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Abstract

We investigate the problem of learning a classification task for
datasets which are described by matrices. Rows and columns of
these matrices correspond to objects, where row and column ob-
jects may belong to different sets, and the entries in the matrix
express the relationships between them. We interpret the matrix el-
ements as being produced by an unknown kernel which operates on
object pairs and we show that - under mild assumptions - these ker-
nels correspond to dot products in some (unknown) feature space.
Minimizing a bound for the generalization error of a linear classi-
fier which has been obtained using covering numbers we derive an
objective function for model selection according to the principle of
structural risk minimization. The new objective function has the
advantage that it allows the analysis of matrices which are not pos-
itive definite, and not even symmetric or square. We then consider
the case that row objects are interpreted as features. We suggest an
additional constraint, which imposes sparseness on the row objects
and show, that the method can then be used for feature selection.
Finally, we apply this method to data obtained from DNA microar-
rays, where “column” objects correspond to samples, “row” objects
correspond to genes and matrix elements correspond to expression
levels. Benchmarks are conducted using standard one-gene classifi-
cation and support vector machines and K-nearest neighbors after
standard feature selection. Our new method extracts a sparse set
of genes and provides superior classification results.

1 Introduction

Many properties of sets of objects can be described by matrices, whose rows and
columns correspond to objects and whose elements describe the relationship between
them. One typical case are so-called pairwise data, where rows as well as columns
of the matrix represent the objects of the dataset (Fig. 1a) and where the entries of
the matrix denote similarity values which express the relationships between objects.
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Figure 1: Two typical examples of matrix data (see text). (a) Pairwise data. Row
(A-L) and column (A-L) objects coincide. (b) Feature vectors. Column objects
(A-G) differ form row objects (α - λ). The latter are interpreted as features.

Another typical case occurs, if objects are described by a set of features (Fig. 1b).
In this case, the column objects are the objects to be characterized, the row objects
correspond to their features and the matrix elements denote the strength with which
a feature is expressed in a particular object.

In the following we consider the task of learning a classification problem on matrix
data. We consider the case that class labels are assigned to the column objects of
the training set. Given the matrix and the class labels we then want to construct
a classifier with good generalization properties. From all the possible choices we
select classifiers from the support vector machine (SVM) family [1, 2] and we use
the principle of structural risk minimization [15] for model selection - because of its
recent success [11] and its theoretical properties [15].

Previous work on large margin classifiers for datasets, where objects are described
by feature vectors and where SVMs operate on the column vectors of the matrix, is
abundant. However, there is one serious problem which arise when the number of
features becomes large and comparable to the number of objects: Without feature
selection, SVMs are prone to overfitting, despite the complexity regularization which
is implicit in the learning method [3]. Rather than being sparse in the number of
support vectors, the classifier should be sparse in the number of features used for
classification. This relates to the result [15] that the number of features provide an
upper bound on the number of “essential” support vectors.

Previous work on large margin classifiers for datasets, where objects are described by
their mutual similarities, was centered around the idea that the matrix of similarities
can be interpreted as a Gram matrix (see e.g. Hochreiter & Obermayer [7]). Work
along this line, however, was so far restricted to the case (i) that the Gram matrix is
positive definite (although methods have been suggested to modify indefinite Gram
matrices in order to restore positive definiteness [10]) and (ii) that row and column
objects are from the same set (pairwise data) [7].



In this contribution we extend the Gram matrix approach to matrix data, where
row and column objects belong to different sets. Since we can no longer expect that
the matrices are positive definite (or even square), a new objective function must be
derived. This is done in the next section, where an algorithm for the construction
of linear classifiers is derived using the principle of structural risk minimization.
Section 3 is concerned with the question under what conditions matrix elements
can indeed be interpreted as vector products in some feature space. The method
is specialized to pairwise data in Section 4. A sparseness constraint for feature
selection is introduced in Section 5. Section 6, finally, contains an evaluation of the
new method for DNA microarray data as well as benchmark results with standard
classifiers which are based on standard feature selection procedures.

2 Large Margin Classifiers for Matrix Data

In the following we consider two sets X and Z of objects, which are described by
feature vectors x and z. Based on the feature vectors x we construct a linear
classifier defined through the classification function

f(x) = 〈w,x〉 + b, (1)

where 〈., .〉 denotes a dot product. The zero isoline of f is a hyperplane which is
parameterized by its unit normal vector ŵ and by its perpendicular distance b/‖w‖2
from the origin. The hyperplane’s margin γ with respect to X is given by

γ = min
x∈X

|〈ŵ,x〉 + b/‖w‖2 | . (2)

Setting γ = ‖w‖−1
2 allows us to treat normal vectors w which are not normalized,

if the margin is normalized to 1. According to [15] this is called the “canonical
form” of the separation hyperplane. The hyperplane with largest margin is then
obtained by minimizing ‖w‖22 for a margin which equals 1.

It has been shown [14, 13, 12] that the generalization error of a linear classifier, eq.
(1), can be bounded from above with probability 1− δ by the bound B,

B(L, a/γ, δ) =
2

L

(

log2

(

EN
( γ

2 a
,F , 2L

))

+ log2

(

4 L a

δ γ

))

, (3)

provided that the training classification error is zero and f(x) is bounded by
−a ≤ f(x) ≤ a for all x drawn iid from the (unknown) distribution of objects.
L denotes the number of training objects x, γ denotes the margin and EN (ε,F , L)
the expected ε-covering number of a class F of functions that map data objects from
T to [0, 1] (see Theorem 7.7 in [14] and Proposition 19 in [12]). In order to obtain
a classifier with good generalization properties we suggest to minimize a/γ under
proper constraints. a is not known in general, however, because the probability dis-
tribution of objects (in particular its support) is not known. In order to avoid this
problem we approximate a by the range m = 0.5

(

maxi〈ŵ,x
i〉 −mini〈ŵ,x

i〉
)

of
values in the training set and minimize the quantity B(L,m/γ, δ) instead of eq. (3).

Let X :=
(

x1,x2, . . . ,xL
)

be the matrix of feature vectors of L objects from the set

X and Z :=
(

z1, z2, . . . , zP
)

be the matrix of feature vectors of P objects from the
set Z. The objects of set X are labeled, and we summarize all labels using a label
matrix Y : [Y ]ij := yiδij ∈ RL×L, where δ is the Kronecker-Delta. Let us consider
the case that the feature vectors X and Z are unknown, but that we are given the
matrix K := XT Z of the corresponding scalar products. The training set is then
given by the data matrix K and the corresponding label matrix Y . The principle
of structural risk minimization is implemented by minimizing an upper bound on



(m/γ)
2
given by ‖XT w‖22, as can be seen from m/γ ≤ ‖w‖2 maxi |〈ŵ,x

i〉| ≤
√

∑

i (〈w,x
i〉)2 = ‖XT w‖2. The constraints f(xi) = yi imposed by the training

set are taken into account using the expressions 1 − ξ+
i ≤ yi

(

〈w,xi〉 + b
)

≤

1 + ξ−i , where ξ+
i , ξ

−
i ≥ 0 are slack variables which should also be minimized. We

thus obtain the optimization problem

min
w,b,ξ+,ξ−

1

2
‖XT w‖22 + M+ 1T ξ+ + M− 1T ξ− (4)

s.t. Y −1
(

XT w + b1
)

− 1 + ξ+ ≥ 0

Y −1
(

XT w + b1
)

− 1 − ξ− ≤ 0

ξ+, ξ− ≥ 0 .

M+ penalizes wrong classification andM− absolute values exceeding 1. For classifi-
cation M− may be set to zero. Note, that the quadratic expression in the objective
function is convex, which follows from ‖XT w‖22 = wT X XT w and the fact
that X XT is positive semidefinite.

Let α̃+, α̃− be the dual variables for the constraints imposed by the training set,
α̃ := α̃+ − α̃−, and α a vector with α̃ = Y

(

XT Z
)

α. Two cases
must be treated: α is not unique or does not exist. First, if α is not unique
we choose α according to Section 5. Second, if α does not exist we set α =
(

ZT X Y −T Y −1 XT Z
)−1

ZT X Y −T α̃, where Y −T Y −1 is the identity. The
optimality conditions require that the following derivatives of the Lagrangian L are
zero: ∂L/∂b = 1T Y −1 α̃, ∂L/∂w = X XT w − X Y −1α̃, ∂L/∂ξ± =
M±1 − α̃± + µ±, where µ+,µ− ≥ 0 are the Lagrange multipliers for the slack
variables. We obtain ZT X XT (w − Z α) = 0 which is ensured by w = Z α,
0 = 1T

(

XT Z
)

α, α̃i ≤ M+, and −α̃i ≤ M−. The Karush–Kuhn–Tucker

conditions give b =
(

1TY 1
)

/
(

1T1
)

if α̃i < M+ and −α̃i < M−.

In the following we set M+ = M− = M and C := M ‖Y
(

XT Z
)

‖−1
row so that

‖α‖∞ ≤ C implies ‖α̃‖∞ ≤ ‖Y
(

XT Z
)

‖row ‖α‖∞ ≤ M , where ‖.‖row is the
row-sum norm. We then obtain the following dual problem of eq. (4):

min
α

1

2
αT KT K α − 1TY K α (5)

subject to 1T K α = 0 , |αi| ≤ C.

If M+ 6= M− we must add another constraint. For M− = 0, for example, we have
to add Y K (α+ − α−) ≥ 0. If a classifier has been selected according to eq.
(5), a new example u is classified according to the sign of

f(u) = 〈w,u〉 + b =

P
∑

i=1

αi 〈z
i,u〉 + b. (6)

The optimal classifier is selected by optimizing eq. (5), and as long as a = m holds
true for all possible objects x (which are assumed to be drawn iid), the generalization
error is bounded by eq. (3). If outliers are rejected, condition a = m can always be
enforced. For large training sets the number of rejections is small: The probability
P{|〈w,x〉| > m} that an outlier occurs can be bounded with confidence 1− δ using
the additive Chernoff bounds (e.g. [15]):

P{|〈w,x〉| > m} ≤

√

− log δ

2L
. (7)

But note, that not all outliers are misclassified, and the trivial bound on the gen-
eralization error is still of the order L−1.



3 Kernel Functions, Measurements and Scalar Products

In the last section we have assumed that the matrix K is derived from scalar
products between the feature vectors x and z which describe the objects from the
sets X and Z. For all practical purposes, however, the only information available
is summarized in the matrices K and Y . The feature vectors are not known and
it is even unclear whether they exist. In order to apply the results of Section 2 to
practical problems the following question remains to be answered: What are the
conditions under which the measurement operator k(., z) can indeed be interpreted
as a scalar product between feature vectors and under which the matrix K can be
interpreted as a matrix of kernel evaluations?

In order to answer these questions, we make use of the following theorems. Let
L2(H) denote the set of functions h from H with

∫

h2(x)dx < ∞ and `2 the set
of infinite vectors (a1, a2, . . . ) where

∑

i a
2
i converges.

Theorem 1 (Singular Value Expansion) Let H1 and H2 be Hilbert spaces. Let
α be from L2(H1) and let k be a kernel from L2(H2, H1) which defines a Hilbert-
Schmidt operator Tk : H1 → H2

(Tkα)(x) = f(x) =

∫

k(x, z) α(z) dz . (8)

Then there exists an expansion k(x, z) =
∑

n sn en(z) gn(x) which converges in

the L2-sense. The sn ≥ 0 are the singular values of Tk, and en ∈ H1, gn ∈ H2 are
the corresponding orthonormal functions.

Corollary 1 (Linear Classification in `2) Let the assumptions of Theorem 1
hold and let

∫

H1
(k(x, z))2 dz ≤ K2 for all x. Let 〈.〉H1

be the a dot product in

H1. We define w := (〈α, e1〉H1
, 〈α, e2〉H1

, . . . ), and φ(x) := (s1g1(x), s2g2(x), . . . ).

Then the following holds true:

• w, φ(x) ∈ `2, where ‖w‖2
`2

= ‖α‖2H1
, and

• ‖f‖2H2
= 〈T ∗kTkα, α〉H1

, where T ∗k is the adjoint operator of Tk,

and the following sum convergences absolutely and uniformly:

f(x) = 〈w, φ(x)〉`2 =
∑

n

sn 〈α, en〉H1
gn(x) . (9)

Eq. (9) is a linear classifier in `2. φmaps vectors fromH2 into the feature space. We
define a second mapping fromH1 to the feature space by ω (z) := (e1(z), e2(z), . . . ).

For α =
∑P

i=1 αiδ(z
i), where δ(zi) is the Dirac delta, we recover the discrete

classifier (6) and w =
∑P

i=1 αi ω
(

zi
)

. We observe that ‖f‖2H2
= αTKTK α =

‖XT w‖22. A problem may arise if zi belongs to a set of measure zero which does
not obey the singular value decomposition of k. If this occurs δ(zi) may be set to
the zero function.

Theorem 1 tells us that any measurement kernel k applied to objects x and z can
be expressed for almost all x and z as k(x, z) = 〈φ (x) , ω (z)〉, where 〈.〉 defines
a dot product in some feature space for almost all x, z. Hence, we can define the
a matrix X :=

(

φ
(

x1
)

, φ
(

x2
)

, . . . , φ
(

xL
))

of feature vectors for the L column

objects and a matrix Z :=
(

ω
(

z1
)

, ω
(

z2
)

, . . . , ω
(

zP
))

of feature vectors for the
P row objects and apply the results of Section 2.



4 Pairwise Data

An interesting special case occurs if row and column objects coincide. This kind of
data is known as pairwise data [5, 4, 8] where the objects to be classified serve as
features and vice versa. Like in Section 3 we can expand the measurement kernel
via singular value decomposition but that would introduce two different mappings
(φ and ω) into the feature space. We will use one map for row and column objects
and perform an eigenvalue decomposition. The consequence is that that eigenvalues
may be negative (see the following theorem).

Theorem 2 (Eigenvalue Expansion) Let definitions and assumptions be as in
Theorem 1. Let H1 = H2 = H and let k be symmetric. Then there exists an
expansion k(x, z) =

∑

n νn en(z) en(x) which converges in the L2-sense. The νn

are the eigenvalues of Tk with the corresponding orthonormal eigenfunctions en.

Corollary 2 (Minkowski Space Classification) Let the assumptions of Theo-
rem 2 and

∫

H
(k(x, z))2 dz ≤ K2 for all x hold true. We define w :=

(
√

|ν1|〈α, e1〉H ,
√

|ν2|〈α, e2〉H , . . . ), φ(x) := (
√

|ν1|e1(x),
√

|ν2|e2(x), . . . ), and `2S
to denote `2 with a given signature S = (sign(ν1), sign(ν2), . . . ).

Then the following holds true:

‖w‖2
`2

S

=
∑

n sign(νn)
(

√

|νn| 〈α, en〉H
)2

=
∑

n νn〈α, en〉
2
H = 〈Tkα, α〉H ,

‖φ(x)‖2
`2

S

=
∑

n νn en(x)
2 = k(x,x) in the L2 sense, and the following sum

convergences absolutely and uniformly:

f(x) = 〈w, φ(x)〉`2
S

=
∑

n

νn 〈α, en〉H en(x) . (10)

Eq. (10) is a linear classifier in the Minkowski space `2S . For the discrete case

α =
∑P

i=1 αiδ(z
i), the normal vector is w =

∑P

i=1 αiφ
(

zi
)

. In comparison to

Corollary 1, we have ‖w‖2
`2

S

= αTK α. and must assume that ‖φ(x)‖2
`2

S

does

converge. Unfortunately, this can be assured in general only for almost all x. If k is
both continuous and positive definite and if H is compact, then the sum converges
uniformly and absolutely for all x (Mercer).

5 Sparseness and Feature Selection

As mentioned in the text after optimization problem (4) α may be not u nique
and an additional regularization term is needed. We choose the regularization term
such that it enforces sparseness and that it also can be used for feature selection.
We choose ”ε ‖α‖1”, where ε is the regularization parameter. We separate α into
a positive part α+ and a negative part α− with α = α+ − α− and α+

i , α
−
i ≥ 0

[11]. The dual optimization problem is then given by

min
α

1

2

(

α+ − α−
)T

KT K
(

α+ − α−
)

− (11)

1TY K
(

α+ − α−
)

+ ε 1T
(

α+ + α−
)

s.t. 1T K
(

α+ − α−
)

= 0 , C1 ≥ α+,α− ≥ 0 .

If α is sparse, i.e. if many αi = α+
i − α−i are zero, the classification function

f(u) = 〈w,u〉 + b =
∑P

i=1

(

α+
i − α−i

)

〈zi,u〉 + b contains only few terms.

This saves on the number of measurements 〈zi,u〉 for new objects and yields to
improved classification performance due to the reduced number of features zi [15].



6 Application to DNA Microarray Data

We apply our new method to the DNA microarray data published in [9]. Column
objects are samples from different brain tumors of the medullablastoma kind. The
samples were obtained from 60 patients, which were treated in a similar way and
the samples were labeled according to whether a patient responded well to chemo-
or radiation therapy. Row objects correspond to genes. Transcriptions of 7,129
genes were tagged with fluorescent dyes and used as a probe in a binding assay.
For every sample-gene pair, the fluorescence of the bound transcripts - a snapshot
of the level of gene expression - was measured. This gave rise to a 60× 7, 129 real
valued sample-gene matrix where each entry represents the level of gene expression
in the corresponding sample. For more details see [9].

The task is now to construct a classifier which predicts therapy outcome on the
basis of samples taken from new patients. The major problem of this classification
task is the limited number of samples - given the large number of genes. Therefore,
feature selection is a prerequisite for good generalization [6, 16]. We construct the
classifier using a two step procedure. In a first step, we apply our new method
on a 59 × 7, 129 matrix, where one column object was withhold to avoid biased
feature selection. We choose ε to be fairly large in order to obtain a sparse set of
features. In a second step, we use the selected features only and apply our method
once more on the reduced sample-gene matrix, but now with a small value of ε. The
C-parameter is used for regularization instead.

Feature Selection # # Feature Selection C # #
/ Classification F E / Classification F E

TrkC 1 20 P-SVM / C-SVM 1.0 40/45/50 5/4/5
statistic / SVM 15 P-SVM / C-SVM 0.01 40/45/50 5/5/5
statistic / Comb1 14 P-SVM / P-SVM 0.1 40/45/50 4/4/5
statistic / KNN 8 13
statistic / Comb2 12

Table 1: Benchmark results for DNA microarray data (for explanations see text).
The table shows the classification error given by the number of wrong classifications
(“E”) for different numbers of selected features (“F”) and for different values of the
parameter C. The feature selection method is signal-to-noise-statistic and t-statitic
denoted by “statistic” or our method P-SVM. Data are provided for “TrkC”-Gene
classification, standard SVMs, weighted “TrkC”/SVM (Comb1), K nearest neighbor
(KNN), combined SVM/TrkC/KNN (Comb2), and our procedure (P-SVM) used for
classification. Except for our method (P-SVM), results were taken from [9].

Table 1 shows the result of a leave-one-out cross-validation procedure, where the
classification error is given for different numbers of selected features. Our method
(P-SVM) is compared with “TrkC”-Gene classification (one gene classification),
standard SVMs, weighted “TrkC”/SVM-classification, K nearest neighbor (KNN),
and a combined SVM/TrkC/KNN classifier. For the latter methods, feature se-
lection was based on the correlation of features with classes using signal-to-noise-
statistics and t-statistics [3]. For our method we use C = 1.0 and 0.1 ≤ ε ≤ 1.5
for feature selection in step one which gave rise to 10− 1000 selected features. The
feature selection procedure (also a classifier) had its lowest misclassification rate
between 20 and 40 features. For the construction of the classifier we used in step
two ε = 0.01. Our feature selection method clearly outperforms standard methods
— the number of misclassification is down by a factor of 3 (for 45 selected genes).
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