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Abstract 

This paper introduces gradient descent methods 
applied to meta-leaming (leaming how to leam) 
in Neural Networks. Meta-leaning has been of 
interest in the machine leaming field for decades 
because of its appealing applications to intelli- 
gent agents, non-stationary time series, autono- 
mous robots, and improved leaming algorithms. 
Many previous neural network-based ap- 
proaches toward meta-leaming have been based 
on evolutionary methods. We show how to use 
gradient descent for meta-leaming in recurrent 
neural networks. Based on previous work on 
Fixed- Weight Leaming Neural Networks, we 
hypothesize that any recurrent network topology 
and its corresponding leaming algorithm(s) is a 
potential meta-leaming system. We tested sev- 
eral recurrent neural network topologies and 
their corresponding forms of Backpropagation 
for their ability to meta-leam. One of our sys- 
tems, based on the Long Short-Term Memory 
neural network developed a leaming algorithm 
that could leam any two-dimensional quadratic 
function (from a set of such functions} after only 
30 training examples. 

1 Introduction 

This paper reports on our work utilizing gradient 
descent methods (i.e. Backpropagation) to search 
out and find learning algorithms tailored to spe- 
cific learning tasks (meta-learning). 

After a brief review previous meta-learning sys- 
tems, we will discuss Fixed-Weight Learning 
Neural Networks, which motivates our method. 
We will also review the Long-Short Term Mem- 
ory Network. Section 3 describes our meta- 
learning evaluation experimental set-up. In Sec- 
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tion 4, we summarize our results. Finally, we 
will discuss some of the questions raised by our 
work. 

2 Previous Work 

In meta-learning, there are two learning proc- 
esses proceeding simultaneously. There is a su- 
pervisory system, which is attempting to learn a 
good learning algorithm for a set of problems 
with similar characteristics. There is also a sub- 
ordinate learning algorithm, which is attempting 
to learn a specific problem. Periodically, the su- 
pervisor alters the subordinate algorithm slightly 
to improve its learning performance. Mostly, 
these two algorithms must perform the same 
task: they must leverage the regularities of their 
respective problems in order to efficiently solve 
them. However, there are differences in the time 
scale and scope of their problems. The supervi- 
sory process has a broader scope. It must ignore 
the details unique to .specific problems, and look 
for symmetries over a long time scale, while the 
opposite is true for a subordinate learning 
scheme. 

2.1 Review of Meta-Learning 
Several researchers have used meta-learning 
techniques to derive or improve learning algo- 
rithms [ 1,2,3]. For example, Runarsson and 
Jonsson in [2] used a genetic algorithm to evolve 
neural networks that implemented sophisticated 
learning rules. Some conclusions of the study 
were that the evolved networks are fast learners; 
and the derived learning rule is biased, i.e. it is 
‘tuned’ to solve a given problem class fast. 
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The self-modifying neural networks of Schmid- 
huber et al. [3], which run their own learning 
algorithms, are similar to our meta-learning 
method. Unlike our networks, their networks 
required special units to read and modify their 
synaptic weights during learning. 

2.2 Fixed-Weight Learning Neural Networks 
For lalrge networks, genetic-based meta-learning 
can become intractable due to the number of 
computations required. We used Fixed-Weight 
Learning Neural Networks (FWNNs) [4-71 to 
motivate how to use of gradient descent to speed 
up meta-learning. 

FWNNs are recurrent networks that have a learn- 
ing algorithm encoded or wired into their synap- 
tic weights. Recurrent signal loops store infor- 
mation about the particular mapping being 
learned by the network. Thus, they can learn 
without changing any of their synaptic weights. 

Figure 1 illustrates the conceptual steps involved 
in converting a single synapse neural network 
and its attendant learning algorithm into an 
equivalent FWNN. (This example ignores certain 
timing issues that change the details of the con- 
version, but not the overall concept.). 

We will use the term embedded leaming algo- 
rithm to refer to a learning algorithm encoded in 
synaptic weights. 

FWNNs move the adaptation associated with 
learning a particular mapping to the dynamics of 
the networks. The adaptation is manifest in the 
changing signals in the recurrent loops. On the 
other hand, the weights in a FWNN network 
represent the learning algorithm. Since the net- 
works output error is continuous with respect to 
changes in the synaptic weights, gradient decent 
applied to these weights is meta learning. 

The new idea we bring with this paper is that any 
recurrent network can be considered a potential 
fixed weight learning network. In other words, a 
recurrent network with random weights is simply 
a very inefficient learning machine. By applying 
standard gradient decent to these synaptic 
weights we improve the embedded learning algo- 
rithm associated with these weights. Further- 
more we can perform meta-learning without any 
modifications to the training algorithm(s) nor- 
mally used for that network. A fully recurrent 
network trained with the Williams and Zipser 
algorithm [8] can, in principle, be used for meta- 

learning. However, the training set must include 
exemplars from many different types of func- 
tional mappings. 

We have found certain recurrent architectures to 
be better than others at meta learning. One archi- 
tecture in particular is the Long Short-Term 
Memory (LSTM). 

2.3 The Long Short-Term Memory Network 
The LSTM Network [9] is a type of recurrent 
network that was designed to overcome the prob- 
lems that appear when trying to learn to store 
information long time intervals. In addition to 
standard neurons, the LSTM has special memory 
cells, shown in Figure 3. The memory cells con- 
sist of three main components: a self-recurrent 
linear neuron, input and output gate units con- 
trolled by gatekeeper neurons, and a non-linear 
output squash unit. A LSTM can have either one 
or two hidden layers. Neurons within each layer 
are fully interconnected. A special LSTM Trun- 
cated Backpropagation is used to train the net- 
work. We included the LSTM in our study be- 
cause Shitoot [lo] noticed strong similarities 
between the LSTM and the FWNNs reported in 
VI. 

3 The Key to Meta-Learning: Preparing the 
Meta-Training Data Set 

The selection of the training data is what deter- 
mines the difference between regular (non meta-) 
learning and meta-learning. Regular learning 
uses several examples of inputs and the associ- 
ated target outputs from a single functional map- 
ping. For meta-learning, we need many training 
pairs from many different functional mappings 
from a given set of such mappings. We will illus- 
trate by giving a specific example: the set or 
class of all Boolean mappings with two argu- 
ments and one result. This set of sixteen func- 
tions includes the standard AND, OR, and XOR. 
Our training corpus consisted of 100 instances 
the Boolean maps, selected in random order. For 
each instance of a Boolean map, there was a se- 
quence of 256 randomly generated training vec- 
tors. During each training cycle, we presented 
one of these vectors to the network. 

A training epoch consisted of a complete pass 
through all 25,600 vectors. Each training vector 
also contains the target output for the inputs of 
the current cycle. However, this value was only 
used to maintain a running tally of the mean 
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squared error. The tally was used by the supervi- 
sory program for the meta-learning. 

The FWN”s embedded learning algorithm 
needed a supplementary input so it can learn the 
presented mapping. We could have used the er- 
ror of the network’s output associated with the 
previous cycle’s input vector. Another possible 
supplementary input was the target (i.e. the func- 
tion’s result) associated with the previous cycle’s 
input vector. We choose the latter approach. 
Thus, each training vector had three input values: 
the two Boolean arguments, and the target for the 
previous training cycle. 

4 Experimental Results 

In [l 13 we detailed results of our experiments 
with gradient-based meta-learning. We evaluated 
several different recurrent network topologies 
(with their corresponding versions of Back- 
propagation) for their meta-learning ability. Af- 
ter meta-training, we evaluated the resulting 
learning networks on separately generated test 
data. 

We tested the potential meta-learning topologies 
and algorithms on three sets of functional map- 
pings. The first is the set of Boolean mappings 
described above. The second was a set of semi- 
linear function mappings given by the expression 
y=f . ( l+tanh(w,  .x, +w2 ‘x, +w,)), where 

x,, w, E [-1,1]. The x’s are the network inputs, 
they is the target function value. The w’s param- 
eterize or specify the particular mapping. This is 
the set of all mappings that a single neuron with 
one bias and two inputs can learn exactly (with 
weights in the range [-1,+1]). 

The third set of mappings was the set of two- 
parameter quadratic functions given by: 
y = ax: + bx: + cx,x, + dx, +ex ,  + f , where 
a, ..., f E [-1,1] parameterize the particular 
mapping. The x’s were as above, and the y was 
scaled to the interval [0.2,0.8] before being used 
as the target value. 

The only fully successful topology in meta- 
learning was the LSTM neural network and its 
associated LSTM Backpropagation. The LSTM 
meta-learning could successfully derive a learn- 
ing network for all mapping sets attempted. We 
used two versions for the LSTM, the standard 
three-layer version, and a modified four-layer 

version. The latter was required to derive a learn- 
ing network for the quadratic problem set. Table 
1 summarizes the LSTM results. The first col- 
umn shows the structure of the hidden layers. 
The first LSTM had one hidden layer with six 
memory cells and six standard neurons. The sec- 
ond meta-learning network had 12 memory cells 
and 6 regular neurons in its first hidden layer. It 
also had a second hidden layer with 40 standard 
neurons. The second column is the set of map- 
pings that were to be meta-learned. The third 
column is the number of examples for each map- 
ping’s presentation sequence. The fourth column 
is the number of epochs that the meta-learning 
program required to derive the learning algo- 
rithm. The fifth column is the Mean Squared 
Error on test data after meta-training has oc- 
curred. The final column is the average number 
of steps that the derived learning algorithm re- 
quired to converge. 

Figure 3 shows a plot of absolute error versus 
time, after meta-learning was successful. The 
plot is for the Boolean set of functional map- 
pings. The peaks at 512, 768, and 1024 indicate 
large error when a new mapping begins. Note 
that the error rapidly reduced after each change, 
indicating that the learning network performed 
successfully. 

Note that the resulting learning networks were 
rapid learners. The Boolean learning network, 
for instance, took only about ten steps to learn a 
new mapping - including XOR and NOT XOR. 

The most important aspect of our work was that 
effective learning networks were automatically 
derived by the LSTM meta-training, not the spe- 
cific learning networks that were generated. 

5 Discussion 

Why could the LSTM -meta-learn while other 
architectures could not? We believe that there 
were two necessary features. We showed in [ 111 
that the recurrent loop-back synaptic weights 
must be 1.0 and the neuron must have a linear 
squashing function into store information long- 
term. (Actually, the constraint is slightly less 
restrictive than this.) We also showed this ex- 
perimentally in [7]. The second necessary feature 
was the input gatekeeper units, which control the 
input to the loop cell. By learning when to allow 
and (perhaps more importantly) when to disallow 
new information into the memory cell, the 
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LSTM can store information for the longer peri- 
ods of time needed to do meta-learning. 

The ll units could be replaced by an equivalent 
(standard neuron) network at the expense of 
more complexity. 

How did the resultant learning networks work? 
Were they similar to known methods? It is very 
difficult to take apart a neural network (espe- 
cially a recurrent network) and extract the rules 
that are encoded in its synaptic weights. How- 
ever, examination of the output of the memory 
cells revealed that the Boolean problem learner 
encoded the sixteen possible functions by a four- 
neuron binary encoding scheme. Obviously, this 
way of enumerating the mappings would only 
work for small sets of mappings, each with a 
small number of possible results (in this case 0 
or 1). The meta-learning correctly extracted these 
properties from the meta-training data set. This is 
similar to the way a human being may try to 
solve the problem. 

Meta-learning on the set of Semi-linear functions 
resulted in a learning network that stored three 
continuous values in the memory cells. This re- 
flects the continuous, three-parameter nature of 
the set of mappings. 

The Quadratic problem learner also generated 
continuous values in its memory cells. Another 
signal it generated was approximately inversely 
proportional to the cycle step number within a 
sequence. We believe that the network used this 
signal to increase the influence of the errors near 
the beginning of the sequence, speeding up 
learning. 
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Figure 1 : Construction of an equivalent FW" for a single synapse and its attendant learning algorithm Clockwise 
from the upper left: (1) Conventional network with learning algorithm newW = f ( x ,  y .  6, oZdW) . (2) Universal ap- 
proximation allows us to replace the learning algorithm with an equivalent recurrent network. Note that recurrence is 
necessary to store the oldW information dynamically in signal loops. (3) Replace the synapse with a Il unit, removing 
the requirement to change the synaptic weight. (4) If required, replace the ll unit with an equivalent non-Il network. 
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Figure 2: LSTM memory cell. Key features are the input and output gates controlled by gatekeeper neurons, the linear 
memory loop neuron and the output squash neuron. The gatekeeper neurons learn when to allow data in and out of the 
memory loop neuron. 
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Table 1: Performances of Automatically Derived LSTM-Based Learning Networks 

1 

0.8 

0 . 6  

0 . 4  

0.2 

n 

Hidden Neu- Problem Set Examples per Epochs MSEt Cycles to 
rons Mapping Learn 
HI: 6 Memory Boolean 256 800 0.0058 10 

- 1 

- 

- 

- 

+ 6 Standard - 
Semi-Linear 64 10000 0.0008 10 
Semi-Linear 1000 5000 0.0025 50 

HI: 12 Memory Quadratic 100 25000 0.00068 35 
+ 6 Standard 
H2:40 Standard 

i o 0  5 0 0  6 0 0  7 0 0  800 900 1 0 0 0  1 1 0 0  

Figure 3: Absolute error versus time, after meta-leaming was successful. The plot is for the Boolean set of functional 
mappings. The peaks at 5 12,768, and 1024 indicate a large error when a new mapping begins. The rapid reduction of 
the error after the peaks shows that the net mapping was learned quickly. Before meta-learning, this entire plot would 
have consisted of errors the size of the peaks. 
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