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Abstract

This documentation introduces the PSVM (see [ncpsvm]) software li-
brary which is designed for MICROSOFT Windows as well as for UNIX
systems. Compiling the software results in a program which can be used
with command line options (e.g. kernel type, learning/testing, etc.) which
does not depend on other software or on a particular software-anvinat.

The PSVM software package also includes a MATLAB interface for con-
venient working with the PSVM package. In addition lots of sample data
and scripts are included. The PSVM software contains a classification, a
regression, and a feature selection mode and is based on an efficiént SM
optimization technique. The software can directly be applied to dyadic (ma-
trix) data sets or it can be used with kernels like standard SVM software. In
contrast to standard SVMs the kernel function does not have to beveositi
definite, e.g. the software already implements the indefinite sin-kernel. An
important feature of the software is that is allows#efold cross validation

and for hyperparameter selection. For classification tasks it offersethe d
termination of the significance level and ROC data. In summary the basic
features of the software are

¢ WINDOWS and UNIX compatible

e no dependencies to other software

e command line interface

e MATLAB interface

e n-fold cross validation

e hyperparameter selection

e relational data

e non-Mercer kernels

e significance testing

e computation of Receiver-Oprator-Characteristic (ROC) curves

If you use the software please cite [ncpsvm] in your publications.
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1 Introduction

1.1 MachinelLearning

The main tasks in machine learning are learning and predictiearning in this

case means to fit a model with a so called training datasettarkshown target

values in order to apply the model to future, unknown tesa.ddihe prediction

task then maps a set of inputs to the corresponding targe¢sal

The difficulty is to choose a model, its degree of freedom, twedfree parame-
ters, while maintaining a good prediction performance antt#st data, i.e. the
outputs should match the unknown target values. This dtaged known as to

generalize to unknown data (generalization). If the datag@ known targets is

small, the generalization capabilities can be measuredviiry the dataset into
n parts and doing training tasks while using one different part for testinglea
The generalization performance is determined by averagiegall testing tasks.
This is called n-fold crossvalidation.

Furthermore it may be interesting if a good generalizatierfggmance as mea-
sured for example via n-fold crossvalidation is caused nck while drawing

the training examples. Therefore, the performance is coeapaith the perfor-

mance after shuffling the target data. Then the probabifibetng better on shuf-
fled data is approximated with the relative frequency ofnirag cycles, where
the performance is the same or better than the performantied@riginal target

values. This is called a significance test.

1.2 Support Vector Machines

A standard support vector machine (SVM) (8tdopf and Smola, 2002; Vapnik,
1998) is a model design, which is applicable to real valuedorel data, where
each component is called an attribute of the examples. @rditributes (or tar-
gets) can be converted into numerical attributes by crgaimew attribute for
each value and usel or —1 depending on whether this value is assumed or not.
If targets are real valued the learning problem is calledesgjon, if targets are
binary it is called classification. Non-binary ordinal tatgrequire a combination
of multiple support vector machines, which is called a meldiss support vector
machine.

In SVM learning the data is internally transformed into ahitgmensional feature
space and a set of so called support vectors are selectedrfeamaining set. The
support vectors define a hyperplane in the feature spacénghised to calculate
the target values. If a simple linear SVM is used, the feaspace is equal to the
data space. In most SVM algorithms the transformation inéoféature space is
done implicitly by a kernel function, which qualifies a retet between two ex-
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amples in feature space.

The generalization performance of SVMs may depend on soeredagined hy-
perparameters. A simple way to optimize these parameteargiigl search using
the crossvalidation error as a measure of quality.

1.3 ThePotential Support Vector Machine

Understanding the capabilities of the Potential SuppodteMachine needs a
discussion of different representations of data:

e Vectorial Data:

Most of the techniques for solving classification and regjaes problems
were specifically designed for vectorial data, where dajeat¥ are de-
scribed by vectors of numbers which are treated as elemératssector

space (figure 1.3A). They are very convenient, because dttbeture im-

posed by the Euclidean metric. However, there are datagetstfich a

vector-based description is inconvenient or simply wraany] representa-
tions which consider relationships between objects, aneemppropriate.

e Dyadic Data:
In dyadic descriptions, the whole dataset is representieg asrectangular
matrix whose entries denote the relationships between™ama “column”
objects (figure 1.3C). The column objects are the objects tieberibed and
the row objects serve for their description (Hofmann anddhaz 1998; Li
and Loken, 2002; Hoff, 2005).

e Dyadic Pairwise Data:
If “row” and “column” objects are from the same set, the rear@ation is
usually called pairwise data, and the entries of the matixaften be inter-
preted as the degree of similarity (or dissimilarity) betwebjects (figure
1.3B).

Dyadic descriptions are more powerful than vector-basedrggions, as vecto-
rial data can always be brought into dyadic form when reqguiféis is often done
for kernel-based classifiers or regression functions hieestandard SVM, where
a Gram matrix of mutual similarities is calculated before gnedictor is learned.
A similar procedure can also be used in cases where the “rod™@lumn” ob-

jects are from different sets. If both of them are describgdelature vectors, a
matrix can be calculated by applying a kernel function togaf feature vectors,
one vector describing a “row” and the other vector descglairfcolumn” object.

In many cases, however, dyadic descriptions emerge, bethesnatrix entries
are measured directly. Pairwise data representations pscaéakcase of dyadic
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Figure 1:A) vectorial data: The vectorial objects, 3, ...} are described by its compo-
nents{a, b, ...}. B) vectorial objects and descriptors: The application of a kernetimmc
to vectorial data results in a matrix where the objgetsg, . ..} are described by mutual
relations. C) true dyadic data: The column objeetsg, . ..} are described by measured
relations to row object$A, B, . . .}.

data can be found for datasets where similarities or distabetween objects are
measured. Genuine dyadic data occur whenever two sets eftelgre related.
Traditionally, “row” objects have often been called “feds” and “column” vec-
tors of the dyadic data matrix have mostly been treated adufe vectors”.

We suggest to interpret the matrix entries of dyadic datdhagésult of a ker-
nel function or measurement kernel, which takes a “row” ohjapplies it to a
“column” object, and outputs a number. Using an improvedsusafor model
complexity and a new set of constraints which ensure a goddrmpgance on the
training data, we arrive at a generally applicable methoktdon predictors for
dyadic data. The new method is called the “potential supyetor machine” (P-
SVM). It can handle rectangular matrices as well as pairdéa whose matrices
are not necessarily positive semidefinite, but even whe®t8&M is applied to
regular Gram matrices, it shows very good results when coedpaith standard
methods. Due to the choice of constraints, the final predistexpanded into a
usually sparse set of descriptive “row” objects, which i$edent from the stan-
dard SVM expansion in terms of the “column” objects. This mpep another
important application domain: a sparse expansion is ebantv#o feature selec-
tion (Guyon and Elisseeff, 2003; Hochreiter and Oberma3@04b; Kohavi and
John, 1997; Blum and Langley, 1997).
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2 Software Features

The software is written in C++ and implements the potentiglpsut vector ma-
chine from [ncpsvm, psvmsmo]. The source files are dividéd ihe software
library which offers the main P-SVM functions, a commanceluser interface
and a MATLAB interface. Binaries for Microsoft Windows Syste are included,
for other systems a C++ compiler is required to produce tharl@a. The soft-
ware includes sample datasets for testing the command fipkcation, sample
scripts for testing the MATLAB implementation, and a usemuma. Some of
the MATLAB sample scripts refer to functions from the libSMMrary [libsvm],
which is also included in the package.

The current version of the software requires that:

e inputs and targets must be real valued and "don’t care” free
e binary inputs and targets must be encoded as +1. or -1.

Ordinal values are not supported directly, they must be @edwia binary at-
tributes or labels as mentioned in (1.2).

2.1 Command Line Application

The command line application uses files in plain text fornoatdata input and
output. All progress and result messages are sent to theleomstput and addi-
tionally into a log file.

The offered functionality is

e P-SVM regression and classification
e P-SVM feature extraction
e theC'- ande-regularization schemes ([ncpsvm])

e training with n-fold crossvalidation, hyperparameteesébn through grid
search, significance testing

¢ choice between the five predefined kernel functions: linpalynomial,
radial basis, sigmoid, and plummer

¢ implementation of user defined kernels
e application of the P-SVM to true dyadic (matrix) data

e prediction of labels after training
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2.2

calculation of ROC curves for validation purposes

SMO optimization options (epsilon annealing, block op#ation, and re-
duction) for tradeoff between speed and precision

GNU-Plot interface for the result of the hyperparameteec#n through
grid search (figure 2), for the ROC curves for validation (feg8), and for
the significance testing (figure 4) by exporting data angséites.

calculation of an upper limit of hyperparamete@ndC for a given dataset
(helps the user to select hyperparameters which affectréduiqbor)

calculation of mean and variance for a given dataset (helgslect useful
kernel parameters)

MATLAB interface

The package includes sourcecodes of six MEX-functions kwhind the P-SVM
library and serve as an interface for the main P-SVM routtoedlATLAB. For
Microsoft Windows Systems the binaries are included as ayodink libraries
which can directly be used as MATLAB functions. For otherteyss a C++
compiler is required to produce the binaries. The result $ysiem dependent
library which can be accessed directly whithin MATLAB. The imMATLAB
functions are “psvmtrain” and “psvmpredict” and offer:

P-SVM regression and classification
P-SVM feature extraction
the C- ande-regularization schemes ([ncpsvm])

choice between the five predefined kernel functions: linpatynomial,
radial basis, sigmoid, and plummer

implementation of user defined kernels
application of the P-SVM to true dyadic (matrix) data
prediction of labels after training

SMO optimization options (epsilon annealing, block opaation, and re-
duction) for tradeoff between speed and precision
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As explained in the next section the training algorithm witP-SVM divides
into three tasks, which might be interesting to access agggwithin MATLAB.
These functions are

e “psvmgetnp” and “psvmputnp” for accessing the normal@atask

¢ “psvmkernel” for calculation of one of the five predefinedrerfunctions
or a user defined kernel function

e “psvmsmo” for solving the P-SVM optimization problem

In contrast to the command line version, the compiled MATL#ABctions offer
no crossvalidation, modelselection and significancergstinstead of that the
package includes MATLAB scripts for doing

e crossvalidation

e exporting data matrices to files which can be processedtljitacough the
P-SVM command line application

e exporting data matrices to files which can be processedtljiacough the
application “libsvm” (see [libsvm])

e random shuffling of data matrices as preprocessing stepdssealidation
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Figure 2: Generalization error estimated via 10-fold crossvalwafor different combinations
of the hyperparameters. This plot is generated by defatiieihyperparameter selection mode of
the P-SVM software is used.
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Figure 3:Receiver Operating Characteristic (ROC) of the P-SVM for@\PM classifier trained
with the sample dataset 'arcene’. This plot is generatecdeifgudt with option ’-test’ of the P-SVM
software.
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Figure 4: Visualization of the significance testing results: Thistghows the generalization
errors of the sample dataset 'arcene’ estimated by 10-falsisvalidation ordered by magnitude
after random shuffling of the training label. Every data poworresponds to a specific label permu-
tation and provides results after hyperparameter selebtis been performed. The horizontal line
marks the error for original labels. This plot is generatediéfault after enabling the significance
test with the option ’-sig’. The corresponding confidendeiival is calculated and printed to the
console.
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3 Thecomponents of the P-SVM

The software can handle dyadic (matrix) data as well as viettata via prede-
fined kernels.

3.1 P-SVM for Measured Dyadic (Matrix) Data
The P-SVM predictor for dyadic data has the form:
o.(k) = signnormk,np) - a + b)
for classification and
o-(k) = normk,np)-a + b

for regression tasks, where

k : dyadic description of the “column” object which is to be déied: P-

component vector which quantifies the relationg’ttrow” objects
o. : P-SVM class prediction ok (+1 or —1)
o, : P-SVM real valued prediction d¢

« : support features (part of the P-SVM modely-component vector which
guantifies the importances of “row” objects for serving attiees.

b : bias (part of the P-SVM model)

np : normalization statistics (part of the P-SVM model) - Breaks imaximum,
minimum, mean, and variance for all “row” objects and is used by the
“norm”-function.

Learning proceeds by
1. Data Matrix: loading thd. x P dyadic data matri¥<.

2. Normalization: Gets statistics for @l columns of K and stores its max-
ima, minima, mean, and a scaling factor/fadimensional vectorap. np
is then used to normalize each columnfof

3. Calculation ob: The biag is set to the mean of the labels represented by
the label vectow.

4. Sequential Minimal Optimization (SMO): The SMO reads tioemalized
kernel matrixK and the labelg; and calculates a p-dimensional vector
for a normalized kernel matri¥( and labelsy. «; corresponds to theth
column of K and is normally sparse.
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3.2 P-SVM for Vectorial Data

The P-SVM predictor for vectorial data has the form:

oc.(u) = signnormk(u, X),np) -a + b)

for classification and

or(u) = normk(u, X),np) - + b

for regression tasks, where

u:

np :

“column” object which is to be classified{-component vector)

: P-SVM class prediction of (+1 or —1)
: P-SVM real valued prediction ai

: N x P matrix composed by’ “row” objects (V-component vectors). The

“row” objects and “column” objects match anX equals the set initially
used for training.

. calculates aP component vector by applying a kernel function to a “col-

umn” object and a set aP “row” objects

: support features (part of the P-SVM modely-component vector which

guantifies the importances of “row” objects for serving astiees.

. bias (part of the P-SVM model)

normalization statistics (part of the P-SVM model) - Breaks imaximum,
minimum, mean, and variance for all “row” objects and is used by the
“norm”-function.

Learning proceeds by

1. Vectorial Data: loading the dataset/sis< P matrix X composed by’ N-

component data vectors. (Note that for compatibility ressbe MATLAB
functions expeciX” as vectorial input.)

Kernel: calculating a kernel matrix which quantifies tielas on training
data vectors using a kernel functiéq; ; = k(x;, z;)

Normalization: Gets statistics for &l columns of K and stores its max-
ima, minima, mean, and a scaling factorirdimensional vectorap. Nor-
malizes each column dk.
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4. Calculation ob: The offseth is set to the mean of the labels represented
by the label vectoy.

5. Sequential Minimal Optimization (SMO): The SMO reads tieemalized
kernel matrix K and the labelg and calculates a p-dimensional vectgr
which is sparse in most cases.corresponds to theth column of K.

3.3 P-SVM for Vectorial Data using Complex Feature Vectors
The P-SVM predictor for vectorial data and complex featweetors has the form:
o.(u) = signnormk(u, Z),np) -a + b)
for classification and
or(u) = normk(u,Z),np)-a + b

for regression tasks, where

u : “column” object which is to be classified-component vector)

o. : P-SVM class prediction of, (+1 or —1)

o, : P-SVM real valued prediction ai

Z . N x P matrix composed by “row” objects (V-component complex feature
vectors).

k() : calculates @ component vector by applying a kernel function to a “col-
umn” object and a set af “row” objects

a : support features (part of the P-SVM modely-component vector which
guantifies the importances of “row” objects for serving asdiees.

b : bias (part of the P-SVM model)

np : normalization statistics (part of the P-SVM model) - Breaks imaximum,
minimum, mean, and variance for dll “row” objects and is used by the
“norm”-function.

Learning proceeds by

1. Vectorial Data: loading the dataset/Es< L matrix X composed by, V-
component data vectors. (Note that for compatibility reassbe MATLAB
functions expeciX” as vectorial input.)
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2. Complex Feature Vector Matrix: loading the datasetVas P matrix Z
composed byP N-component data vectors. (Note that for compatibility
reasons the MATLAB functions expe’ as vectorial input.)

3. Kernel: calculating a kernel matrix which quantifies tielas on training
data vectors and complex feature vectors using a kernetifuméS; ; =
k(iL‘Z‘, Zj)

4. Normalization: Gets statistics for @l columns of K and stores its max-
ima, minima, mean, and a scaling factorirdimensional vectorap. Nor-
malizes each column K.

5. Calculation ob: The offsetb is set to the mean of the labels represented
by the label vectoy;.

6. Sequential Minimal Optimization (SMO): The SMO reads ttoemalized
kernel matrixKK and the labelg and calculates a p-dimensional vectar
which is sparse in most cases.corresponds to theth column of K.

3.4 Hyperparameters

Let X be the matrix of data vectors in some high-dimensional featpacey, w
be the normal vector of a separating hyperplanthe attributes (binary in case
of classification, or real valued in case of regression), Ehthe kernel matrix.
Then the P-SVM “primal” optimization problem has the form

1
min SIXTw|? + C17 (67 + ¢7) (1)
weEt € 2
st K' (X'w-y)+€& +e1>0
KT(XT'w—y)—E_—EISO

0 < ¢&7.¢

The parameter§’ ande correspond to the two different regularization schemes,
which have been suggested for the P-SVM method, whasgularization has
been proven more useful for feature selection and the C-aiggation for classi-
fication or regression problems ([ncpsvng). and¢~ are the vectors of the slack
variables describing violations of the constraints.

The parametef’ controls the robustness against outliners by limiting thgpsrt
vector weightsy. If it is infinite, no regularization occurs. If it tends torpe the
largest weights of support vectors decrease and the ppasdoease of the train-
ing error will be compensated through finding similar datetees and increasing
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their weights (they become support vectors). The numbeubart vectors in-
creases in order to average over important support vedeesfigure 5).

The second parametercontrols the tolerance level of small training errors. If
it tends to infinity, the primal P-SVM problem (eq. 1) is salweithout support
vectors @ = 0). If it tends to zero, the tolerance level decreases andréie-t
ing error decreases too as far as the number of support sdotmeases. That
meanse controls the tradeoff between a poor representation ofrtieing data
and overfitting.

3.5 Comparison P-SVM with libSVM

One of the effects of the P-SVMs primal optimization problencontrast to the
“libSVM” can be easily seen by comparing the support vectacgment, when
P-SVM and “libSVM” are used for vectorial data with a lineaarkel function.

The P-SVM finds support vectors in the area around the noreetov of the

hyperplane, while the standard SVM finds support vectorsraithe hyperplane.
The effect to the prediction error depends strongly fromdat, but comparing
figure 5 and 6 even shows a better matching of the P-SVM hyaeeplvith the

optimal hyperplane according to the relying gaussian ibigion (crossover of
the circles).
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Figure 5: These plots show the data points of a two dimensional gaustsributed classi-
fication problem with two classes and the hyperplane (lingh wupport vectors (small circles)
found by the linear kernel P-SVM. The large circle marks ttasdard deviation of the gaussian
distribution for the two classes. The left plot is for a n@gularized solution@ = oo) and the
right shows the effect of regularizatio6’'(= 0.0001).

Support vectors standard SVM non-regularized Support vectors standard SVM regularized
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Figure 6:These plots show the same classification problem as usedie figand the hyperplane
(line) with support vectors (small circles) found by theelan kernel standard SVM. The large
circle marks the standard deviation of the gaussian digdtab for the two classes. The left plot
is for a non-regularized solutiol( = oo) and the right shows the effect of regularizatia@n £
0.0001). This experiment is done with the implementation fromgtin].
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