1

(
yiθi − b(θi)

a(φ)
+ c(yi, φ)

)
, (5.165)

where Li = f(yi | θi, φ) is the conditional likelihood of yi given xi.

The derivative of the log-likelihood with respect to the coefficient βj is

∂ lnLi
∂βj

=
∂ lnLi
∂θi

∂θi
∂µi

∂µi
∂g(µi)

∂g(µi)

∂βj
. (5.166)

We only applied the chain rule a couple of times.



5.5. Generalized Linear Models 161

The derivatives which appear in the chain rule can be computed separately. We compute these
derivatives, where we use µi = b′(θi):

∂ lnLi
∂θi

=
yi − b′(θi)

a(φ)
=

yi − µi
a(φ)

(5.167)

∂θi
∂µi

=

(
∂µi
∂θi

)−1

=
(
b′′(θi)

)−1
=

a(φ)

Var(yi)
(5.168)

∂µi
∂g(µi)

=

(
∂g(µi)

∂µi

)−1

(5.169)

∂g(µi)

∂βj
= xij . (5.170)

For finding the maximum, the derivative of the log-likelihood is set to zero

∂ lnL
∂βj

=
n∑
i=1

(yi − µi) xij
Var(yi)

(
∂g(µi)

∂µi

)−1

= 0 . (5.171)

The maximum likelihood solution is obtained by solving this equation for the parameters β.

Since g(µi) = xTi β, µi = b′(θi), and Var(yi) = b′′(θi) a(φ), this equation is nonlinear in β
depending on the functions g and b. Therefore numerical methods are used to solve this equation.
The probability function is determined by the functions a and b while the link function is given by
g. A popular method to solve this equation is the iteratively re-weighted least squares algorithm.
Using

wi =

(
∂µi
∂g(µi)

)2

Var(yi)
(5.172)

and the diagonal matrixW = diag(wi) the iterative algorithm is(
XTW (k)X

)
β(k+1) =

(
XTW (k)X

)
β(k) +

∂ lnL
∂β(k)

. (5.173)

Here
(
XTW (k)X

)
approximates the Fisher information matrix F :

F ≈ XTW (k)X . (5.174)

IfX has full rank then the update rule becomes

β(k+1) = β(k) +
(
XTW (k)X

)−1 ∂ lnL
∂β(k)

. (5.175)

If different models are fitted, then the maximum likelihood solutions of different models can
be compared by a likelihood ratio test. The likelihood ratio test is of interest when using reduced
models to test which variables are relevant. Also the interaction of variables might be tested.

Tab. 5.9 shows commonly used generalized linear models described by their distribution and
link function. The last three models are known as logistic regression and multinomial logistic
regression for more than two classes.
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distribution link function link name support application

normal Xβ = g(µ) = µ identity real, (−∞,+∞) linear response
exponential Xβ = g(µ) = −µ−1 inverse real, (0,+∞) exponential response
Gamma Xβ = g(µ) = −µ−1 inverse real, (0,+∞) exponential response
inv. Gaussian Xβ = g(µ) = −µ−2 inv. squared real, (0,+∞)
Poisson Xβ = g(µ) = ln (µ) log integer, [0,+∞) count data

Bernoulli Xβ = g(µ) = ln
(

µ
1−µ

)
logit integer, [0, 1] two classes, occurrence

binomial Xβ = g(µ) = ln
(

µ
1−µ

)
logit integer, [0, n] two classes, count

categorical Xβ = g(µ) = ln
(

µ
1−µ

)
logit integer, [0,K] K classes, occurrence

multinomial Xβ = g(µ) = ln
(

µ
1−µ

)
logit integer, [0, n]K K classes, count

Table 5.9: Commonly used generalized linear models described by their distribution and link
function. The probability distribution and the link function are given. Further the support of the
distribution, the short-cut name for the link, and the typical application.

Commonly used link functions are: “logit”, “probit”, “cauchit”, “cloglog”, “identity”, “log”,
“sqrt”, “inverse squared”, and “inverse”.

The “cloglog” is the “complementary log log function” given as

g(x) = log (− log(x)) . (5.176)

The “cloglog” model is similar to the logit models around 0.5 but differs near 0 or 1.

The R function glm() and glm.fit() can be used for fitting generalized linear models. For
glm() the following models are predefined:

binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
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Figure 5.9: The sigmoid function 1
1+exp(−x) .

5.5.1 Logistic Regression

5.5.1.1 The Model

The inverse of the logit function

g(x) = ln

(
x

1 − x

)
(5.177)

is the sigmoid function:

f(x) =
1

1 + e− x
, (5.178)

which is depicted in Fig. 5.9.

Since

1 − 1

1 + e− x
=

e− x

1 + e− x
, (5.179)

we obtain the probabilities

p(y = 1 | x;β) =
1

1 + e− xTβ
(5.180)

and

p(y = 0 | x;β) =
e− x

Tβ

1 + e− xTβ
. (5.181)

The logit as link function gives

xTβ = ln

(
p(y = 1 | x)

1 − p(y = 1 | x)

)
. (5.182)
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5.5.1.2 Maximizing the Likelihood

We aim at maximizing the likelihood by gradient ascent. Therefore we have to compute the gra-
dient, that is, the first order derivatives of the likelihood L with respect to the parameters βj .

The log-likelihood for iid sampled data is

lnL({(yi,xi)};β) =

n∑
i=1

ln p(yi,xi;β) = (5.183)

n∑
i=1

ln p(yi | xi;β) +

n∑
i=1

ln p(xi) .

Only the first sum depends on the parameters, therefore maximum likelihood maximizes the sum
of the conditional probabilities

n∑
i=1

ln p(yi | xi;β) , (5.184)

This term is often called the conditional likelihood.

Next we will consider the derivative of the log-likelihood. First we will need some algebraic
properties:

∂

∂βj
ln p(y = 1 | xi;β) =

∂

∂βj
ln

1

1 + e− x
T
i β

= (5.185)

(
1 + e− x

T
i β
)− e− x

T
i β(

1 + e− x
T
i β
)2

 ∂ xTi β

∂βj
=

− e− x
T
i β

1 + e− x
T
i β

∂ xTi β

∂βj
= − p(y = 0 | xi;β) xij

and

∂

∂βj
ln p(y = 0 | xi;β) =

∂

∂βj
ln

e− x
T
i β

1 + e− x
T
i β

= (5.186)

1 + e− x
T
i β

e− x
T
i β

 e− x
T
i β

1 + e− x
T
i β
− e− 2 xTi β(

1 + e− x
T
i β
)2

 ∂ xTi β

∂βj
=

1

1 + e− x
T
i β

xij = p(y = 1 | xi;β) xij .

We can rewrite the likelihood as
n∑
i=1

ln p(yi | xi;β) = (5.187)

n∑
i=1

yi ln p(y = 1 | xi;β) +

n∑
i=1

(1 − yi) ln p(y = 0 | xi;β)
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which gives for the derivative

∂

∂βj

n∑
i=1

ln p(yi | xi;β) = (5.188)

n∑
i=1

yi
∂

∂βj
ln p(y = 1 | xi;β) +

n∑
i=1

(1 − yi)
∂

∂βj
ln p(y = 0 | xi;β) =

n∑
i=1

− yi p(y = 0 | xi;β)xij +

n∑
i=1

(1 − yi) p(y = 1 | xi;β)xij =

n∑
i=1

(− yi (1 − p(y = 1 | xi;β))

(1 − yi) p(y = 1 | xi;β)) xij =
n∑
i=1

(p(y = 1 | xi;β) − yi) xij ,

where

p(y = 1 | xi;β) =
1

1 + e− x
T
i β

(5.189)

For computing the maximum, the derivatives have to be zero

∀j :

n∑
i=1

(p(y = 1 | xi;β) − yi)xij = 0 . (5.190)

A gradient ascent based method may be used to find the solutions to this equation.

Alternative formulation with y ∈ +1,−1

We now give an alternative formulation of logistic regression with y ∈ +1,−1. We remember

p(y = 1 | x;β) =
1

1 + e− xTβ
(5.191)

and

p(y = −1 | x;β) =
e− x

Tβ

1 + e− xTβ
=

1

1 + e xTβ
. (5.192)

Therefore we have

− ln p(y = yi | xi;β) = ln
(

1 + e− yi x
T
i β
)

(5.193)
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and the objective which is minimized to find the maximum likelihood solution is

L = −
n∑
i=1

ln p(yi | xi;β) =

n∑
i=1

ln
(

1 + e− yi x
T
i β
)

(5.194)

The derivatives of the objective with respect to the parameters are

∂L

∂βj
= −

n∑
i=1

yi
∂ xTi β

∂βj

e− yi x
T
i β

1 + e− yi xTi β
= (5.195)

−
n∑
i=1

yi xij (1 − p(yi | x;β)) .

The last equation is similar to Eq. (5.188). In matrix notation we have for the gradient:

∂L
∂β

= −
n∑
i=1

yi (1 − p(yi | x;β)) xi . (5.196)

The objective, the log likelihood, of logistic regression is strictly convex. Therefore efficient
gradient-based techniques to find the maximum likelihood solution can be used.

5.5.2 Multinomial Logistic Regression: Softmax

For multi-class problems logistic regression can be generalized to Softmax. We assume K classes
with y ∈ {1, . . . ,K} and the probability of x belonging to class k is

p(y = k | x;β1, . . . ,βK) =
ex

Tβk∑K
j=1 e

xTβj
(5.197)

which gives a multinomial distribution across the classes.

The objective, which is minimized in order to maximize the likelihood, is

L = −
n∑
i=1

ln p(y = yi | xi;β) =
n∑
i=1

ln

 K∑
j=1

ex
Tβj

 − xTβyi . (5.198)

In the following we set

p(y = k | x;β1, . . . ,βK) = p(k | x;W ) , (5.199)

whereW = (β1, . . . ,βK) is the matrix of parameters.

The derivatives are

∂L
∂βkt

=
n∑
i=1

∂xTi βk
∂βkt

p(k | xi;W ) − δyi=k

n∑
i=1

∂xTi βk
∂βkt

(5.200)

=

n∑
i=1

xitp(k | xi;W ) − δyi=k

n∑
i=1

xit . (5.201)

The objective of Softmax is strictly convex.
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distribution parameters pmf Pr(X = k) µ Var r = µ/Var r

binomial n ∈ N, p
(
n
k

)
pk(1− p)n−k np np(1− p) 1/(1− p) > 1

Poisson 0 < λ λke−λ

k! λ λ 1 = 1

negative binomial 0 < r, p
(
k+r−1
k

)
(1− p)rpk pr

1−p
pr

(1−p)2 (1− p) < 1

Table 5.10: Commonly used distributions to model count data. The parameter p ∈ [0, 1] is the
probability of a success. The probability mass function (“pmf”), the mean µ, the variance Var,
and the ratio r = µ

Var of mean to variance are given. The last column indicates whether r is larger
or smaller than 1.

5.5.3 Poisson Regression

To model count data, three distributions are popular: the binomial (variance smaller than the
mean), Poisson (variance equal to the mean), negative binomial (variance larger than the mean).
Tab. 5.10 shows these distributions.

In many cases the observations can be described by a rate θ and the number of trials n: λ = θn.
An observation is the number of successes or failures out of n trials or exposures. Depending on
the kind of applications and the problem which should be modeled, either the rate θ changes or
the number of exposures changes. For example, n may be the number of kilometers which an
individual drives with a car, while θ is the probability of having an accident. In this case, different
individuals drove a different number of kilometers, that is, the exposure changes. For another task,
all persons drive on a test track 100 km, however, different persons consumed a different amount
of alcohol. Therefore, θ, the probability of having an accident, is different for each individual.
Consequently, either θ or n can be modeled by a linear regression.

Poisson regression models the case were the rate changes and can be estimated by a linear
model using the explanatory variables. We have

E(yi) = λi = ni θi = ni e
xTi β (5.202)

log λi = log ni + xTi β . (5.203)

The term log ni is an additional offset.

Hypotheses tests can be based on the Wald statistics or on a likelihood ratio statistic. Reduced
models allow to test the relevance of different variables for explaining the response variable. Also
the combination and interactions of variables can be tested.

The standard error is

SE(β̂) =

√
1

F
, (5.204)

where F is the Fisher information matrix. Confidence intervals can be estimated using

β̂j − βj

SE(β̂j)
∼ N (0, 1) . (5.205)
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The estimated values are

ei = ni e
xTi β̂ (5.206)

giving the estimated standard deviation
√
ei. The variance is equal to the mean for a Poisson. The

Pearson residuals are

ri =
oi − ei√

ei
, (5.207)

where oi are the observed counts. These residuals can be standardized by

rpi =
oi − ei√
ei
√

1− Pii
, (5.208)

where Pii is the leverage which is the i-th element of the main diagonal of the hat matrix P .

The goodness of fit, that is, the error or the objective is chi-squared distributed because

∑
i

r2
i =

∑
i

(oi − ei)
2

ei
, (5.209)

which is the definition of a chi-squared statistic.

The Poisson regression is an example of log-linear models:

log E(yi) = c + xTi β . (5.210)

This includes models like

log E(yjk) = log n + log θj. + log θ.k (5.211)

or

log E(yjk) = log n + log θjk. (5.212)

which is similar to

log E(yjk) = µ + αj + βk + (αβ)jk . (5.213)

These models show that ANOVA like approaches are possible in the context of generalized linear
models.

5.5.4 Examples

5.5.4.1 Birthweight Data: Normal

We revisit Dobson’s birthweight data set from Section 5.3.2.2.

The data is:
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age <- c(40, 38, 40, 35, 36, 37, 41, 40, 37, 38, 40, 38,
40, 36, 40, 38, 42, 39, 40, 37, 36, 38, 39, 40)

birthw <- c(2968, 2795, 3163, 2925, 2625, 2847, 3292, 3473, 2628, 3176,
3421, 2975, 3317, 2729, 2935, 2754, 3210, 2817, 3126, 2539,
2412, 2991, 2875, 3231)

sex <- gl(2,12, labels=c("Male","Female"))

The first model l0 in Section 5.3.2.2 was a linear model estimated by least squares. This
model is a generalized linear model with Gaussian error, therefore l0 can also be produced by

summary(zi <- glm(birthw ~ sex + age, family=gaussian()))

Call:
glm(formula = birthw ~ sex + age, family = gaussian())

Deviance Residuals:
Min 1Q Median 3Q Max

-257.49 -125.28 -58.44 169.00 303.98

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1610.28 786.08 -2.049 0.0532 .
sexFemale -163.04 72.81 -2.239 0.0361 *
age 120.89 20.46 5.908 7.28e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 31370.04)

Null deviance: 1829873 on 23 degrees of freedom
Residual deviance: 658771 on 21 degrees of freedom
AIC: 321.39

Number of Fisher Scoring iterations: 2

The model without intercept is:

summary(z0 <- glm(birthw ~ sex + age - 1, family=gaussian()))

Call:
glm(formula = birthw ~ sex + age - 1, family = gaussian())

Deviance Residuals:
Min 1Q Median 3Q Max

-257.49 -125.28 -58.44 169.00 303.98

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
sexMale -1610.28 786.08 -2.049 0.0532 .
sexFemale -1773.32 794.59 -2.232 0.0367 *
age 120.89 20.46 5.908 7.28e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 31370.04)

Null deviance: 213198964 on 24 degrees of freedom
Residual deviance: 658771 on 21 degrees of freedom
AIC: 321.39

Number of Fisher Scoring iterations: 2

We compare these models by an ANOVA table:

anova(zi, z0)
Analysis of Deviance Table

Model 1: birthw ~ sex + age
Model 2: birthw ~ sex + age - 1

Resid. Df Resid. Dev Df Deviance
1 21 658771
2 21 658771 0 -1.1642e-10

The scatter plot in Fig. 5.8 shows that the observation (35,2925) of a male baby looks like an
outlier. If we check the residuals, we see

z0$residuals
1 2 3 4 5 6

-257.490545 -188.701891 -62.490545 303.981090 -116.913237 -15.807564
7 8 9 10 11 12

-54.384872 247.509455 -234.807564 192.298109 195.509455 -8.701891
13 14 15 16 17 18

254.548758 150.126066 -127.451242 -66.662588 -94.239896 -124.556915
19 20 21 22 23 24

63.548758 -160.768261 -166.873934 170.337412 -66.556915 168.548758

Indeed the fourth observation has the largest residual. We now investigate a subset of the data
by removing the observation no. 4. We can use previous models which are updated using the
command update():

summary(z.o4 <- update(z0, subset = -4))

Call:
glm(formula = birthw ~ sex + age - 1, family = gaussian(), subset = -4)
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Deviance Residuals:
Min 1Q Median 3Q Max

-253.86 -129.46 -53.46 165.04 251.14

Coefficients:
Estimate Std. Error t value Pr(>|t|)

sexMale -2318.03 801.57 -2.892 0.00902 **
sexFemale -2455.44 803.79 -3.055 0.00625 **
age 138.50 20.71 6.688 1.65e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 26925.39)

Null deviance: 204643339 on 23 degrees of freedom
Residual deviance: 538508 on 20 degrees of freedom
AIC: 304.68

Number of Fisher Scoring iterations: 2

Now all regressors are more significant.

Next we add an interaction term:

summary(zz <- update(z0, birthw ~ sex+age-1 + sex:age))

Call:
glm(formula = birthw ~ sex + age + sex:age - 1, family = gaussian())

Deviance Residuals:
Min 1Q Median 3Q Max

-246.69 -138.11 -39.13 176.57 274.28

Coefficients:
Estimate Std. Error t value Pr(>|t|)

sexMale -1268.67 1114.64 -1.138 0.268492
sexFemale -2141.67 1163.60 -1.841 0.080574 .
age 111.98 29.05 3.855 0.000986 ***
sexFemale:age 18.42 41.76 0.441 0.663893
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 32621.23)

Null deviance: 213198964 on 24 degrees of freedom
Residual deviance: 652425 on 20 degrees of freedom
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Dose Number of Number
(log10 CS2mgl−1) beetles killed

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

Table 5.11:

AIC: 323.16

Number of Fisher Scoring iterations: 2

These results are already known from Section 5.3.2.2: the interaction does not help. The ANOVA
table tells the same story:

anova(z0,zz)
Analysis of Deviance Table

Model 1: birthw ~ sex + age - 1
Model 2: birthw ~ sex + age + sex:age - 1

Resid. Df Resid. Dev Df Deviance
1 21 658771
2 20 652425 1 6346.2

5.5.4.2 Beetle Mortality: Logistic Regression

An example for logistic regression is found in Dobson [2002], page 124, data of Table 7.2. The
numbers of dead beetles are counted after five hours exposure to gaseous carbon disulfide at var-
ious concentrations. The data stems from Bliss (1935). The data are shown in Tab. 5.11 and as a
scatter plot in Fig. 5.10. The dose is actually the logarithm of the quantity of carbon disulfide. For
the scatter plot the response was the percentage of dead beetles from all beetles.

The data are binomial because from all beetles a certain number is dead. We produce count
data as pairs of (dead,alive):

dose <- c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113, 1.8369, 1.861, 1.8839)
x <- c( 6, 13, 18, 28, 52, 53, 61, 60)
n <- c(59, 60, 62, 56, 63, 59, 62, 60)
dead <- cbind(x, n-x)
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Figure 5.10: Scatter plot of Dobson’s beetle data for logistic regression.
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We start with logistic regression, that is the distribution is binomial and the link function is
logit:

summary(zlog <- glm(dead ~ dose, family=binomial(link=logit)))

Call:
glm(formula = dead ~ dose, family = binomial(link = logit))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5941 -0.3944 0.8329 1.2592 1.5940

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -60.717 5.181 -11.72 <2e-16 ***
dose 34.270 2.912 11.77 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.202 on 7 degrees of freedom
Residual deviance: 11.232 on 6 degrees of freedom
AIC: 41.43

Number of Fisher Scoring iterations: 4

Both intercept and dose are significant. The mean is not around zero, therefore the intercept has
to move it. The significance of the dose shows that the number of dead beetles indeed depends on
the dose of carbon disulfide.

The next link function, that we try, is the probit.

summary(zprob <- glm(dead ~ dose, family=binomial(link=probit)))

Call:
glm(formula = dead ~ dose, family = binomial(link = probit))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5714 -0.4703 0.7501 1.0632 1.3449

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -34.935 2.648 -13.19 <2e-16 ***
dose 19.728 1.487 13.27 <2e-16 ***
---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.20 on 7 degrees of freedom
Residual deviance: 10.12 on 6 degrees of freedom
AIC: 40.318

Number of Fisher Scoring iterations: 4

The result is very similar to the logit link function.

We now test the cloglog link function:

summary(zclog <- glm(dead ~ dose, family=binomial(link=cloglog)))

Call:
glm(formula = dead ~ dose, family = binomial(link = cloglog))

Deviance Residuals:
Min 1Q Median 3Q Max

-0.80329 -0.55135 0.03089 0.38315 1.28883

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -39.572 3.240 -12.21 <2e-16 ***
dose 22.041 1.799 12.25 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.2024 on 7 degrees of freedom
Residual deviance: 3.4464 on 6 degrees of freedom
AIC: 33.644

Number of Fisher Scoring iterations: 4

For this cloglog link function the residual deviance is 3.4464 while it was 11.232 and 10.12 for
the logit and probit link function, respectively. Also the AIC (Akaike information criterion) of the
last model is lower. This hints at the fact that the last model fits the data better. The fitting of the
different link functions is shown in Fig. 5.11, where it is clear that the cloglog link function fits
the data best.

5.5.4.3 Embryogenic Anthers: Logistic Regression

Another example for logistic regression is found in Dobson [2002], page 128, data of Table 7.5.
The data are taken from Sangwan-Norrell (1977) and are shown in Tab. 5.12. The authors counted
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Figure 5.11: Fitting of Dobson’s beetle data with different link functions. Orange rectangles are
the original data, blue circles are the fitted points with logistic link function, green circles are the
fitted points with the probit link function, and the magenta circles are the fitted points with the
cloglog link function. The x-axis values are jittered. The cloglog link function fits the points best.
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Centrifuging force (g)

Storage condition 40 150 350
Control y 55 52 57

n 102 99 108

Treatment y 55 50 50
n 76 81 90

Table 5.12: Dobson’s embryogenic anther data taken from Sangwan-Norrell (1977).

the embryogenic anthers of the plant species Datura innoxia Mill. obtained from a particular
number of anthers prepared. The embryogenic anthers were obtained under different conditions.
The first factor has two levels which relate to the storage type, which is either a control storage or
a storage at 3 ◦C for 48 hours. The second factor has three levels corresponding to the centrifuging
forces. The data is shown in Fig. 5.12. The task is to compare the treatment and the control storage
type after adjusting for the centrifuging force.

The anther data are generated as follows:

x1 <- c(55,52,57,55,50,50)
n <- c(102, 99, 108, 76, 81, 90)
p <- c(0.539,0.525,0.528,0.724,0.617,0.555)
x <- round(n*p)
y <- cbind(x,n-x)
f <- rep(c(40,150,350),2)
(g <- gl(2,3))

f gives the centrifuging force and g the storage type.

We first fit a full model:

summary(glm(y ~ g*f, family=binomial(link="logit")))

Call:
glm(formula = y ~ g * f, family = binomial(link = "logit"))

Deviance Residuals:
1 2 3 4 5 6

0.08269 -0.12998 0.04414 0.42320 -0.60082 0.19522

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1456719 0.1975451 0.737 0.4609
g2 0.7963143 0.3125046 2.548 0.0108 *
f -0.0001227 0.0008782 -0.140 0.8889
g2:f -0.0020493 0.0013483 -1.520 0.1285
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Figure 5.12: Dobson’s embryogenic anther data taken from Sangwan-Norrell (1977). The color
mark the groups, which are the storage types.
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---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 10.45197 on 5 degrees of freedom
Residual deviance: 0.60387 on 2 degrees of freedom
AIC: 38.172

Number of Fisher Scoring iterations: 3

Next we do not consider the interaction effect between centrifuging force and storage type:

summary(glm(y ~ g + f, family=binomial(link="logit")))

Call:
glm(formula = y ~ g + f, family = binomial(link = "logit"))

Deviance Residuals:
1 2 3 4 5 6

-0.5507 -0.2781 0.7973 1.1558 -0.3688 -0.6584

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.306643 0.167629 1.829 0.0674 .
g2 0.405554 0.174560 2.323 0.0202 *
f -0.000997 0.000665 -1.499 0.1338
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 10.4520 on 5 degrees of freedom
Residual deviance: 2.9218 on 3 degrees of freedom
AIC: 38.49

Number of Fisher Scoring iterations: 3

The centrifuging force seems not to be relevant for explaining the yield in embryogenic an-
thers. Therefore we only consider the group effects, that is the different storage conditions:

summary(glm.p84 <- glm(y~g, family=binomial(link="logit")))

Call:
glm(formula = y ~ g, family = binomial(link = "logit"))

Deviance Residuals:
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1 2 3 4 5 6
0.17150 -0.10947 -0.06177 1.77208 -0.19040 -1.39686

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1231 0.1140 1.080 0.2801
g2 0.3985 0.1741 2.289 0.0221 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 10.452 on 5 degrees of freedom
Residual deviance: 5.173 on 4 degrees of freedom
AIC: 38.741

Number of Fisher Scoring iterations: 3

This best model with respect to the AIC, which only considers the groups, is analyzed in
Fig. 5.13.

5.5.4.4 Toy Example 1: Poisson Regression

For Poisson regression we present a toy example from Dobson [2002], page 71, data of Table 4.3.
The data are shown in Fig. 5.14. There is a clear relation between x and the count data y as counts
for x = 1.0 are larger than counts for x = 0.0 which in turn are larger than counts for x = −1.0.

The R code for the data and performing Poisson regression is:

x <- c(-1,-1,0,0,0,0,1,1,1)
y <- c(2,3,6,7,8,9,10,12,15)
summary(glm(y~x, family=poisson(link="identity")))

Call:
glm(formula = y ~ x, family = poisson(link = "identity"))

Deviance Residuals:
Min 1Q Median 3Q Max

-0.7019 -0.3377 -0.1105 0.2958 0.7184

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.4516 0.8841 8.428 < 2e-16 ***
x 4.9353 1.0892 4.531 5.86e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure 5.13: The best best model for Dobson’s embryogenic anther data with respect to the AIC
considers only the groups. The groups are the storage type.
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Outcome

Treatment O1 O2 O3 Total

T1 18 17 15 50
T2 20 10 20 50
T3 25 13 12 50

Total 63 40 47

Table 5.13: Toy data from Dobson [1990] for randomized controlled trial analyzed by Poisson
regression.

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 18.4206 on 8 degrees of freedom
Residual deviance: 1.8947 on 7 degrees of freedom
AIC: 40.008

Number of Fisher Scoring iterations: 3

Both the intercept and the coefficient are significant. The intercept must move x into the range of
the count data.

5.5.4.5 Toy Example 2: Poisson Regression

This is another example for Poisson regression from Dobson [1990] (the first edition), page 93.
This example is a randomized controlled trial with two factors. Both factors, outcome and treat-
ment, have three levels. The data is listed in Tab. 5.13. Each treatment group contains 50
samples. Fig. 5.13 shows the data. Outcomes are indicated by the border color of the cir-
cles (O1=blue,O2=red,O3=magenta). Treatments are indicated by the interior color of the circles
(T1=orange,T2=blue,T3=green). The counts for outcome O1 are larger than the other two.

We analyze the data by Poisson regression:

counts <- c(18,17,15, 20,10,20, 25,13,12)
outcome <- gl(3, 1, length(counts))
treatment <- gl(3, 3)
summary(z <- glm(counts ~ outcome + treatment, family=poisson()))

Call:
glm(formula = counts ~ outcome + treatment, family = poisson())

Deviance Residuals:
1 2 3 4 5 6 7 8

-0.67125 0.96272 -0.16965 -0.21999 -0.95552 1.04939 0.84715 -0.09167
9
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Figure 5.15: Toy data from Dobson [1990] for randomized controlled trial analyzed
by Poisson regression. Outcomes are indicated by the border color of the circles
(O1=blue,O2=red,O3=magenta). Treatments are indicated by the interior color of the circles
(T1=orange,T2=blue,T3=green).
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user of M? No Yes

temperature Low High Low High

preference X M X M X M X M

water softness
hard 68 42 42 30 37 52 24 43

medium 66 50 33 23 47 55 23 47
soft 63 53 29 27 57 49 19 29

Table 5.14: Data set on detergent brand preference from Ries & Smith (1963) and analyzed by
Cox & Snell (1989).

-0.96656

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.045e+00 1.709e-01 17.815 <2e-16 ***
outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 *
outcome3 -2.930e-01 1.927e-01 -1.520 0.1285
treatment2 8.717e-16 2.000e-01 0.000 1.0000
treatment3 4.557e-16 2.000e-01 0.000 1.0000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 10.5814 on 8 degrees of freedom
Residual deviance: 5.1291 on 4 degrees of freedom
AIC: 56.761

Number of Fisher Scoring iterations: 4

Of course the intercept is significant as the data is not centered around zero. Outcome 1 and
treatment 1 are the reference. Treatment does not have influence on the counts because they are
all the same. Outcome O2 is significant for a level of 0.01. That can be seen in Fig. 5.13 because
the reference outcome O1 indicated by blue border circles is larger than outcome O2 indicated by
red border circles.

5.5.4.6 Detergent Brand: Poisson Regression

These data were reported by Ries & Smith (1963), analyzed by Cox & Snell (1989) and described
in Modern Applied Statistics with S+. The user preference for brand M or X is counted. At
analyzing these data, different factors are considered. Explanatory variables (regressors, features)
are “user of M”, “temperature”, and “water”. The data are presented in Tab. 5.14.
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We construct the data set for this example in R as a data frame:

Fr <- c(68,42,42,30, 37,52,24,43,
+ 66,50,33,23, 47,55,23,47,
+ 63,53,29,27, 57,49,19,29)
Temp <- gl(2, 2, 24, labels = c("Low", "High"))
Soft <- gl(3, 8, 24, labels = c("Hard","Medium","Soft"))
M.user <- gl(2, 4, 24, labels = c("N", "Y"))
Brand <- gl(2, 1, 24, labels = c("X", "M"))
detg <- data.frame(Fr,Temp, Soft,M.user, Brand)

The results of Poisson regression are:

detg.m0 <- glm(Fr ~ M.user*Temp*Soft + Brand, family = poisson, data = detg)
summary(detg.m0)

Call:
glm(formula = Fr ~ M.user * Temp * Soft + Brand, family = poisson,

data = detg)

Min 1Q Median 3Q Max
-2.20876 -0.99190 -0.00126 0.93542 1.97601

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.01524 0.10034 40.018 < 2e-16 ***
M.userY -0.21184 0.14257 -1.486 0.13731
TempHigh -0.42381 0.15159 -2.796 0.00518 **
SoftMedium 0.05311 0.13308 0.399 0.68984
SoftSoft 0.05311 0.13308 0.399 0.68984
BrandM -0.01587 0.06300 -0.252 0.80106
M.userY:TempHigh 0.13987 0.22168 0.631 0.52806
M.userY:SoftMedium 0.08323 0.19685 0.423 0.67245
M.userY:SoftSoft 0.12169 0.19591 0.621 0.53449
TempHigh:SoftMedium -0.30442 0.22239 -1.369 0.17104
TempHigh:SoftSoft -0.30442 0.22239 -1.369 0.17104
M.userY:TempHigh:SoftMedium 0.21189 0.31577 0.671 0.50220
M.userY:TempHigh:SoftSoft -0.20387 0.32540 -0.627 0.53098
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 118.627 on 23 degrees of freedom
Residual deviance: 32.826 on 11 degrees of freedom
AIC: 191.24
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Number of Fisher Scoring iterations: 4

Besides the intercept only temperature is significant but not the water characteristic nor the previ-
ous use of the brand.

We now try another model:

detg.mod <- glm(terms(Fr ~ M.user*Temp*Soft + Brand*M.user*Temp,
+ keep.order = TRUE), family = poisson, data = detg)
summary(detg.mod, correlation = TRUE, symbolic.cor = TRUE)

Call:
glm(formula = terms(Fr ~ M.user * Temp * Soft + Brand * M.user *

Temp, keep.order = TRUE), family = poisson, data = detg)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.91365 -0.35585 0.00253 0.33027 0.92146

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.14887 0.10603 39.128 < 2e-16 ***
M.userY -0.40521 0.16188 -2.503 0.01231 *
TempHigh -0.44275 0.17121 -2.586 0.00971 **
M.userY:TempHigh -0.12692 0.26257 -0.483 0.62883
SoftMedium 0.05311 0.13308 0.399 0.68984
SoftSoft 0.05311 0.13308 0.399 0.68984
M.userY:SoftMedium 0.08323 0.19685 0.423 0.67245
M.userY:SoftSoft 0.12169 0.19591 0.621 0.53449
TempHigh:SoftMedium -0.30442 0.22239 -1.369 0.17104
TempHigh:SoftSoft -0.30442 0.22239 -1.369 0.17104
M.userY:TempHigh:SoftMedium 0.21189 0.31577 0.671 0.50220
M.userY:TempHigh:SoftSoft -0.20387 0.32540 -0.627 0.53098
BrandM -0.30647 0.10942 -2.801 0.00510 **
M.userY:BrandM 0.40757 0.15961 2.554 0.01066 *
TempHigh:BrandM 0.04411 0.18463 0.239 0.81119
M.userY:TempHigh:BrandM 0.44427 0.26673 1.666 0.09579 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 118.627 on 23 degrees of freedom
Residual deviance: 5.656 on 8 degrees of freedom
AIC: 170.07

Number of Fisher Scoring iterations: 4
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Correlation of Coefficients:

(Intercept) 1
M.userY , 1
TempHigh , . 1
M.userY:TempHigh . , , 1
SoftMedium , . . 1
SoftSoft , . . . 1
M.userY:SoftMedium . , . , . 1
M.userY:SoftSoft . , . . , . 1
TempHigh:SoftMedium . , . . . . 1
TempHigh:SoftSoft . , . . . . . 1
M.userY:TempHigh:SoftMedium . . . . , . , . 1
M.userY:TempHigh:SoftSoft . . . . . , . , . 1
BrandM . 1
M.userY:BrandM . , 1
TempHigh:BrandM . . . . 1
M.userY:TempHigh:BrandM . . . . , 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1

Besides the temperature also the brand becomes significant and also, to a lesser degree, the previ-
ous use of brand M and the combined previous use of brand M plus brand M.

Finally we compare the two models by an ANOVA table:

anova(detg.m0, detg.mod)

Analysis of Deviance Table

Model 1: Fr ~ M.user * Temp * Soft + Brand
Model 2: Fr ~ M.user * Temp * Soft + Brand * M.user * Temp

Resid. Df Resid. Dev Df Deviance
1 11 32.826
2 8 5.656 3 27.17

5.5.4.7 Tumor Data: Poisson Regression

In Dobson [2002], page 162, in Table 9.4, data from Roberts et al. (1981) are presented. The data
are from a cross-sectional study of patients with a form of skin cancer called malignant melanoma.
For a sample of n = 400 patients, the site of the tumor and its histological type were determined.
The counts of patients with each combination of tumor type and body site, are given in Tab. 5.15.
The patients are categorized by the type of tumor they have, which corresponds to the first factor
with four levels: freckle, superficial, nodular, indeterminate. The patients are also categorized by
the body site where the tumor was found, which corresponds to the second factor with three levels:
head, trunk, extremities. The association between tumor type and site should be investigated.
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Site

Head Trunk Extrem Total
Tumor type & neck -ities

Hutchinson’s melanotic freckle 22 2 10 34
Superficial spreading melanoma 16 54 115 185
Nodular 19 33 73 125
Indeterminate 11 17 28 56

Total 68 106 226 400

Table 5.15: Dobson’s malignant melanoma data: frequencies for tumor type and site (Roberts et
al., 1981).

Fig. 5.16 shows the data, where the four tumor types are indicated by the interior color of the
circles (orange=freckle, blue=superficial, green=nodular, indeterminate=wood). The three loca-
tions at the body are indicated by the border color of the circles (head=blue, trunk=red, extremi-
ties=magenta).

In R we represent the data by a data frame:

counts <- c(22,2,10,16,54,115,19,33,73,11,17,28)
type <- gl(4,3,12,labels=c("freckle","superficial","nodular","indeterminate"))
site <- gl(3,1,12,labels=c("head/neck","trunk","extremities"))
data.frame(counts,type,site)

counts type site
1 22 freckle head/neck
2 2 freckle trunk
3 10 freckle extremities
4 16 superficial head/neck
5 54 superficial trunk
6 115 superficial extremities
7 19 nodular head/neck
8 33 nodular trunk
9 73 nodular extremities
10 11 indeterminate head/neck
11 17 indeterminate trunk
12 28 indeterminate extremities

We analyze these data by a Poisson regression:

summary(z <- glm(counts ~ type + site, family=poisson()))

Call:
glm(formula = counts ~ type + site, family = poisson())

Deviance Residuals:
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Figure 5.16: Dobson’s malignant melanoma data where tumor types are counted. The four tu-
mor types are indicated by the interior color of the circles (orange=freckle, blue=superficial,
green=nodular, indeterminate=wood). The three locations at the body are indicated by the bor-
der color of the circles (head=blue, trunk=red, extremities=magenta).
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Min 1Q Median 3Q Max
-3.0453 -1.0741 0.1297 0.5857 5.1354

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.7544 0.2040 8.600 < 2e-16 ***
typesuperficial 1.6940 0.1866 9.079 < 2e-16 ***
typenodular 1.3020 0.1934 6.731 1.68e-11 ***
typeindeterminate 0.4990 0.2174 2.295 0.02173 *
sitetrunk 0.4439 0.1554 2.857 0.00427 **
siteextremities 1.2010 0.1383 8.683 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 295.203 on 11 degrees of freedom
Residual deviance: 51.795 on 6 degrees of freedom
AIC: 122.91

Number of Fisher Scoring iterations: 5

This means that type superficial and nodular are highly significant if compared to the counts of type
freckle while indeterminate is less significant. This result can be confirmed in Fig. 5.16, where
the blue and green interior (blue=superficial, green=nodular) circles have clearly higher counts if
compared to freckle. The counts of indeterminate are not so clearly larger. The site extremities
is also highly significant. In Fig. 5.16 data points corresponding to counts for extremities have
magenta borders. The two largest counts belong to extremities of which one has tumor type
superficial and one type nodular. To a lesser degree the site trunk is significant. Also this is
confirmed in Fig. 5.16, where the third and fourth largest counts with a red border belong to the
site trunk.

5.5.4.8 Ulcers and Aspirin Use: Logistic Regression

This example is a case-control study of gastric and duodenal ulcers and aspirin use from Dobson
[2002], page 165/166, with data in Table 9.7. In this retrospective case-control study ulcer patients
were compared to controls which are matched with respect to age, sex and socio-economic status.
The data is from Duggan et al. (1986). The individuals are categorized:

(1) ulcer cases or controls,

(2) site of the ulcer: gastric or duodenal,

(3) aspirin use or not.

The data is shown in Tab. 5.16 and in Fig. 5.16.

Questions which are of interest for this data set are:
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Aspirin use

Non-user User Total
Gastric ulcer
Control 62 6 68
Cases 39 25 64
Duodenal ulcer
Control 53 8 61
Cases 49 8 57

Total 203 47 250

Table 5.16: Dobson’s gastric and duodenal ulcers and aspirin use from Duggan et al. (1986).
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Figure 5.17: Dobson’s gastric and duodenal ulcers and aspirin use. The border color indicates
ulcer patients, the cases (red), and controls (blue). The interior color indicates the type of ulcer for
the cases: gastric (orange) or duodenal (blue).
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1. Is gastric ulcer associated with aspirin use?

2. Is duodenal ulcer associated with aspirin use?

3. Is any association with aspirin use the same for both ulcer sites?

We create the data in R which are pairs of user/non-user counts for the different groups and
types:

counts <- c(62,6,39,25,53,8,49,8)
group <- gl(2, 1, 4, labels=c("controls","cases"))
type <- gl(2,2,4,labels=c("gastric","duodenal"))
aspirin <- gl(2,1,8,labels=c("non-user","user"))
a <- which(aspirin=="user")
n <- which(aspirin=="non-user")
y <- cbind(counts[n],counts[a])

We first look at a model without interaction effects:

summary(z <- glm(y ~ group + type, family=binomial(link="logit")),correlation = TRUE)

Call:
glm(formula = y ~ group + type, family = binomial(link = "logit"))

Deviance Residuals:
1 2 3 4

1.2891 -0.9061 -1.5396 1.1959

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.8219 0.3080 5.916 3.3e-09 ***
groupcases -1.1429 0.3521 -3.246 0.00117 **
typeduodenal 0.7000 0.3460 2.023 0.04306 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 21.789 on 3 degrees of freedom
Residual deviance: 6.283 on 1 degrees of freedom
AIC: 28.003

Number of Fisher Scoring iterations: 4

Correlation of Coefficients:
(Intercept) groupcases

groupcases -0.73
typeduodenal -0.38 -0.05
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As the count data are not centered, the intercept is significant. Most significant is the group cases
for aspirin use. The rate is the percentage of the first count of all counts, that is the rate of aspirin
non-users. The coefficient of group cases is -1.14 which means the rate of non-users is smaller
than the rate for controls. This means that for cases the percentage of aspirin use is larger than
for controls. Less significant and almost not significant is the type of ulcer where gastric is more
related to aspirin users.

Next, we investigate the linear model with interaction effects.

summary(z1 <- glm(y ~ group*type, family=binomial(link="logit")))

Call:
glm(formula = y ~ group * type, family = binomial(link = "logit"))

Deviance Residuals:
[1] 0 0 0 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.3354 0.4275 5.462 4.7e-08 ***
groupcases -1.8907 0.4984 -3.793 0.000149 ***
typeduodenal -0.4445 0.5715 -0.778 0.436711
groupcases:typeduodenal 1.8122 0.7333 2.471 0.013460 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2.1789e+01 on 3 degrees of freedom
Residual deviance: 2.3981e-14 on 0 degrees of freedom
AIC: 23.72

Number of Fisher Scoring iterations: 3

Again cases are significantly associated with aspirin use. Further cases with gastric are more
related to aspirin use.

We compare these two models by an ANOVA table:

anova(z, z1, test = "Chisq")
Analysis of Deviance Table

Model 1: y ~ group + type
Model 2: y ~ group * type

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1 6.283
2 0 0.000 1 6.283 0.01219 *
---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The deviance shows that the interaction model is significantly better at fitting the data. However,
the AIC tells that this may only be due to overfitting to the data.
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5.6 Regularization

In machine learning and statistics it is important to avoid that the model is too much fitted to the
data. In this case only data specific features are modeled but not the structure in the data. This is
called overfitting. Overfitting reduces generalization capabilities because other, new data will not
have the specific features of the current data but only the general structures. To avoid overfitting,
simple models should be selected Hochreiter and Schmidhuber [1995, 1994, 1997a], Hochreiter
and Obermayer [2006], Hochreiter et al. [2007], Knebel et al. [2008]. Simple models are models
from low-complex model classes and as such cannot capture specific data characteristics but only
general structures in the data. To prefer simple models during model selection is called regular-
ization. In the following we present some regularization methods for linear models.

5.6.1 Partial Least Squares Regression

The first kind of regularization is based on models which are based on a l < m variables. This
means that regularization is achieved by fitting a model in a lower dimensional space. The idea of
partial least squares (PLS) is to factorize both the response matrix Y and the regression matrix
X:

X = T P T +E (5.214)

Y = U QT + F , (5.215)

where the covariance between T and U is maximized. X is an n×m matrix of predictors. Y is
an n× p matrix of responses. T and U are n× l matrices that are, respectively, projections ofX
and projections of Y . P and Q are, respectively, m× l and p× l orthogonal matrices. E and F
are additive noise terms which are assumed to be independently normally distributed.

Iterative partial least squares finds projection vectors w for X and v for Y which have maxi-
mal covariance:

max
‖w‖=‖v‖=1

Cov(Xw,Y v) . (5.216)

Iterative partial least squares is closely related to canonical correlation analysis (CCA) which
finds projection vectors w forX and v for Y which have maximal correlation coefficient:

max
‖w‖=‖v‖=1

corr(Xw,Y v) . (5.217)

PLS takes the variance into account while CCA only looks at the correlation.

For partial least squares regression (PLSR) the score matrix T is orthogonal:

T TT = I . (5.218)

PLSR defines a linear inner relation, which is basically a regression:

U = T D + H , (5.219)
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whereD is a diagonal matrix. Via this regression the covariance between T andU is maximized.
This regression gives

Y = T D QT + H QT + F (5.220)

= T CT + F ′ , (5.221)

whereCT = DQT are the regression coefficients and F ′ = HQT +F is the noise. We obtained
a least squares estimate with projections T from orthogonal matrices.

For the noise free case, we have the decompositions

X = T P T , (5.222)

T = X W , (5.223)

Ŷ = T D QT , (5.224)

U = Ŷ Q . (5.225)

The matrix Ŷ approximates Y , the columns of T are the “latent vectors”, D are the “regression
weights” (see Eq. (5.219)) andQ is the “weight matrix” of the dependent variables Y .

W is pseudo inverse of P T which leads to the following equations:

T TT = I , (5.226)

QTQ = I , (5.227)

W = (P T )+ , (5.228)

U = T D , (5.229)

D = T T U . (5.230)

Using these equations the partial least squares regression algorithm Alg. 5.1 can be derived.

Partial least squares regression can be based on the singular value decomposition ofXTY . If
noise terms are ignored then we have

XTY = P T TU QT = P D QT , (5.231)

where the second equality follows from Eq. (5.219). The largest singular value gives the first
w and the first q. The first t is the first eigenvector of XXTY Y T and the first u is the first
eigenvector of Y Y TXXT .

If T are the projections onto the first l principal components ofX then this is called principal
components regression.

5.6.2 Ridge Regression

Ridge regression is also known as Tikhonov regularization for ill-posed problems. The objective
of the least squares estimate is the sum of squares

‖Xβ − y‖2 . (5.232)
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Algorithm 5.1 Partial least squares regression

Given: matrixX , matrix Y
initialization

initialize u by random values
A is set to the column centered and column normalizedX
B is set to the column centered and column normalized Y

main loop
whileA is not the null matrix do

while not converged do
w = ATu (estimateX weights)
t = Aw (estimateX factor scores)
t = t/‖t‖ (normalize factor scores)
q = BT t (estimate Y weights)
q = q/‖q‖ (normalize weights)
u = Bq (estimate Y factor scores)
use w to test if loop has converged

end while
d = tTu
p = AT t
A = A− tpT (partial out the effect of t fromX ∼ A)
B = B − dtqT (partial out the effect of t from Y ∼ B)
store all computed values t, u, w, q, p in the corresponding matrices
store d as diagonal element ofD

end while
result

training: Ŷ = TDQT

prediction: τ = xTW (x is normalized likeA); ŷ = τDQT
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If the number of regressors is large, then overfitting is a problem. Overfitting refers to the fact
that specific observations are fitted even if they are noisy or outliers. In this case the estimated
parameters are adjusted to specific characteristics of the observed data which reduces the general-
ization to new unknown data. To avoid overfitting simple models should be selected even if they
do not fit the observed data as well as the model with minimal squared error. Regularization fits
the data while preferring simple models, that is, there is a trade-off between simple models and
small squared error. This trade-off is controlled by a hyperparameter.

Regularization can be performed by an additional objective on the parameters, like a squared
term in the parameters:

‖Xβ − y‖2 + ‖Γ β‖2 . (5.233)

The estimator for ridge regression β̂, which minimizes this objective, is

β̂ =
(
XTX + ΓTΓ

)−1
XTy . (5.234)

Often Γ =
√
γI is used, where γ is a hyperparameter of the method which has to be adjusted.

γ controls the trade-off between simple models and low squared error. For Γ =
√
γI we have the

estimator

β̂ =
(
XTX + γI

)−1
XTy . (5.235)

The variance of the ridge regression estimator is:

Var(β̂) = σ2
(
XTX + γI

)−1
XTX

(
XTX + γI

)−1
. (5.236)

The bias of ridge regression estimator is:

bias(β̂) = − γ
(
XTX + γI

)−1
β . (5.237)

It has been shown, that there is always a γ for which the parameter mean squared error of
ridge regression is smaller than this error of least squares. However, this γ is not known. Ridge
regression is consistent if γ/n n−→ 0 Knight and Fu [2000].

Ridge regression is an L2-norm regularizer, that is the squares of the parameters (or products
of them) are weighted and summed up and thereby penalized. Therefore small absolute parameter
values around zero are preferred by ridge regression. However, in general the ridge regression
estimator has its parameters not exactly at zero. The regularizing term hardly changes if the values
are already small because the derivatives are proportional to the values. If very small parameter
values still improve the squared error, they will be kept. Setting these small parameters to zero
would increase the error more than it would decrease the regularization term. On the other hand,
larger values are very strongly penalized.

Ridge regression gives a solution even if the parameters are under-determined for few data
points because

(
XTX + ΓTΓ

)−1 always exists. This means that ridge regression has a unique
solution.
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Figure 2: Estimation picture for the lasso (left) and ridge regression (right)there is at least moderate correlation in the data, this need not be true. Figure3 shows an example in three dimensions. The view in the right plot con�rmsthat the ellipse touches the constraint region in a di�erent octant than the onein which its center lies.While the garotte retains the sign of each �̂oj , the lasso can change signs.Even in cases where the lasso estimate has the same sign vector as the garotte,the presence of the ordinary least squares estimates in the garotte can makeit behave di�erently. The model P cj�̂oj xij with constraint P cj � t can bewritten as P �jxij with constraint P �j=�̂oj � t. If for example p = 2 and�̂o1 > �̂o2 > 0 then the e�ect would be to stretch the square in the left panel ofFigure 2 horizontally. As a result, larger values of �1 and smaller values of �2will be favoured by the garotte.2.4 More on the two predictor caseSuppose p = 2, and assume without loss of generality that the least squaresestimates �̂oj are both positive. Then one can show that the lasso estimates are�̂j = (�̂oj � )+ (5)
Figure 5.18: Optimization LASSO (left) vs. ridge regression (right). The error objective, the
ellipse, touches in most cases a corner of the L1-norm where at least one component is zero. In
contrast the L2-norm does not possess corners as all points with the same regularization value are
on a hyperball.

5.6.3 LASSO

Least absolute shrinkage and selection operator (LASSO) Tibshirani [1996] performs a L1-norm
regularization. The objective is

‖Xβ − y‖2 + γ ‖β‖1 . (5.238)

In contrast to ridge regression, the LASSO estimate has many zero components (see Fig. 5.18).
The decrease of the regularization term if the absolute values of parameters are made smaller,
does not depend on the current values of the parameters. Thus, small parameter values are pushed
toward zero. Therefore LASSO is often used for feature selection because features, of which the
corresponding parameters are zero, can be removed from the model without changing regression
result.

The minimization of the LASSO objective is a quadratic optimization problem. It can be
solved by techniques of constrained quadratic optimization. An alternative method for finding a
solution is the forward stepwise regression algorithm:

1. Start with all coefficients βj equal to zero.

2. Find the predictor xj which is most correlated with y, and add it to the model. Take residuals
r = y − ŷ.

3. Continue, at each stage adding to the model the predictor which is most correlated with r.
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4. Until: all predictors are in the model

A even better approach to finding the LASSO estimator is the least angle regression proce-
dure. In contrast to forward stepwise regression, a predictor is not fully added to the model. The
coefficient of that predictor is increased only until that predictor is no longer the one which is most
correlated with the residual r. Then some other competing predictor is pushed by increasing its
parameter.

1. Start with all coefficients βj equal to zero.

2. Find the predictor xj most correlated with y. Increase the coefficient βj in the direction of
the sign of its correlation with y. Take residuals r = y − ŷ and compute correlations. Stop
when some other predictor xk has the same correlation with r than xj .

3. Increase (βj , βk) in their joint least squares direction, until some other predictor xm has the
same correlation with the residual r.

4. Until: all predictors are in the model

This procedure gives the entire path of LASSO solutions if one modification is made. This mod-
ification is: if a non-zero coefficient is set to zero, remove it from the active set of predictors and
recompute the joint direction.

Lasso is consistent if γ/n n−→ 0 Knight and Fu [2000].

LASSO is implemented in the R package lars which can be used to fit least angle regression,
LASSO, and infinitesimal forward stagewise regression models.

5.6.4 Elastic Net

The L1-norm has also disadvantages. For many features m and few samples n, only the first
n features are selected. For correlated variables LASSO only selects one variable and does not
use the others. Elastic net is a compromise between ridge regression and LASSO. It has both an
L1-norm as well as an L2-norm regularizer. The objective is

‖Xβ − y‖2 + γ ‖β‖1 + δ ‖β‖22 . (5.239)

The elastic net estimator minimizes this objective.

The problem is that now two hyperparameters are introduced. If γ = 0 then the elastic net is
ridge regression. If δ = 0 then the elastic net is LASSO.

The elastic net is consistent if γ/n n−→ 0 Knight and Fu [2000].

Elastic net is implemented in the R package glmnet. This package allows to fit a generalized
linear model via penalized maximum likelihood. The regularization path is computed for the
LASSO or elastic net penalty at a grid of values for the regularization parameter γ.
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5.6.5 Examples

5.6.5.1 Example: Ridge Regression, LASSO, Elastic Net

We generate data with highly correlated explanatory variables:

x1 <- rnorm(20)
x2 <- rnorm(20,mean=x1,sd=.01)
y <- rnorm(20,mean=3+x1+x2)

cor(cbind(x1,x2,y))
x1 x2 y

x1 1.0000000 0.9999319 0.8927331
x2 0.9999319 1.0000000 0.8919416
y 0.8927331 0.8919416 1.0000000

The data is shown as pairs of scatter plots in Fig. 5.19.

First we fit a standard linear model:

l1 <- lm(y~x1+x2)$coef

summary(l1)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-12.710 -4.842 3.027 1.723 8.941 14.850

l1
(Intercept) x1 x2

3.026583 14.854954 -12.711132

Next we fit the model with ridge regression:

library(MASS)
l2 <- lm.ridge(y~x1+x2,lambda=1)
l2

x1 x2
2.985240 1.051382 1.011735

The ridge regression is much closer to the true parameter values. Fig. 5.20 shows the results.
The response data are the wooden-colored squares. Standard least squares gives the green circles
while ridge regression gives the orange circles. The noise free data is indicated by crosses. Ridge
regression is less prone to overfitting and closer to the crosses and, therefore, it generalizes better.

We are interested in the LASSO solution:

library(lars)
l3 <- lars(cbind(x1,x2),y)
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Figure 5.19: An Example for highly correlated explanatory variables.
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Figure 5.20: Example of ridge regression. The response data are the wooden-colored squares.
Standard least squares gives the green circles while ridge regression gives the orange circles. The
noise free data is indicated by crosses. Ridge regression is less prone to overfitting and closer to
the crosses and, therefore, it generalizes better.
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l3

Call:
lars(x = cbind(x1, x2), y = y)
R-squared: 0.801
Sequence of LASSO moves:

x1 x2
Var 1 2
Step 1 2

summary(l3)
LARS/LASSO
Call: lars(x = cbind(x1, x2), y = y)

Df Rss Cp
0 1 138.062 67.3827
1 2 28.030 1.3351
2 3 27.489 3.0000

l3$beta
x1 x2

0 0.000000 0.00000
1 2.116893 0.00000
2 14.854954 -12.71113
attr(,"scaled:scale")
[1] 4.953151 4.963644

predict(l3,rbind(c(0.0,0.0)))$fit
[1] 3.244128 2.982374 3.026583

The last call predict(l3,rbind(c(0.0,0.0)))$fit supplies the intercepts for the LASSO
solutions. Since in step 2 the residual does not change much compared to step 3 which all variables,
we select step 2 solution y = 2.982374+2.116893x1. The solution is shown in Fig. 5.21. LASSO
is almost as good as ridge regression since the orange circles are covered by the blue circles
obtained from LASSO. However, LASSO used only one explanatory variable.

A call to elastic net, where the L1 and the L2 norms are equally weighted (α = 0.5), is:

library(glmnet)
l4 <- glmnet(cbind(x1,x2),y,alpha=0.5)

summary(l4$lambda)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.002078 0.014340 0.098850 0.628400 0.681200 4.691000

λ is the factor which weighs the penalty term that includes both L1 and the L2 norm.

We choose a small penalty term:
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Figure 5.21: Example of LASSO. The same figure as Fig. 5.20 except that now LASSO with only
one variable is shown (blue circles). This solution is almost as good as the ridge regression because
the orange circles are covered by the blue circles. However, LASSO used only one explanatory
variable.
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Figure 5.22: Example of elastic net. The same figure as Fig. 5.21 except that now elastic net with
α = 0.5 is shown (red circles). This solution does not differ much from the LASSO solution
because the red circles overlay the blue circles.

coef(l4,s=0.004)
3 x 1 sparse Matrix of class "dgCMatrix"

1
(Intercept) 2.981441
x1 1.738632
x2 0.374484

The elastic net solution is shown in Fig. 5.22. This solution does not differ much from the LASSO
solution because the red circles overlay the blue circles.
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5.6.5.2 Example: Diabetes using Least Angle Regression

The data contain blood and other measurements in diabetics and are taken from Efron, Hastie,
Johnstone and Tibshirani (2003) “Least Angle Regression”, Annals of Statistics. The diabetes
data frame has 442 rows and 3 columns:

1. x: a matrix with 10 columns with explanatory variables “age”, “sex2”, “bmi”, “map”, “tc2”,
“ldl”, “hdl”, “tch”, “ltg”, “glu”. That is age, sex, body mass index (bmi), and blood mea-
surements like cholesterol levels (ldl and hdl) etc.

2. y: a numeric vector,

3. x2: a matrix with 64 columns which contains all explanatory variables, their squared values,
and measurements of interaction effects.

The x matrix has been standardized to have unit L2 norm in each column and zero mean. The
matrix x2 consists of x plus certain interactions.

library(lars)
data(diabetes)
x <- diabetes$x
y <- diabetes$y
x2 <- diabetes$x2
op <- par(mfrow=c(2,2))
object1 <- lars(x,y,type="lasso")
plot(object1)
object2 <- lars(x,y,type="lar")
plot(object2)
object3 <- lars(x,y,type="forward.stagewise") # Can use abbreviations
plot(object3)
object4 <- lars(x,y,type="stepwise")
plot(object4)
par(op)

Fig. 5.23 shows coefficients at different steps for the diabetes data set fitted by LASSO, least angle
regression, forward stagewise, and forward stepwise.

In the following, the different solution paths for the different methods are listed (LASSO, least
angle regression, forward stagewise, and forward stepwise):

age sex bmi map tc ldl hdl tch ltg glu
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 60 0 0 0 0 0 0 0
[3,] 0 0 362 0 0 0 0 0 302 0
[4,] 0 0 435 79 0 0 0 0 375 0
[5,] 0 0 506 191 0 0 -114 0 440 0
[6,] 0 -75 511 234 0 0 -170 0 451 0
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Figure 5.23: Example of least angle regression. The diabetes data set was fitted by LASSO, least
angle regression, forward stagewise, and forward stepwise. The figure shows the coefficients that
obtain certain values at certain steps.
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[7,] 0 -112 512 253 0 0 -196 0 452 12
[8,] 0 -198 522 297 -104 0 -224 0 515 55
[9,] 0 -226 527 314 -195 0 -152 106 530 64

[10,] 0 -227 526 315 -237 34 -135 111 545 65
[11,] -6 -234 523 320 -554 287 0 149 663 66
[12,] -7 -237 521 322 -580 314 0 140 675 67
[13,] -10 -240 520 324 -792 477 101 177 751 68

age sex bmi map tc ldl hdl tch ltg glu
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 60 0 0 0 0 0 0 0
[3,] 0 0 362 0 0 0 0 0 302 0
[4,] 0 0 435 79 0 0 0 0 375 0
[5,] 0 0 506 191 0 0 -114 0 440 0
[6,] 0 -75 511 234 0 0 -170 0 451 0
[7,] 0 -112 512 253 0 0 -196 0 452 12
[8,] 0 -198 522 297 -104 0 -224 0 515 55
[9,] 0 -226 527 314 -195 0 -152 106 530 64

[10,] 0 -227 526 315 -237 34 -135 111 545 65
[11,] -10 -240 520 324 -792 477 101 177 751 68

age sex bmi map tc ldl hdl tch ltg glu
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 60 0 0 0 0 0 0 0
[3,] 0 0 362 0 0 0 0 0 302 0
[4,] 0 0 435 79 0 0 0 0 375 0
[5,] 0 0 506 191 0 0 -114 0 440 0
[6,] 0 -75 511 234 0 0 -170 0 451 0
[7,] 0 -112 512 253 0 0 -196 0 452 12
[8,] 0 -198 522 297 -104 0 -224 0 515 55
[9,] 0 -198 522 297 -104 0 -224 0 515 55

[10,] 0 -230 522 313 -148 0 -224 35 524 65
[11,] 0 -231 522 315 -159 0 -211 50 526 66
[12,] 0 -231 522 315 -159 0 -211 50 526 66
[13,] -1 -232 523 316 -172 0 -195 68 528 66
[14,] -1 -232 523 316 -172 0 -195 68 528 66
[15,] -8 -238 523 322 -644 362 31 151 697 67
[16,] -10 -240 520 324 -792 477 101 177 751 68

age sex bmi map tc ldl hdl tch ltg glu
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 949 0 0 0 0 0 0 0
[3,] 0 0 675 0 0 0 0 0 615 0
[4,] 0 0 603 262 0 0 0 0 544 0
[5,] 0 0 555 270 0 0 -194 0 485 0
[6,] 0 -236 524 326 0 0 -289 0 474 0
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x1 -2 2 -2 2
x2 3 -3 1 -1

t 1 -1 -1 1

Table 5.17: A toy example where variable x1 is relevant because t = x1 + x2 but has no target
correlation.

[7,] 0 -227 538 328 0 -103 -291 0 498 0
[8,] 0 -233 527 315 0 -111 -289 0 479 70
[9,] 0 -236 518 316 -632 423 -55 0 732 71

[10,] 0 -241 520 322 -791 474 100 177 750 66
[11,] -10 -240 520 324 -792 477 101 177 751 68

The final solution is the same. The variables that were selected first and second agree between
the different methods. The first variable that has been selected is body mass index followed by
“lgt” and then “map” and thereafter “hdl”.

The features that are selected for the combined variables in x2 are:

objectN <- lars(x2,y,type="lar")
name <- colnames(x2)
name[which(abs(objectN$beta[2,])>0)]
[1] "bmi"
name[which(abs(objectN$beta[3,])>0)]
[1] "bmi" "ltg"
name[which(abs(objectN$beta[4,])>0)]
[1] "bmi" "map" "ltg"
name[which(abs(objectN$beta[5,])>0)]
[1] "bmi" "map" "hdl" "ltg"
name[which(abs(objectN$beta[6,])>0)]
[1] "bmi" "map" "hdl" "ltg" "bmi:map"
name[which(abs(objectN$beta[7,])>0)]
[1] "bmi" "map" "hdl" "ltg" "age:sex" "bmi:map"

The most important variables are the variables which were identified previously.

5.6.5.3 Example: Relevant Variable but No Correlation to Response

We demonstrate on a toy example that relevant variables may be not correlated to the response /
target variable. The toy example is shown in Tab. 5.17.

We now perform least squares regression, ridge regression, and LASSO:

x1 <- c(-2,2,-2,2)
x2 <- c(3,-3,1,-1)
x <- cbind(x1,x2)
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x1 0 1 -1 1
x2 -1 1 0 0
x3 0 0 -1 1

t -1 1 -1 1

Table 5.18: A toy example where variable x1 is irrelevant because t = x2 + x3 but has high target
correlation.

t <- c(1,-1,-1,1)
cor(cbind(t,x1,x2))

t x1 x2
t 1.0000000 0.0000000 0.4472136
x1 0.0000000 1.0000000 -0.8944272
x2 0.4472136 -0.8944272 1.0000000

#t <- x1+x2

lm(t~x1+x2)$coef
(Intercept) x1 x2

-8.326673e-17 1.000000e+00 1.000000e+00

lm.ridge(t~x1+x2,lambda=1)
(Intercept) x1 x2
0.0000000 0.2622951 0.3278689

e1 <- lars(x,t)
e2 <- lars(x,t,type="lar")
e3 <- lars(x,t,type="for") # Can use abbreviations
op <- par(mfrow=c(2,2))
plot(e1)
plot(e2)
plot(e3)
par(op)

Fig. 5.24 shows the solution paths for different LASSO fitting methods. The variable x1 is
always selected in the second step even if it is not correlated to the response variable.

5.6.5.4 Example: Irrelevant Variable but High Correlation to Response

We demonstrate on a toy example that irrelevant variables may be correlated to the response /
target variable. The toy example is shown in Tab. 5.18.

Again we fit the data by least squares regression, ridge regression, and LASSO:

x1 <- c(0,1,-1,1)
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Figure 5.24: A toy example where variable x1 is relevant because t = x1 + x2 but has not target
correlation. The solution paths for different LASSO fitting methods. The variable x1 is selected
in the second step.
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x2 <- c(-1,1,0,0)
x3 <- c(0,0,-1,1)
x <- cbind(x1,x2,x3)
t <- c(-1,1,-1,1)
cor(cbind(t,x1,x2,x3))

t x1 x2 x3
t 1.0000000 0.9045340 0.7071068 0.7071068
x1 0.9045340 1.0000000 0.4264014 0.8528029
x2 0.7071068 0.4264014 1.0000000 0.0000000
x3 0.7071068 0.8528029 0.0000000 1.0000000

#t1 <- x2+x3

lm(t~x1+x2+x3)$coef
(Intercept) x1 x2 x3

-1.171607e-16 4.686428e-16 1.000000e+00 1.000000e+00

lm.ridge(t~x1+x2+x3,lambda=1)
(Intercept) x1 x2 x3
-0.1043478 0.4173913 0.6330435 0.4660870

e1 <- lars(x,t)
e2 <- lars(x,t,type="lar")
e3 <- lars(x,t,type="for") # Can use abbreviations
plot(e1)
plot(e2)
plot(e3)
par(op)

Least squares finds the correct solution while ridge regression uses the highly correlated variable
to reduce the overall squared sum of coefficients (to obtain small regularization terms). Fig. 5.25
shows the solution paths for different LASSO fitting methods. The variable x1 is selected first but
in the last step correctly removed.

5.6.5.5 Gas Vapor: Ridge Regression and LASSO

This data set is from Rencher and Schaalje [2008] page 182, Ex. 7.53, Table 7.3, and originally
from Weisberg (1985), page 138. When gasoline is pumped into the tank of a car, vapors are
vented into the atmosphere. An experiment was conducted to determine whether the response y,
the amount of vapor, can be predicted using the following four variables based on initial conditions
of the tank and the dispensed gasoline:

1. x1 = tank temperature (◦F),

2. x2 = gasoline temperature (◦F),

3. x3 = vapor pressure in tank (psi),
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Figure 5.25: A toy example where variable x1 is irrelevant because t = x2 +x3 but has high target
correlation. The solution paths for different LASSO fitting methods are shown. The variable x1 is
selected first but in the last step correctly removed.
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y x1 x2 x3 x4 y x1 x2 x3 x4

29 33 53 3.32 3.42 40 90 64 7.32 6.70
24 31 36 3.10 3.26 46 90 60 7.32 7.20
26 33 51 3.18 3.18 55 92 92 7.45 7.45
22 37 51 3.39 3.08 52 91 92 7.27 7.26
27 36 54 3.20 3.41 29 61 62 3.91 4.08
21 35 35 3.03 3.03 22 59 42 3.75 3.45
33 59 56 4.78 4.57 31 88 65 6.48 5.80
34 60 60 4.72 4.72 45 91 89 6.70 6.60
32 59 60 4.60 4.41 37 63 62 4.30 4.30
34 60 60 4.53 4.53 37 60 61 4.02 4.10
20 34 35 2.90 2.95 33 60 62 4.02 3.89
36 60 59 4.40 4.36 27 59 62 3.98 4.02
34 60 62 4.31 4.42 34 59 62 4.39 4.53
23 60 36 4.27 3.94 19 37 35 2.75 2.64
24 62 38 4.41 3.49 16 35 35 2.59 2.59
32 62 61 4.39 4.39 22 37 37 2.73 2.59

Table 5.19: Rencher’s gas vapor data from Rencher and Schaalje [2008] and originally from Weis-
berg (1985).

4. x4 = vapor pressure of gasoline (psi).

The data are given in Tab. 5.19.

We analyze these data in R . First we define the data set:

m <- matrix(c(
29,33,53,3.32,3.42,
24,31,36,3.10,3.26,
26,33,51,3.18,3.18,
22,37,51,3.39,3.08,
27,36,54,3.20,3.41,
21,35,35,3.03,3.03,
33,59,56,4.78,4.57,
34,60,60,4.72,4.72,
32,59,60,4.60,4.41,
34,60,60,4.53,4.53,
20,34,35,2.90,2.95,
36,60,59,4.40,4.36,
34,60,62,4.31,4.42,
23,60,36,4.27,3.94,
24,62,38,4.41,3.49,
32,62,61,4.39,4.39,
40,90,64,7.32,6.70,
46,90,60,7.32,7.20,
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55,92,92,7.45,7.45,
52,91,92,7.27,7.26,
29,61,62,3.91,4.08,
22,59,42,3.75,3.45,
31,88,65,6.48,5.80,
45,91,89,6.70,6.60,
37,63,62,4.30,4.30,
37,60,61,4.02,4.10,
33,60,62,4.02,3.89,
27,59,62,3.98,4.02,
34,59,62,4.39,4.53,
19,37,35,2.75,2.64,
16,35,35,2.59,2.59,
22,37,37,2.73,2.59),ncol=5,byrow=TRUE)
y <- m[,1]
x <- m[,2:5]

Correlation of the variables often give a first impression which variables might be helpful for
prediction:

cor(m)
[,1] [,2] [,3] [,4] [,5]

[1,] 1.0000000 0.8260665 0.9093507 0.8698845 0.9213333
[2,] 0.8260665 1.0000000 0.7742909 0.9554116 0.9337690
[3,] 0.9093507 0.7742909 1.0000000 0.7815286 0.8374639
[4,] 0.8698845 0.9554116 0.7815286 1.0000000 0.9850748
[5,] 0.9213333 0.9337690 0.8374639 0.9850748 1.0000000

The response y is highly correlated with all explanatory variables which in turn are correlated
among themselves. y is most correlated with x4 followed by x2. x4 is very highly correlated with
x3 and least with x2.

We start with standard least squares regression:

lm(y ~ x)

Call:
l1 <- lm(formula = y ~ x)
l1
Coefficients:
(Intercept) x1 x2 x3 x4

1.01502 -0.02861 0.21582 -4.32005 8.97489

anova(l1)
Analysis of Variance Table

Response: y
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Df Sum Sq Mean Sq F value Pr(>F)
x 4 2520.27 630.07 84.54 7.249e-15 ***
Residuals 27 201.23 7.45
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The variables x3 and x4 seem to be relevant. We know that they are highly correlated and lead to
overfitting effects.

The relevance of the variables is checked by ridge regression which deals with these highly
correlated variables:

l2 <- lm.ridge(y ~ x,lambda=1)
l2

x1 x2 x3 x4
0.72339986 -0.04937793 0.27780519 0.35225191 3.74029965

Here variable x4 sticks out.

Next we analyze the data set by LASSO:

la <- lars(x,y,type="lar")
la$beta[2,]
[1] 0.0000000 0.0000000 0.0000000 0.4963341
la$beta[3,]
[1] 0.0000000 0.2695754 0.0000000 3.5437050
la$beta[4,]
[1] -0.06804859 0.27044138 0.00000000 4.48953562

Here it becomes clear that x4 is the most important variable and next the less correlated variable
x2 is selected.

We perform feature selection and use only the variables x2 and x4:

l3 <- lm(formula = y ~ x[,c(2,4)])
l3

Call:
lm(formula = y ~ x[, c(2, 4)])

Coefficients:
(Intercept) x[, c(2, 4)]1 x[, c(2, 4)]2

0.1918 0.2747 3.6020

anova(l3)
Analysis of Variance Table

Response: y
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Df Sum Sq Mean Sq F value Pr(>F)
x[, c(2, 4)] 2 2483.11 1241.56 151.04 4.633e-16 ***
Residuals 29 238.39 8.22
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We now compare the full model with the model where only two features are selected:

anova(l1,l3)
Analysis of Variance Table

Model 1: y ~ x
Model 2: y ~ x[, c(2, 4)]

Res.Df RSS Df Sum of Sq F Pr(>F)
1 27 201.23
2 29 238.39 -2 -37.159 2.4929 0.1015

The model with only two features does not perform significantly worse.

We want to check which model is better suited by Akaike’s information criterion (AIC):

extractAIC(l1)
[1] 5.00000 68.83842
extractAIC(l3)
[1] 3.00000 70.26103

The model with only two variables should be chosen.

5.6.5.6 Chemical Reaction: Ridge Regression and LASSO

This data set is from Rencher and Schaalje [2008] page 182, Ex. 7.54, Table 7.4 and originally
from Box and Youle (1955) and was also used in Andrews and Herzberg (1985), page 188. The
yield in a chemical reaction should be maximized, therefore the values of the following variables
were used to control the experiment:

1. x1 = temperature (◦C),

2. x2 = concentration of a reagent (%),

3. x3 = time of reaction (hours).

The response variables were:

1. y1 = percent of unchanged starting material,

2. y2 = percent converted to the desired material.
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y1 y2 x1 x2 x3

41.5 45.9 162 23 3
33.8 53.3 162 23 8
27.7 57.5 162 30 5
21.7 58.8 162 30 8
19.9 60.6 172 25 5
15.0 58.0 172 25 8
12.2 58.6 172 30 5
4.3 52.4 172 30 8
19.3 56.9 167 27.5 6.5
6.4 55.4 177 27.5 6.5
37.6 46.9 157 27.5 6.5
18.0 57.3 167 32.5 6.5
26.3 55.0 167 22.5 6.5
9.9 58.9 167 27.5 9.5
25.0 50.3 167 27.5 3.5
14.1 61.1 177 20 6.5
15.2 62.9 177 20 6.5
15.9 60.0 160 34 7.5
19.6 60.6 160 34 7.5

Table 5.20: Rencher’s chemical reaction data from Rencher and Schaalje [2008].

The data are given in Tab. 5.20.

First we define the data and check the correlation among the variables:

m <- matrix(c(
+ 41.5,45.9,162,23,3,
+ 33.8,53.3,162,23,8,
+ 27.7,57.5,162,30,5,
+ 21.7,58.8,162,30,8,
+ 19.9,60.6,172,25,5,
+ 15.0,58.0,172,25,8,
+ 12.2,58.6,172,30,5,
+ 4.3,52.4,172,30,8,
+ 19.3,56.9,167,27.5,6.5,
+ 6.4,55.4,177,27.5,6.5,
+ 37.6,46.9,157,27.5,6.5,
+ 18.0,57.3,167,32.5,6.5,
+ 26.3,55.0,167,22.5,6.5,
+ 9.9,58.9,167,27.5,9.5,
+ 25.0,50.3,167,27.5,3.5,
+ 14.1,61.1,177,20,6.5,
+ 15.2,62.9,177,20,6.5,
+ 15.9,60.0,160,34,7.5,
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+ 19.6,60.6,160,34,7.5),ncol=5,byrow=TRUE)
y1 <- m[,1]
y2 <- m[,2]
x <- m[,3:5]
cor(m)

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 -0.60782343 -0.67693865 -0.22472586 -0.45253956
[2,] -0.6078234 1.00000000 0.40395099 0.07998377 0.39273121
[3,] -0.6769387 0.40395099 1.00000000 -0.46200145 -0.02188275
[4,] -0.2247259 0.07998377 -0.46200145 1.00000000 0.17665667
[5,] -0.4525396 0.39273121 -0.02188275 0.17665667 1.00000000

The first response variable has negative correlation to the first regressor and less negative cor-
relation to the third regressor. The second response variable is negatively correlated to the first
response variable which was to be expected. The second response variable is equally correlated to
the first and third regressor.

We start with a least square estimator:

l1 <- lm(y1 ~ x)
l1

Call:
lm(formula = y1 ~ x)

Coefficients:
(Intercept) x1 x2 x3

332.111 -1.546 -1.425 -2.237

anova(l1)
Analysis of Variance Table

Response: y1
Df Sum Sq Mean Sq F value Pr(>F)

x 3 1707.16 569.05 106.47 2.459e-10 ***
Residuals 15 80.17 5.34
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

All variables are relevant for prediction. x3 is the most relevant variable.

We perform regularization using ridge regression:

l2 <- lm.ridge(y1 ~ x,lambda=1)
l2

x1 x2 x3
307.512361 -1.424838 -1.279060 -2.179261
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The figure did not change compared to standard least squares estimation. This is a hint that indeed
all variables are required.

Next we perform LASSO:

la <- lars(x,y1,type="lar")
la$beta[2,]
[1] -0.3518723 0.0000000 0.0000000
la$beta[3,]
[1] -0.5182233 0.0000000 -0.6334936

The first and last variable seem to be the most relevant ones.

We fit a least squares model with the two most important variables:

l3 <- lm(formula = y1 ~ x[,c(1,3)])
l3

Call:
lm(formula = y1 ~ x[, c(1, 3)])

Coefficients:
(Intercept) x[, c(1, 3)]1 x[, c(1, 3)]2

222.957 -1.101 -2.853

anova(l3)
Analysis of Variance Table

Response: y1
Df Sum Sq Mean Sq F value Pr(>F)

x[, c(1, 3)] 2 1209.61 604.81 16.75 0.0001192 ***
Residuals 16 577.72 36.11
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

An ANOVA table shows that all variables are required to predict the response:

anova(l1,l3)
Analysis of Variance Table

Model 1: y1 ~ x
Model 2: y1 ~ x[, c(1, 3)]

Res.Df RSS Df Sum of Sq F Pr(>F)
1 15 80.17
2 16 577.72 -1 -497.55 93.088 7.988e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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We move on the second response variable y2, that is, the converted material to the desired
product. We start again with least squares:

l12 <- lm(y2 ~ x)
l12

Call:
lm(formula = y2 ~ x)

Coefficients:
(Intercept) x1 x2 x3

-26.0353 0.4046 0.2930 1.0338

anova(l12)
Analysis of Variance Table

Response: y2
Df Sum Sq Mean Sq F value Pr(>F)

x 3 151.00 50.334 3.0266 0.06235 .
Residuals 15 249.46 16.631
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Again x3 is the most relevant variable but now even more dominant.

Next we perform ridge regression:

l22 <- lm.ridge(y2 ~ x,lambda=1)
l22

x1 x2 x3
-19.9403245 0.3747668 0.2617700 0.9933463

The figure remains the same for ridge regression.

We perform fitting with LASSO:

la2 <- lars(x,y2,type="lar")
la2$beta[2,]
[1] 0.008327752 0.000000000 0.000000000
la2$beta[3,]
[1] 0.1931751 0.0000000 0.7039310

Interestingly, x1 is selected before x3. Looking at the correlation matrix, we see that indeed x1 is
more correlated to y2 than x3 (0.40 vs. 0.39).

If we select the two variables which would be first selected by LASSO, then we have for the
least squares fit:
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l32 <- lm(formula = y2 ~ x[,c(1,3)])
l32

Call:
lm(formula = y2 ~ x[, c(1, 3)])

Coefficients:
(Intercept) x[, c(1, 3)]1 x[, c(1, 3)]2

-3.5856 0.3131 1.1605

anova(l32)
Analysis of Variance Table

Response: y2
Df Sum Sq Mean Sq F value Pr(>F)

x[, c(1, 3)] 2 129.96 64.978 3.8433 0.04334 *
Residuals 16 270.51 16.907
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Comparing the full model with the model, where only two features are selected by an ANOVA
table gives:

anova(l12,l32)
Analysis of Variance Table

Model 1: y2 ~ x
Model 2: y2 ~ x[, c(1, 3)]

Res.Df RSS Df Sum of Sq F Pr(>F)
1 15 249.46
2 16 270.51 -1 -21.047 1.2655 0.2783

Therefore, the model with only two features is not significantly worse than the full model.

5.6.5.7 Land Rent: Ridge Regression and LASSO

This data set is from Rencher and Schaalje [2008] page 184, Ex. 7.55, Table 7.5 and originally from
Weisberg (1985) page 162. For 34 counties in Minnesota the following variables were recorded in
1977:

1. y: average rent paid per acre of land with alfalfa,

2. x1: average rent paid per acre for all land,

3. x2: average number of dairy cows per square mile,

4. x3: proportion of farmland in pasture.
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y x1 x2 x3 y x1 x2 x3

18.38 15.50 17.25 .24 8.50 9.00 8.89 .08
20.00 22.29 18.51 .20 36.50 20.64 23.81 .24
11.50 12.36 11.13 .12 60.00 81.40 4.54 .05
25.00 31.84 5.54 .12 16.25 18.92 29.62 .72
52.50 83.90 5.44 .04 50.00 50.32 21.36 .19
82.50 72.25 20.37 .05 11.50 21.33 1.53 .10
25.00 27.14 31.20 .27 35.00 46.85 5.42 .08
30.67 40.41 4.29 .10 75.00 65.94 22.10 .09
12.00 12.42 8.69 .41 31.56 38.68 14.55 .17
61.25 69.42 6.63 .04 48.50 51.19 7.59 .13
60.00 48.46 27.40 .12 77.50 59.42 49.86 .13
57.50 69.00 31.23 .08 21.67 24.64 11.46 .21
31.00 26.09 28.50 .21 19.75 26.94 2.48 .10
60.00 62.83 29.98 .17 56.00 46.20 31.62 .26
72.50 77.06 13.59 .05 25.00 26.86 53.73 .43
60.33 58.83 45.46 .16 40.00 20.00 40.18 .56
49.75 59.48 35.90 .32 56.67 62.52 15.89 .05

Table 5.21: Rencher’s land rent data from Rencher and Schaalje [2008].

The data is shown in Tab. 5.21. A relevant question is: can the rent for alfalfa land be predicted
from the other three variables?

We first code the data in R variables and check the correlation:

m <- matrix(c(
+ 18.38,15.50,17.25,.24,
+ 20.00,22.29,18.51,.20,
+ 11.50,12.36,11.13,.12,
+ 25.00,31.84,5.54,.12,
+ 52.50,83.90,5.44,.04,
+ 82.50,72.25,20.37,.05,
+ 25.00,27.14,31.20,.27,
+ 30.67,40.41,4.29,.10,
+ 12.00,12.42,8.69,.41,
+ 61.25,69.42,6.63,.04,
+ 60.00,48.46,27.40,.12,
+ 57.50,69.00,31.23,.08,
+ 31.00,26.09,28.50,.21,
+ 60.00,62.83,29.98,.17,
+ 72.50,77.06,13.59,.05,
+ 60.33,58.83,45.46,.16,
+ 49.75,59.48,35.90,.32,
+ 8.50,9.00,8.89,.08,
+ 36.50,20.64,23.81,.24,
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+ 60.00,81.40,4.54,.05,
+ 16.25,18.92,29.62,.72,
+ 50.00,50.32,21.36,.19,
+ 11.50,21.33,1.53,.10,
+ 35.00,46.85,5.42,.08,
+ 75.00,65.94,22.10,.09,
+ 31.56,38.68,14.55,.17,
+ 48.50,51.19,7.59,.13,
+ 77.50,59.42,49.86,.13,
+ 21.67,24.64,11.46,.21,
+ 19.75,26.94,2.48,.10,
+ 56.00,46.20,31.62,.26,
+ 25.00,26.86,53.73,.43,
+ 40.00,20.00,40.18,.56,
+ 56.67,62.52,15.89,.05),ncol=4,byrow=TRUE)
y <- m[,1]
x <- m[,2:4]
cor(m)

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.8868392 0.2967901 -0.3838808
[2,] 0.8868392 1.0000000 0.0296753 -0.5212982
[3,] 0.2967901 0.0296753 1.0000000 0.4876448
[4,] -0.3838808 -0.5212982 0.4876448 1.0000000

sd(m[,1])
[1] 21.53698
sd(m[,2])
[1] 22.45614
sd(m[,3])
[1] 14.21056
sd(m[,4])
[1] 0.1532131

We also computed the standard deviations of the variables because x3 has smaller values than the
other variables. x3 is about a factor of 100 smaller than the other variables.

We start with a least squares regression:

l1 <- lm(y ~ x)
l1

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x1 x2 x3

0.6628 0.7803 0.5031 -17.1002
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anova(l1)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

x 3 13266.9 4422.3 65.037 3.112e-13 ***
Residuals 30 2039.9 68.0
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

x3 has the largest coefficient but it has to be divided by a factor of 100 to be in the range of the
other variables. Thus, x3 has actually the smallest influence on the response variable after fitting
by least squares.

Ridge regression confirms the observations we had for the least squares estimator:

l2 <- lm.ridge(y ~ x,lambda=1)
l2

x1 x2 x3
2.1360609 0.7542789 0.4955992 -18.2104311

Since ridge regression penalizes the coefficients for the standardized variables, the absolute coef-
ficient for x3 even increases. The other two coefficients decrease as they are pushed toward zero
by ridge regression.

LASSO confirms our findings:

la <- lars(x,y,type="lar")
la$beta[2,]
[1] 0.5832042 0.0000000 0.0000000
la$beta[3,]
[1] 0.7872064 0.3223731 0.0000000

The first two explanatory variables are the most relevant. From the correlations we see that the
first explanatory variable has largest correlation with the response and is therefore selected first.
Interestingly, x3 has the second largest correlation to the response variable but is not selected.
The reason for this is that x3 has also large correlation to x1 and does not bring in much new
information. In contrast to x3, x2 has low correlation to x1 and brings in new information.

We again fit a least squares model, but now with only the first two explanatory variables:

l3 <- lm(formula = y ~ x[,c(1,2)])
l3

Call:
lm(formula = y ~ x[, c(1, 2)])
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Coefficients:
(Intercept) x[, c(1, 2)]1 x[, c(1, 2)]2

-3.3151 0.8428 0.4103

anova(l3)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

x[, c(1, 2)] 2 13159.3 6579.6 94.981 6.015e-14 ***
Residuals 31 2147.5 69.3
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Comparing the full model with the model that has only the first two variables shows that the
error difference is not significant:

anova(l1,l3)
Analysis of Variance Table

Model 1: y ~ x
Model 2: y ~ x[, c(1, 2)]

Res.Df RSS Df Sum of Sq F Pr(>F)
1 30 2039.9
2 31 2147.5 -1 -107.58 1.5821 0.2182

Therefore the reduce model may be chosen for analysis.



Appendix A

Mean and Median of Symmetric Dis-
tributions

A.1 Mean, Median, and Symmetry Point are Equal

The mean µ of a distribution is

µ =

∫ ∞
−∞

p(x) x dx . (A.1)

m is the median of a distribution if∫ m

−∞
p(x) dx =

∫ ∞
m

p(x) dx . (A.2)

We assume a symmetric distribution around s, the symmetry point:

p(x+ s) = p(s− x) . (A.3)

We obtain ∫ s

−∞
p(x) (x − s) dx =

∫ 0

−∞
p(a+ s) a da (A.4)

=

∫ 0

∞
p(−a+ s) a da

= −
∫ ∞

0
p(a+ s) a da

and ∫ ∞
s

p(x) (x − s) dx =

∫ ∞
0

p(a+ s) a da , (A.5)

where we used a = x− s.
Thus, ∫ ∞

−∞
p(x) (x − s) dx = 0 (A.6)
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and, therefore, ∫ ∞
−∞

p(x) x dx = s . (A.7)

The mean is µ = s.

For the median we obtain∫ s

−∞
p(x) dx =

∫ 0

−∞
p(a + s) da (A.8)

=

∫ 0

−∞
p(s − a) da

= −
∫ 0

∞
p(s + a) da

=

∫ ∞
0

p(s + a) da

=

∫ ∞
s

p(x) dx .

Thus, the median is m = s, too.

A.2 Definitions of Mean, Median, and Variance

We consider the empirical mean, median, and variance of n samples x = (x1, . . . , xn) drawn
from p(x). The first, second and fourth central moments are

µ = E(x) =

∫ ∞
−∞

p(x) x dx (A.9)

µ2 = E((x− µ)2) =

∫ ∞
−∞

p(x) (x− µ)2 dx (A.10)

µ4 = E((x− µ)4) =

∫ ∞
−∞

p(x) (x− µ)4 dx . (A.11)

The variance is sometimes denoted by

σ2 = µ2 . (A.12)

The empirical mean is

x̄ =
1

n

n∑
i=1

xi , (A.13)

the empirical median is

m =

{
(sort(x))(n+1)/2 for n odd

1
2

(
(sort(x))n/2 + (sort(x))n/2+1

)
for n even

, (A.14)
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the biased empirical variance is

varb(x) =
1

n

n∑
i=1

(xi − x̄)2 , (A.15)

the unbiased empirical variance is

varu(x) =
1

n− 1

n∑
i=1

(xi − x̄)2 . (A.16)

the bias of varb(x) is

E (varb(x)) − σ2 = E

(
n − 1

n
varu(x)

)
− σ2 (A.17)

=
n − 1

n
σ2 − σ2

= − 1

n
σ2 .

A.3 Mean Squared Error for Estimating Mean and Median

The variance of the mean is

var(x̄) =
σ2

n
. (A.18)

The variance of the median is

var(m) =
1

4 p(m) n
. (A.19)

A.3.1 Gaussian: Variance of the Mean and the Median

The variance of the mean for a Gaussian distribution is

var(x̄) =
σ2

n
. (A.20)

The variance of the median for a Gaussian distribution is

var(m) =
π

2

σ2

n
. (A.21)

Consequently, both the mean and the median of a Gaussian should be estimated by the empir-
ical mean.
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A.3.2 Laplace: Variance of the Mean and the Median

We assume a Laplacian with density

p(x) =
1

2 b
exp (− 1/b |x − µ|) (A.22)

with both mean and median equal to µ and variance σ2 = 2b2.

The variance of the mean for a Laplace distribution is

var(x̄) =
σ2

n
. (A.23)

The variance of the median for a Laplace distribution is

var(m) =
σ2

2 n
. (A.24)

Consequently, both the mean and the median of a Laplacian should be estimated by the em-
pirical median.

A.4 Variance of the Variance

A.4.1 Biased Variance

The variance of the biased variance is

var(varb(x)) =
(n − 1)2

n3

(
µ4 −

n − 3

n − 1
µ2

2

)
(A.25)

=
(n − 1)2

n3

(
µ4 − µ2

2 +
2

n − 1
µ2

2

)
.

A.4.2 Unbiased Variance

The variance of the unbiased variance is

var(varu(x)) =
1

n

(
µ4 −

n − 3

n − 1
µ2

2

)
=

1

n

(
µ4 − µ2

2 +
2

n − 1
µ2

2

)
. (A.26)

The biased variance has a lower variance, which is lower by a factor of (n−1)2

n2 = 1− 2
n + 1

n2 .

A.4.3 Gaussian Distribution

For the biased case we have

var(varb(x)) =
2 (n − 1) σ4

n2
(A.27)
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and for the unbiased case

var(varu(x)) =
2 σ4

n − 1
. (A.28)

We now compute the mean squared error. We first consider the biased case:

mseb = var(varb(x)) + bias2 =
2 (n − 1) σ4

n2
+

σ4

n2
(A.29)

=
(2 n − 1) σ4

n2
=

(
1 − 3 n − 1

2 n2

)
2 σ4

n − 1
.

The unbiased case is

mseu = var(varu(x)) =
2 σ4

n − 1
. (A.30)

Consequently,

mseb < mseu , (A.31)

which means for a Gaussian the biased variance has a lower mean squared error.

A.4.4 Laplace Distribution

For the biased case we have

var(varb(x)) =
(n − 1) (5 n − 3) σ4

n3
(A.32)

and for the unbiased case

var(varu(x)) =
(5 n − 3) σ4

n (n − 1)
. (A.33)

We now compute the mean squared error. We first consider the biased case:

mseb = var(varb(x)) + bias2 (A.34)

=
(n − 1) (5 n − 3) σ4

n3
+

σ4

n2
=

(5 n3 − 12 n2 + 10 n − 3) σ4

n3 (n − 1)
.

The unbiased case is

mseu = var(varu(x)) =
(5 n − 3) σ4

n (n − 1)
=

(5 n3 − 3 n2) σ4

n3 (n − 1)
. (A.35)

Consequently,

mseb < mseu , (A.36)

which means for a Laplacian the biased variance has a lower mean squared error, too.
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Appendix B

R Code for Plots in Manuscript

The following libraries are required:

library(ggplot2)
library(doBy)

B.1 Histograms

Histogram 1 in Fig. 3.7:

df <- data.frame(counts=x)

ggplot(df, aes(x=counts)) +
geom_histogram(aes(fill = ..count.. < 10), +

colour="darkgreen",fill="coral",binwidth=0.5) +
scale_y_continuous(breaks=c(10,15,20,25,30)) +
scale_x_continuous(limits=c(0,8)) +
geom_vline(xintercept=c(6.25), linetype="dashed", size=1.5,colour="darkgreen") +
labs(title = "Histogram Iris Data Sepal Lengths") +
theme(legend.position="none")+
coord_cartesian(ylim = c(0,33),xlim=c(3.9,8.1)) +
ylab("Counts") +
xlab("Sepal Length")

Histogram 2 in Fig. 3.7:

df <- data.frame(counts=x1)

ggplot(df, aes(x=counts)) +
geom_histogram(aes(fill = ..count.. < 10), +

colour="darkgreen",fill="coral",binwidth=0.5) +
scale_y_continuous(breaks=c(10,15,20,25)) +
scale_x_continuous(limits=c(0,8)) +
geom_vline(xintercept=c(1.75,4.75), linetype="dashed", size=1.5,colour="darkgreen") +

235



236 Appendix B. R Code for Plots in Manuscript

labs(title = "Histogram Iris Data Petal Lengths") +
theme(legend.position="none")+
coord_cartesian(ylim = c(0,27),xlim=c(0.9,7.1)) +
ylab("Counts") +
xlab("Peal Length")

B.2 Densities

R code for Fig. 3.8:

z <- 1:100/100

G <- function(x,m,s) {
return(1/(sqrt(2*pi)*s)*exp(-((x - m)^2/(2*s^2))))
}

M <- function(x,m,s) {

res <- rep(0,length(x))
for (i in 1:length(m)) {

res <- res + G(x,m[i],s[i])
}
res<- res/length(m)
return(res)
}

means <- c(0.3,0.32,0.35,0.65,0.75)
sds <- c(0.1,0.1,0.1,0.1,0.1)
plot(M(z,means,sds),type="l",col="blue",lwd=3,
+ main="Kernel Density Estimator",xlab="value",ylab="density")
for (i in 1:length(means)) {
points(G(z,means[i],sds[i])/length(means),col="red",type="l",lwd=2)
}

R code for Fig. 3.9:

l1 <- length(xS)
l2 <- length(xV)
l3 <- length(xG)

df <- data.frame(Length = factor( c(rep("setosa",l1),
+ rep("versicolor",l2),rep("virginica",l3))),proportion = c(xS,xV,xG))
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cdf <- summaryBy(data=df, proportion ~ Length, FUN=mean, na.rm=TRUE)

ggplot(df, aes(x=proportion, fill=Length)) + geom_density(alpha=.2,adjust=0.7) +
geom_vline(data=cdf, aes(xintercept=c(5.05,5.65,6.35), colour=Length),
linetype="dashed", size=1.2) +
labs(title = "Iris data: density of sepal length per species") +
scale_y_continuous(breaks=c(0,0.25,0.5,0.75,1.0,1.25,1.5)) +
scale_x_continuous(limits=c(4,8.5)) +
theme(legend.position=c(.8, .8))+
theme(legend.background = element_rect(fill="gray90", size=0.3, +
linetype="solid",colour="black")) +
coord_cartesian(ylim = c(0,1.5),xlim=c(4,8.5)) +
ylab("Density") +
xlab("Sepal Length")

R code for Fig. 3.10 part 1:

l1 <- length(x1S)
l2 <- length(x1V)
l3 <- length(x1G)

df <- data.frame(Length = factor( c(rep("setosa",l1),
+ rep("versicolor",l2),rep("virginica",l3))),proportion = c(x1S,x1V,x1G))

cdf <- summaryBy(data=df, proportion ~ Length, FUN=mean, na.rm=TRUE)

ggplot(df, aes(x=proportion, fill=Length)) + geom_density(alpha=.2,adjust=0.7) +
geom_vline(data=cdf, aes(xintercept=c(1.5,4.5,5.6), colour=Length),

linetype="dashed", size=1.2) +
labs(title = "Iris data: density of petal length per species") +
scale_y_continuous(breaks=c(0,0.5,1.0,1.5,2.0,2.5,3.0)) +
scale_x_continuous(limits=c(0,7.5)) +
theme(legend.position=c(.4, .7))+
theme(legend.background = element_rect(fill="gray90",

+ size=0.3,linetype="solid",colour="black")) +
coord_cartesian(ylim = c(0,3),xlim=c(0,7.5)) +
ylab("Density") +
xlab("Petal Length")

R code for Fig. 3.10 part 2:

l1 <- length(x1S)
l2 <- length(x1V)
l3 <- length(x1G)

df <- data.frame(Length = factor( c(rep("setosa",l1),
+ rep("versicolor",l2),rep("virginica",l3))), proportion = c(x1S,x1V,x1G))
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cdf <- summaryBy(data=df, proportion ~ Length, FUN=mean, na.rm=TRUE)

ggplot(df, aes(x=proportion, fill=Length)) + geom_density(alpha=.2,adjust=0.9) +
geom_vline(data=cdf, aes(xintercept=c(1.5,4.5,5.6), colour=Length),

linetype="dashed", size=1.2) +
labs(title = "Iris data: density of petal length per species (zoomed)") +
scale_y_continuous(breaks=c(0,0.25,0.5,0.75,1.0)) +
scale_x_continuous(limits=c(0,7.5)) +
theme(legend.position=c(.4, .7))+
theme(legend.background = element_rect(fill="gray90",

+ size=0.3,linetype="solid",colour="black")) +
coord_cartesian(ylim = c(0,0.93),xlim=c(0,7.5)) +
ylab("Density") +
xlab("Petal Length")
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