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Abstract

We describe a fast Sequential Minimal Optimization (SMO) proce-
dure for solving the dual optimization problem of the recently proposed
Potential Support Vector Machine (P-SVM). The new SMO consists of a
sequence of iteration steps, in which the Lagrangian is optimized either
with respect to one (single SMO) or to two (dual SMO) of the Lagrange
multipliers while keeping the other variables fixed. An efficient selection
procedure for Lagrange multipliers is given and two heuristics for improv-
ing the SMO procedure are described: block optimization and annealing
of the regularization parameter ǫ. A comparison between the different
variants show, that the dual SMO including block optimization and an-
nealing performs most efficient in terms of computation time. In contrast
to standard Support Vector Machines (SVMs), the P-SVM is applicable to
arbitrary dyadic datasets, but benchmarks are provided against libSVM’s
ǫ-SVR and C-SVC implementations for problems which are also solvable
by standard SVM methods. For those problems computation time of the
P-SVM is comparable or somewhat higher than the standard SVM. The
number of support vectors found by the P-SVM is usually much smaller
for the same generalization performance.
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1 Introduction

Learning from examples in order to predict is one of the standard tasks in
machine learning. Many techniques have been developed to solve classification
and regression problems, but by far most of them were specifically designed
for vectorial data. However, for many datasets a vector-based description is
inconvenient or may even be wrong and other representations like dyadic data
(Hofmann and Puzicha (1998); Hoff (2005)) which are based on relationships
between objects (Fig. 1, left), are more appropriate.

Support Vector Machines (SVMs, Schölkopf and Smola (2002); Vapnik (1998))
are a successful class of algorithms for solving supervised learning tasks. Al-
though SVMs have been originally developed for vectorial data, the actual pre-
dictor and the learning procedure make use of a relational representation. Given
a proper similarity measure between objects, SVMs learn to predict attributes
based on a pairwise “similarity” matrix, which is usually called the Gram matrix
(cf. Fig. 1, right).

Standard Support Vector Machines, however, underlie some technical as
well as conceptual restrictions (for a more detailled discussion see Hochreiter
and Obermayer (2006a)). Firstly, SVMs operate on pairwise data and cannot
be extended in a straightforward way to general dyadic representations (cf. Fig.
1). The similarity measure (kernel) has to be positive definite1 and the general
case of dyadic data, where the relationships between two different sets of objects
are quantified, cannot be handled directly2. True dyadic data, however, occur
in several application areas including bioinformatics (genes vs. probes in DNA
microarrays, molecules vs. TAE descriptors for predicting certain properties
of proteins) or information retrieval (word frequencies vs. documents, mutual
hyperlinks between web-pages). Hence learning algorithms which are able to
operate on this data are of high value.

Secondly, standard SVM solutions also face a couple of technical disadvan-
tages. The solution of an SVM learning problem for example is scale sensitive,
because the final predictor depends upon how the training data had been scaled
(see, e.g. Figs. 2 and 3 of Hochreiter and Obermayer (2006a)). This problem
of scale sensitivity is avoided by the P-SVM approach through a modified cost
function, which softly enforces a whitening of the data in feature space. A sec-
ond disadvantage of standard SVMs relates to the fact, that all margin errors
translate into support vectors. The number of support vectors can, therefore,
be larger than necessary, for example, if many training data points are from re-
gions in data space where classes of a classification problem overlap. Finally, the
P-SVM method leads to an expansion of the predictor into a sparse set of the
descriptive “row” objects (cf. Fig. 1, right) rather than training data points as
in standard SVM approaches. It can therefore be used as a wrapper method for
feature selection applications and previous results on quite challenging datasets
had been promising (cf. Hochreiter and Obermayer (2004, 2006b)).

1At least the final Gram matrix of the training examples should be.
2Some workarounds exits. The relational dataset can, e.g., be treated like a vectorial

representation as in the feature map method (Schölkopf and Smola (2002)).
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a b c d e f

α 0 2 0 -1 -7 -8
β 1 7 2 0 0 -2
χ 8 -9 -1 0 1 2

a b c d e

a 1 -0.1 0.2 0.9 -0.5
b -0.1 1 0.2 0.1 0.3
c 0.2 0.2 1 -0.2 -0.2
d 0.9 0.1 -0.2 1 0.5
e -0.5 0.3 -0.2 0.5 1

Figure 1: Left: Cartoon of a dyadic data set. “Column” objects {a, b, . . . },
whose attributes should be predicted, are quantitatively described by a matrix
of numerical values representing their mutual relationships with the descriptive
“row” objects {α, β, . . . }. Right: Pairwise data: Special case of dyadic data,
where row and column objects coincide.

The practical application of SVMs, however, requires an efficient implemen-
tation of the dual optimization problem (Hochreiter and Obermayer (2006a)).
In the following we describe an implementation, which is based on the idea of Se-
quential Minimal Optimization (SMO, Platt (1999); Keerthi et al. (2001, 2003);
Lai (2003)) and we will compare several variants of the P-SVM SMO with
respect to computation time for a number of standard benchmark datasets.
The results demonstrate, that an efficient implementation of the P-SVM ex-
ists which makes its application to general, real world dyadic datasets feasi-
ble. This SMO implementation of the P-SVM is available via the web-site:
http://ni.cs.tu-berlin.de/software/psvm. The optimal SMO version is
compared with libSVM’s ǫ-SVR and C-SVC for learning problems which are
also solvable by standard SVM approaches. For those problems computation
time of the P-SVM is comparable or somewhat higher than the standard SVM.
The number of support vectors found by the P-SVM is usually much smaller
than the number of support vectors found by the corresponding ǫ-SVR and C-
SVC for the same generalization performance, which gives the P-SVM method
an advantage especially for large datasets.

2 The P-SVM Optimization Problem

Let Xφ be the matrix of L data vectors from a feature space φ, w the normal
vector of a separating hyperplane, y the L attributes (binary in case of classifi-
cation, or real valued in case of regression) of the data vectors, and K the L×P

kernel matrix of scalar products between the L vectors in feature space and the
P complex features provided by the measurement process. Then the P-SVM
“primal” optimization problem has the form (see Hochreiter and Obermayer
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(2006a)):

min
w,ξ+,ξ−

1

2
‖X⊤

φ w‖2 + C1⊤
(

ξ+ + ξ−
)

(1)

s.t. K⊤
(

X⊤

φ w − y
)

+ ξ+ + ǫ 1 ≥ 0

K⊤
(

X⊤

φ w − y
)

− ξ− − ǫ 1 ≤ 0

0 ≤ ξ+, ξ− ,

where K is normalized column-wise to zero mean and variance L−1. The pa-
rameters C and ǫ correspond to the two different regularization schemes, which
have been suggested for the P-SVM method, where ǫ-regularization has been
proven more useful for feature selection and C-regularization for classification
or regression problems (Hochreiter and Obermayer (2006a)). ξ+ and ξ− are the
vectors of the slack variables describing violations of the constraints.
In order to derive the dual version, we consider the Lagrangian

L =
1

2
w⊤ Xφ X⊤

φ w + C1⊤
(

ξ+ + ξ−
)

(2)

−
(

α+
)⊤ (

K⊤
(

X⊤

φ w − y
)

+ ξ+ + ǫ
)

+
(

α−
)⊤ (

K⊤
(

X⊤

φ w − y
)

− ξ− − ǫ
)

−
(

µ+
)⊤

ξ+ −
(

µ−
)⊤

ξ− ,

where the α+ and α− are the Lagrange multipliers for the residual error con-
straints and the µ+ and µ− are the Lagrange multipliers for the slack variable
constraints (ξ+, ξ− ≥ 0). Setting the derivative of L with respect to w equal
to zero leads to

X X⊤

φ w = X K (α+ − α−) (3)

which is always fulfilled, if

X⊤

φ w = K (α+ − α−) . (4)

If XX⊤

φ does not have full rank, all solutions w of eq. (3) lie within a subspace

which depends on α+ and α−.
Setting the derivative of L with respect to ξ+, ξ− equal to zero leads to

C1 − α+ − µ+ = 0 and (5)

C1 − α− − µ− = 0 . (6)

Inserting eq. (4) into eq. (2) leads to the dual optimization problem

min
α+,α−

1

2

(

α+ − α−
)⊤

K⊤ K
(

α+ − α−
)

(7)

− y⊤ K
(

α+ − α−
)

+ ǫ 1⊤
(

α+ + α−
)

s.t. 0 ≤ α+,α− ≤ C1 .

4



The final P-SVM predictor is given by

ypred = f(K α + b) , (8)

where f(h) = sign(h) for classification and f(h) = h for regression. The
thresehold variable b is determined by the mean of the label vector y (cf. eq.
18 of Hochreiter and Obermayer (2006a)).
The Karush-Kuhn-Tucker (KKT) conditions state that for the optimal solution
the product between dual variables and the l.h.s. of the primal constraints in
eq. (1) is zero. Using

Q := K⊤K ,

F := Q
(

α+ − α−
)

− K⊤y (9)

we obtain

Fj + ǫ + ξ+
j ≥ 0 (10)

Fj − ǫ − ξ−j ≤ 0 (11)

for the primal constraints in eq. (1) and

α+
j

(

Fj + ǫ + ξ+
j

)

= 0 (12)

α−

j

(

Fj − ǫ − ξ−j
)

= 0 (13)

µ+
j ξ+

j = 0 (14)

µ−

j ξ−j = 0 (15)

for the KKT condition. Following the procedure described in Keerthi et al.
(2001) we obtain

Fj + ǫ < 0
(10)
=⇒ ξ+

j > 0
(14)
=⇒ µ+

j = 0
(5)
⇐⇒ α+

j = C ,

Fj − ǫ > 0
(11)
=⇒ ξ−j > 0

(15)
=⇒ µ−

j = 0
(6)
⇐⇒ α−

j = C ,

Fj + ǫ > 0
(12),(1)

=====⇒ α+
j = 0 , and

Fj − ǫ < 0
(13),(1)

=====⇒ α−

j = 0 ,

where the equation numbers above the arrows denote the equations which have
been used. Hence KKT conditions are met if

α+
j = 0 =⇒ Fj + ǫ ≥ 0 ,

0 < α+
j < C =⇒ Fj + ǫ = 0 ,

α+
j = C =⇒ Fj + ǫ ≤ 0 ,

(16)

and

α−

j = 0 =⇒ Fj − ǫ ≤ 0 ,

0 < α−

j < C =⇒ Fj − ǫ = 0 ,

α−

j = C =⇒ Fj − ǫ ≥ 0.

(17)
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Because α+
j and α−

j are never both larger than zero 3 ,

α+
j > 0

(12),(1)
=====⇒ Fj + ǫ ≤ 0 =⇒ Fj − ǫ < 0

(13),(1)
=====⇒ α−

j = 0,

α−

j > 0
(13),(1)

=====⇒ Fj − ǫ ≥ 0 =⇒ Fj + ǫ > 0
(12),(1)

=====⇒ α+
j = 0,

we can use

α = α+ − α− (18)

in order to rewrite eq. (7) in compact form:

min
α

1

2
α⊤Q α − y⊤ Kα + ǫ ‖α‖1 (19)

s.t. −C1 ≤ αj ≤ C1 .

The term ǫ ‖α‖1 = ǫ1⊤ (α+ + α−) enforces an expansion of w which is sparse
in the terms with nonzero values αj . This occurs, because for large enough
values of ǫ, this term forces all Lagrange multipliers αj toward zero except for
the components which are most relevant for classification or regression. If K⊤K

does not have full rank, finite values of ǫ lift the degeneracy of the solutions.
Since the primal, eqs. (1), and dual, eqs. (7), optimization problems are

different from that of standard SVM methods (there is, for example, no equality
constraint), a new SMO method is necessary. We will describe this new SMO
method in the following section.

3 The SMO Procedure for the P-SVM Method

3.1 The Optimization Step

The new SMO procedure involves a sequence of optimization steps in which the
Lagrangian, eq. (19), is optimized with respect to two Lagrange multipliers αi

and αk while keeping the remaining parameters fixed. We will start with the
description of the optimization step and will then describe the block optimiza-
tion and annealing heuristics. Because the dual optimization problem of the
P-SVM lacks an equality constraint, it is also possible to derive a single SMO
procedure, where only one Lagrange parameter is optimized at every step. This
single SMO is described in Appendix A. The benchmark results of section 4,
however, show, that best results are usually obtained using the “dual” SMO
procedure, hence the dual is to be preferred.
Using

α+
j =

{

αold
j + ∆αj if αold

j + ∆αj ≥ 0
0 if αold

j + ∆αj < 0
(20)

α−

j =

{

0 if αold
j + ∆αj ≥ 0

−αold
j − ∆αj if αold

j + ∆αj < 0

3Fj + ǫ = Fj − ǫ = 0 is impossible if ǫ > 0.
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and setting the derivatives of eqs. (7) with respect to ∆αi and ∆αk to zero, we
obtain

(

Qii Qik

Qki Qkk

) (

∆αi

∆αk

)

+

(

Fi

Fk

)

+ ǫ

(

si

sk

)

!
= 0, (21)

where

si,k =

{

1 if αold
i,k + ∆αi,k ≥ 0

−1 if αold
i,k + ∆αi,k < 0

.

Note that Qik = Qki and K is normalized (cf. Hochreiter and Obermayer
(2006a)) so that the diagonal elements of Q are equal to 1 (Qii = Qkk = 1).
The unconstrained minimum of eq. (19) with respect to αi and αk is then given
by

αnew
i = αold

i + ∆αi ,

αnew
k = αold

k + ∆αk ,

where

∆αi =
(Fk + ǫsk) Qik − (Fi + ǫsi)

1 − Q2
ik

, (22)

∆αk =
(Fi + ǫsi) Qik − (Fk + ǫsk)

1 − Q2
ik

.

The evaluation of eqs. (22) requires an estimation of si,k. For all j ∈ {i, k} we
assume αnew

j < 0 if αold
j < 0, which implies sj = −1. If αold

j > 0 we assume

αnew
j > 0, which implies sj = 1. If αold

j = 0 we consider both sj = 1 and

sj = −1 and use the solution with the largest |∆αj |. If αold
i = αold

k = 0 we use
the solution for which one of the values |∆αi| or |∆αk| is largest.

The unconstrained minimum (αnew
i , αnew

k ) has now to be checked against the
box constraints Li ≤ αnew

i ≤ Ui and Lk ≤ αnew
k ≤ Uk,

Li =

{

−C if si = −1
0 if si = 1

Lk =

{

−C if sk = −1
0 if sk = 1

(23)

Ui =

{

0 if si = −1
+C if si = 1

Uk =

{

0 if sk = −1
+C if sk = 1

(24)

and the values of the Lagrange multipliers have to be properly corrected, if
the unconstrained minimum is located outside this range. The location of the
unconstrained optimum can appear in six non-trivially different configurations
relative to the position of the box, (Fig. 2A-F). For case (A) the minimum is
given by (αnew

i , αnew
k ). For cases (B) and (C) the minimum can be determined by

(1) setting αi (B) or αk (C) to the bound which is closest to the unconstrained
minimum, (2) calculating Fk (B) or Fi (C) for the new values, and (3) correcting
αk, ∆αk = −Fk − skǫ (B) or αi, ∆αi = −Fi − siǫ (C), cf. eq. (28). If
the new values for αk (B) or αi (C) violate the constraints, they have again
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to be set to the nearest bound. In order to identify case (D) αk has to be
evaluated after steps (1) and (2). For case (D) the new αk fulfills the previously
violated box constraint. If it violates the other constraint, it has to be set to
the corresponding bound. Case (E) is identified accordingly. For the remaining
case (F) the optimal value is given by setting both αi and αk to its nearest
corner with respect to the unconstrained minimum.

Figure 2: Illustration of the six non-trivial configurations (A - F) of the un-
constrained minimum (shaded ellipsoids with contour lines) of the objective
function, eq. (19), relative to the box constraints (square box). The crosses in-
dicate the location of the minimum after correction. The shaded areas outside
the boxes indicate all possible locations of the unconstrained minimum which
correspond to a particular configuration.
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After initialization (α = 0), SMO iterations start, and for every iteration
step two indices i, k must be chosen. Our choice is based on a modified heuris-
tics described in Platt (1999). The Karush-Kuhn-Tucker (KKT) conditions are
violated for all αj for which the corresponding values dj ,

dj =























max(−Fj − ǫ, Fj − ǫ) if αj = 0
|Fj + ǫ| if 0 < αj < C

Fj + ǫ if αj = C

| − Fj + ǫ| if − C < αj < 0
−Fj + ǫ if αj = −C ,

(25)

are larger than zero. From those αj we choose αi such that

i = arg maxj dj , j = 1, ..., P,

and we terminate the SMO if di is below a predefined threshold λ. After αi has
been chosen, we compute the location of the unconstrained minimum, evaluate
the box constraints for all pairs (i, k), k ∈ [1, .., i − 1, i + 1, .., P ], and then
choose k such that

k = arg maxj {max (|∆αi| , |∆αj |)} , j = 1, ..., i − 1, i + 1, ..., P . (26)

3.2 Block Optimization

During optimization it often happens that long sequences of SMO iterations
occur, which involve the same Lagrange parameters. For example, if three
Lagrange parameters are far from optimal, the SMO procedure may perform
pairwise updates at every iteration step, during which the value of the third
parameter increases its distance from its optimal value. To avoid oscillations
we recommend a block update, where eq. (19) is solved simultanously for more
than two Lagrange multipliers. The algorithm, which is based on a sequence of
Cholesky decompositions and constraint satisfactions, is listed in Appendix B.

A block update is initiated if one of the following conditions is fulfilled: (1) a
number bc of different Lagrange parameters hit either +C or −C since the last
block update, (2) a number bn of different Lagrange parameters were changed
since the last block update, or (3) the number of different Lagrange parameters
which were updated since the last block update reaches bf times the number of
SMO iterations since the last block update. The first and second condition limit
the computational complexity and the number of block updates while the latter
condition avoids extended oscillations of the Lagrange parameters. A convenient
choice is bc = 4, bn = 21, and bf = 3. The block update is then performed using
all Lagrange parameters which are non-zero and which are changed at least once
since the last block update.

3.3 ǫ Annealing

In Hochreiter and Obermayer (2006a) it was shown, that the number of support
vectors depends on the regularization parameter ǫ. If ǫ is large, many constraints
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are fulfilled and the number of support vectors is low. The smaller ǫ gets, the
larger the number of support vectors becomes. Since SMO algorithms are fast
for problems with a small number of support vectors, we suggest to solve the
dual optimization using an annealing strategy for the parameter ǫ. Since all
KKT conditions (eqs. 16,17) are met for ǫ ≥

∥

∥KT y
∥

∥

∞
, annealing starts with

a lower value of ǫ, for example ǫ = 0.1 ·
∥

∥KT y
∥

∥

∞
. ǫ is then decreased between

SMO iterations according to an exponential schedule (e.g. ǫnew = 0.9 · ǫold).
Since it is not important to find the optimum of eqs. (19) for intermediate
values of ǫ the termination parameter λann for the SMO procedure is set to
λann = 4λ until the selected final value of ǫ is reached.

4 Experiments

In this section we compare our P-SVM implementation with the ǫ-SVR (re-
gression, hyperparameters ǫ and C) and C-SVC (classification, hyperparameter
C) from the libsvm implementation (Chang and Lin (2001)) with respect to
the computational costs of training and testing, the number of support vectors,
and the estimated generalization error of the final predictor. Computing time
(in seconds) is measured on a 2 GHz workstation. Training time refers to the
number of seconds CPU-time needed until a convergence criterion was reached
(P-SVM: λ = 0.05 C-SVC,ǫ-SVR: δterm = 0.001). The P-SVM is applied using
the “dual”-SMO, block optimization, and ǫ-annealing. Testing time refers to the
number of seconds spent on predicting the attributes of a test dataset of a given
size. Benchmark datasets were chosen from the UCI repository (Newman et
al. (1998)) and from http://ni.cs.tu-berlin.de/software/psvm, and both
hyperparameters ǫ and C were optimized by grid search for each dataset.

Table 1 shows the benchmark results. Libsvm is faster during training, but
needs many more support vectors than the P-SVM to obtain its best result.
The cross-validation mean squared error (MSE) of the P-SVM is on average
below the one of libsvm. The P-SVM learning procedure is computationally
more expensive than the libSVM implementation of standard SVMs, but the
number of support vectors, i.e. the computing time during test, is much less.

Dataset P-SVM libSVM

abalone (UCI):
RBF kernel, γ = 1,
4177 examples,
8 features,
regression

C=5000, ǫ = 0.003,
no. of SVs: 71,
training time=45 sec,
testing time=0.89 sec,
MSE (20-fold)=4.417

C=110, ǫ = 1.8,
no. of SVs: 1126,
training time=5.2 sec,
testing time=18 sec,
MSE (20-fold)=4.419

space (UCI, rescaled):
RBF kernel, γ = 1,
3107 examples,
6 features,
regression

C=1000, ǫ = 0.0006,
no. of SVs: 86,
training time=60 sec,
testing time=1.0 sec,
MSE (10-fold)=0.011

C=100, ǫ = 0.01,
no. of SVs: 2786,
training time=34 sec,
testing time=36 sec,
MSE (10-fold)=0.010
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Dataset P-SVM libSVM
cluster2x (psvm):
RBF kernel, γ = 10−4,
1000 examples,
15 features,
regression

C=100, ǫ = 0.0016,
no. of SVs: 139,
training time=4.5 sec,
testing time=2.0 sec,
MSE (20-fold)=0.1050

C=70, ǫ = 0.19,
no. of SVs: 564,
training time=1.3 sec,
testing time=13 sec,
MSE (20-fold)=0.1187

cluster2a (psvm):
RBF kernel, γ = 10−4,
200 examples,
10 features,
regression

C=28, ǫ = 0.0013,
no. of SVs: 149,
training time=0.26 sec,
testing time=2.0 sec,
MSE (30-fold)=1.17

C=1000, ǫ = 0.6,
no. of SVs: 130,
training time=0.32 sec,
testing time=4.5 sec,
MSE (30-fold)=3.09

heart (UCI, rescaled):
RBF kernel, γ = 0.05,
270 examples,
13 features,
regression

C=1000, ǫ = 0.44,
no. of SVs: 9,
training time=0.031 sec,
testing time=0.12 sec,
MSE (50-fold)=0.483

C=0.6, ǫ = 0.41,
no. of SVs: 131,
training time=0.11 sec,
testing time=5.5 sec,
MSE (50-fold)=0.495

arcene (NIPS2003):
linear kernel,
100 examples,
10000 features,
classification

C=100, ǫ = 0.002,
no. of SVs: 83,
training time=0.30 sec,
testing time=0.33 sec,
accuracy=86%
(30-fold)

C=100,
no. of SVs: 79,
training time=0.59 sec,
testing time=1.6 sec,
accuracy=87%
(30-fold)

Table 1: Comparison between the P-SVM and the libSVM im-
plementations of ǫ-SVR and C-SVC with respect to: the num-
ber of support vectors, CPU-time for training (in seconds), CPU-
time for testing (in seconds), the mean squared generalization er-
ror (MSE) for ǫ-SVR and the percentage of correctly classified
datapoints for C-SVC, determined using n-fold cross-validation.
CPU-time for testing is obtained for a dataset of 105 (arcene:
100) examples. γ denotes the width of the selected RBF kernel,
Each feature of the datasets heart and space was linearly scaled
to the range [−1,+1]. The SMO-parameters for the P-SVM are
λ = 0.05, λann = 4, bc = 4, bn = 21, bf = 3, for libSVM we used
the default configuration δterm = 0.001, shrinking activated, and
kernel caching with 40 MB.
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Table 2 shows benchmark results for the different SMO-variants for the P-
SVM implementation, including single- vs. dual-SMO, block optimization and
ǫ-annealing. Best results are obtained for the dual-SMO implementation using
both block optimization and ǫ-annealing. In numerical simulation one often
observes that support vectors for high values ǫ remain support vectors also for
lower values. Since the number of Lagrange multipliers which are changed at
least once during the SMO procedure is always greater or equal to the final
number of nonzero elements, ǫ-annealing significantly reduces the number of
Lagrange multipliers which are changed at least once, but needs a somewhat
larger number of SMO iterations. If the reduction in CPU-time due to the
smaller number of rows of Q, which need to be calculated (O(P · L) per row
of Q), is larger than the increase in time due to the larger number of SMO
iterations, ǫ-annealing should be used. This is usually the case, if block opti-
mization and the dual-SMO is applied. Then ǫ-annealing provides an additional
computational advantage (cf. table 2).

dbl blk ann abalone space cluster2x arcene

+ + + 45 (255) 60 (427) 4.5 (366) 0.30 (194)
+ + - 90 (1147) 82 (1351) 4.9 (878) 0.12 (195)
+ - + 1618 (260) 663 (373) 67 (347) 1.26 (192)
+ - - 1517 (982) 623 (1282) 16 (815) 0.51 (194)
- + + 101 (201) 60 (343) 8.8 (363) 1.68 (188)
- + - 85 (329) 56 (580) 6.9 (459) 0.75 (191)
- - + 5850 (156) 1214 (240) 184 (351) 27 (188)
- - - 4848 (182) 1030 (300) 171 (370) 13 (187)

Table 2: Benchmark result for the different SMO variants of the
P-SVM implementation. The columns ’dbl’ (1), ’blk’ (2), and ’ann’
(3) indicate whether the dual-SMO instead of the single-SMO (1),
block optimization (2), or ǫ-annealing (3) was applied. Numbers
denote the CPU-time (in seconds) needed for solving the dual prob-
lem of the PSVM using hyperparameters which minimize the cross-
validation error. The total number of evaluated rows of Q is given
by numbers in parantheses and equals the number of different La-
grange parameters which were changed at least once during the
SMO procedure.

Table 3 shows, how computation time scales with the number of training
examples for the dataset ‘adult’ from the UCI repository, if an RBF-kernel is
applied. Training time is approximately a factor of two larger for the P-SVM,
but on the same order of magnitude for the same generalization performance
(79%, 5-fold cross-validation). The SMO implementation of the P-SVM is,
therefore, competitive to standard SVM methods for standard SVM problems.
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number of
examples

P-SVM
τn

P-SVM
nQ

C-SVC
τn

1000 0.6 76 1
2000 3.1 142 3
3000 8.0 166 8
4000 17 202 9
5000 29 226 14
6000 45 243 20
7000 67 270 35
8000 96 292 42
9000 132 329 55
10000 166 330 63

Table 3: Comparison between the P-SVM and the C-SVC of the
libSVM implementation for the dataset ‘adult’ with respect to the
CPU-time τ (in seconds) as a function of the training set size. nQ

denotes the total number of evaluated rows of Q. The parameters
are: RBF-kernel γ = 10−8, P-SVM: ǫ = 0.4, C = 1, C-SVC:
C = 10.

The P-SVM, however, is the only method so far, which can handle indefinite
kernel functions and arbitrary dyadic data. This feature can lead to an enormous
speed-up of the P-SVM compared to standard SVM methods, as is shown in
table 4 for the dataset ‘adult’. Table 4 shows benchmark results of the P-SVM
in dyadic data mode and the C-SVC of libSVM for a linear kernel. While the
generalization performance (measured through 5-fold cross-validation) is 84%
for the P-SVM converged to 79% for the C-SVC, the computation time is a
factor of 8554. CPU-time is roughly proportional to the number of training
objects for both the P-SVM and C-SVC, while the training time is much less
for the P-SVM.

number of
examples

P-SVM
τn

C-SVC
τn

10000 0.30 3195
20000 0.58 6780
30000 0.97 9810
40000 1.48 12660

Table 4: Comparison between the P-SVM and the C-SVC of the
libSVM implementation for the dataset ‘adult’ with respect to the
CPU-time τ (in seconds) as a function of the training set size. The
P-SVM operates in dyadic mode directly on the dataset, while a
linear kernel is used for the C-SVC. The parameters are ǫ = 1,
C = 1000 for the P-SVM, and C = 1 for the C-SVC.
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A The Single SMO Procedure

Due to the missing equality constraint in the dual problem of the P-SVM, an
SMO procedure can be derived where only one Langrange multiplier is optimized
in every iteration. Setting the derivatives of eq. (7) with respect to ∆αi to zero
and using eqs. (20), we obtain

Qii · ∆αi + Fi + ǫsi
!
= 0

(27)

where

si =

{

1 if αold
i + ∆αi ≥ 0

−1 if αold
i + ∆αi < 0

.

Note that K is normalized (cf. Hochreiter and Obermayer (2006a)) so that the
diagonal elements of Q are equal to 1. The unconstrained minimum of eq. (19)
with respect to αi is then given by

αnew
i = αold

i + ∆αi ,

where

∆αi = − Fi − ǫsi . (28)

The evaluation of eq. (28) requires an estimation of si. We assume αnew
i < 0 if

αold
i < 0, which implies si = −1. If αold

i > 0 we assume αnew
i > 0, which implies

si = 1. If αold
i = 0 we consider both si = 1 and si = −1 and use the solution

with the largest |∆αi|. The application of the box constraints is similar to the
dual case described in section 3.

14



B A Recursive Algorithm for the Block Update

The block update procedure for solving eqs. (19) can be described using the
following pseudocode:

function αnew = optimize(αold)

{

αnew := solvecholesky(αold)

αnew := bound(αnew)

αnew
bound := ListOfBoundedAlphas(αnew)

if (|αnew
bound| > 4) return αold

if (|αnew
bound| > 0) αnew := reoptimize(αnew,αnew

bound,α
new
bound.front)

return αnew

}

function αnew = reoptimize(αold,αold
bound, b)

{

αnew := optimize(αold \ b) | apply(b)

∀i ∈ αold
bound \ b

inew := find element from αnew which belongs to i

if (inew == i)

αnew := reoptimize(αold,αold
bound \ b, i)

return αnew

endif

return αnew

}

The central function is optimize, which recursively uses optimize and reoptimize.
αold and αnew are sets of Lagrange multipliers, which are implemented as linked
lists of variable lengths. αold

bound and αnew
bound are subsets of the corresponding

αold and αnew. b and i are single elements of αold
bound or αnew

bound. The function
solvecholesky solves the unconstrained problem using the Cholesky decompo-
sition and the function bound sets all Lagrange parameters which violate a
constraint to their nearest bounds. ListOfBoundedAlphas returns a linked list
of Lagrange multipliers whose values are on a bound. The function optimize

is followed by “| apply(b)”, which updates F (cf. eq. (9)) using the Lagrange
parameter b. After using the modified F during the corresponding optimiza-
tion procedure, F is restored to its old values. The operator “α \ b” removes
Lagrange parameter b from the linked list of Lagrange parameters α. The algo-
rithm terminates after finding an exact solution, or if more than four Lagrange
parameters reach the bound.
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