
Bridging Long Time Lagsby Weight Guessing and\Long Short Term Memory"Sepp HochreiterFakult�at f�ur Informatik, Technische Universit�at M�unchen80290 M�unchen, GermanyJ�urgen SchmidhuberIDSIA, Corso Elvezia 36, 6900 Lugano, SwitzerlandAbstract. Numerous recent papers (including many NIPS papers) focus on standardrecurrent nets' inability to deal with long time lags between relevant input signalsand teacher signals. Rather sophisticated, alternative methods were proposed. We�rst show: problems used to promote certain algorithms in numerous previous paperscan be solved more quickly by random weight guessing than by the proposed algo-rithms. This does not mean that guessing is a good algorithm. It just casts doubt onwhether the other algorithms are, or whether the chosen problems are meaningful.We then use long short term memory (LSTM), our own recent algorithm, to solvehard problems that can neither be quickly solved by random weight guessing nor byany other recurrent net algorithm we are aware of.1 Introduction / OutlineMany recent papers focus on standard recurrent nets' inability to deal with long time lagsbetween relevant signals. See, e.g., Bengio et al., El Hihi and Bengio, and others [3, 1, 6,15]. Rather sophisticated, alternative methods were proposed. For instance, Bengio et al.investigate methods such as simulated annealing, multi-grid random search, time-weightedpseudo-Newton optimization, and discrete error propagation [3]. They also propose an EMapproach for propagating targets [1].Quite a few papers use Bengio et al.'s so-called \latch problem" (and \2-sequence prob-lem") to show the proposed algorithms's superiority, e.g. [3, 1, 6, 15]. For the same purpose,some papers also use the so-called \parity problem", e.g., [3, 1]. Some of Tomita's grammars[30] are also often used as benchmark problems for recurrent nets [2, 31, 23, 17]. We will show:all these and similar problems are not very useful to promote the proposed/investigated al-gorithms, because they turn out to be trivial. They can be solved more quickly by randomweight guessing than by the proposed algorithms [27]. We argue that novel long time lag al-gorithms should be tested on non-trivial problems whose solutions cannot be quickly guessed.We then show: LSTM, our own recent algorithm, can solve hard problems that can neitherbe solved by random weight guessing nor by any other recurrent net algorithm we are awareof. See [13] for a variant of this paper.



2 The 2-Sequence Problem and the Parity Problem Etc. are TrivialTrivial versus non-trivial tasks. By our de�nition, a \trivial" task is one that can be solvedquickly by random search in weight space. Random search works as follows: REPEATrandomly initialize the weights and test the resulting net on a training set UNTIL solutionfound.Random search details. In all our experiments, we randomly initialize weights in [-100.0,100.0]. Binary inputs are -1.0 (for 0) and 1.0 (for 1). Targets are either 1.0 or 0.0.All activation functions are logistic and sigmoid in [0.0,1.0]. We use two architectures (A1,A2) suitable for many widely used \benchmark" problems: A1 is a fully connected net with1 input, 1 output, and n biased hidden units. A2 is like A1 with n = 10, but somewhatless densely connected: each hidden unit sees the input unit, the output unit, and itself; theoutput unit sees all other units; all units are biased. All activations are set to 0 at eachsequence begin. We will indicate where we also use di�erent architectures of other authors.All sequence lengths are randomly chosen between 500 and 600 (most other authors facilitatetheir problems by using much shorter training/test sequences). The \benchmark" problemsalways require to classify two types of sequences. Our training set consists of 100 sequences,50 from class 1 (target 0) and 50 from class 2 (target 1). Correct sequence classi�cation isde�ned as \absolute error at sequence end below 0.1". We stop the search once a randomweight matrix correctly classi�es all training sequences. Then we test on the test set (100sequences). All results below are averages of 10 trials. In all our simulations below, guessing�nally classi�ed all test set sequences correctly; average �nal absolute test set errors werealways below 0.001 | in most cases below 0.0001.\2-sequence problem" (and \latch problem") [3, 1, 15]. The task is to observe and classifyinput sequences. There are two classes. There is only one input unit or input line. Only the�rst N real-valued sequence elements convey relevant information about the class. Sequenceelements at positions t > N (we use N = 1) are generated by a Gaussian with mean zero andvariance 0.2. The �rst sequence element is 1.0 (-1.0) for class 1 (2). Target at sequence endis 1.0 (0.0) for class 1 (2) (the latch problem is a simple version of the 2-sequence problemthat allows for input tuning instead of weight tuning).Bengio et al.'s results. For the 2-sequence problem, the best method among the six testedby Bengio et al. [3] was multigrid random search (sequence lengths 50 | 100; no precisestopping criterion mentioned), which solved the problem after 6,400 sequence presentations,with �nal classi�cation error 0.06. In more recent work, Bengio and Frasconi were able toimprove their results: an EM-approach [1] was reported to solve the problem within 2,900trials.Results with guessing. Random guessing with architecture A2 (A1, n = 1) solves theproblem within only 718 (1247) trials on average. Using Bengio et al.'s architecture forthe latch problem [3] (only 3 parameters), the problem was solved within only 22 trials onaverage, due to tiny parameter space. According to our de�nition above, the problem istrivial. Random guessing outperforms Bengio et al.'s methods in every respect: (1) manyfewer trials required, (2) less computation time per trial. Also, in most cases (3) the solutionquality is better (less error).\Parity problem". Bengio et al.'s (and Bengio and Frasconi's) parity task [3, 1] requiresto classify sequences with several 100 elements (only 1's or -1's) according to whether thenumber of 1's is even or odd. The target at sequence end is 1.0 for odd and 0.0 for even.Bengio et al.'s results. For sequences with only 25-50 steps, among the six methodstested in [3], only simulated annealing was reported to achieve �nal classi�cation error of0.000 (within about 810,000 trials | the authors did not mention the precise stoppingcriterion). A method called \discrete error BP" took about 54,000 trials to achieve �nalclassi�cation error 0.05. In their more recent work [1], for sequences with 250-500 steps,their EM-approach took about 3,400 trials to achieve �nal classi�cation error 0.12.Guessing results. Guessing with A1 (n = 1, identical to Bengio et al.'s architecture in [3])



solves the problem within only 2906 trials on average. Guessing with A2 solves it within 2797trials. We also ran another experiment with architecture A2, but without self-connectionsfor hidden units. Guessing solved the problem within 250 trials on average.Tomita grammars. Many authors also use Tomita's grammars [30] to test their algo-rithms. See, e.g., [2, 32, 22, 17, 16]. Since we already tested parity problems above, wenow focus on a few \parity-free" Tomita grammars (nr.s #1, #2, #4). Previous work evenfacilitated the problems by restricting sequence length. E.g., in [17], maximal test (training)sequence length is 15 (10). Reference [17] reports the number of sequences required forconvergence (for various �rst and second order nets with 3 to 9 units): Tomita #1: 23,000{ 46,000; Tomita #2: 77,000 { 200,000; Tomita #4: 46,000 { 210,000. Random guessing,however, clearly outperforms the methods in [17]. The average results are: Tomita #1: 182(A1, n = 1) and 288 (A2), Tomita #2: 1,511 (A1, n = 3) and 17,953 (A2), Tomita #4:13,833 (A1, n = 2) and 35,610 (A2).Flat minima. It should be mentioned that successful guessing typically hits 
at minimaof the error function [11].Non-trivial tasks / Outline of remainder. We believe that novel long time lag algorithmsshould be tested on problems whose solutions cannot be quickly guessed. The experimentsin the remainder of this paper deal with non-trivial tasks whose solutions are sparse inweight space. They require either many free parameters (e.g., input weights) or high weightprecision, such that random guessing becomes completely infeasible. All experiments involvelong minimal time lags | there are no short time lag training exemplars facilitating learning.To solve these tasks, however, we need the novel method called \Long Short Term Memory",or LSTM for short [10]. Section 3 will brie
y review LSTM. Section 4 will present new resultson tasks that cannot be solved at all by any other recurrent net learning algorithm we areaware of. LSTM can solve rather complex long time lag problems involving distributed, high-precision, continuous-valued representations, and is able to extract information conveyed bythe temporal order of widely separated inputs.3 Long Short Term MemoryMemory cells and gate units: basic ideas. LSTM's basic unit is called a memory cell. Withineach memory cell, there is a linear unit with a �xed-weight self-connection (compare Mozer'stime constants [19]). This enforces constant, non-exploding, non-vanishing error 
ow withinthe memory cell. A multiplicative input gate unit learns to protect the constant error 
owwithin the memory cell from perturbation by irrelevant inputs. Likewise, a multiplicativeoutput gate unit learns to protect other units from perturbation by currently irrelevantmemory contents stored in the memory cell. The gates learn to open and close access toconstant error 
ow. Why is constant error 
ow important? For instance, with conventional\backprop through time" (BPTT, e.g., [33]) or RTRL (e.g., [25]), error signals \
owingbackwards in time" tend to either (1) blow up or (2) vanish: the temporal evolution ofthe backpropagated error exponentially depends on the size of the weights. Case (1) maylead to oscillating weights. In case (2), learning to bridge long time lags takes a prohibitiveamount of time, or does not work at all | for a detailed theoretical analysis of error blow-ups/vanishing errors, see [9] (the vanishing error case was later also treated in [3]).LSTM Details. In what follows, wuv denotes the weight on the connection from unit vto unit u. netu(t); yu(t) are net input and activation of unit u (with activation function fu)at time t. For all non-input units that aren't memory cells (e.g. output units), we haveyu(t) = fu(netu(t)), where netu(t) = Pv wuvyv(t � 1). The j-th memory cell is denotedcj . Each memory cell is built around a central linear unit with a �xed self-connection(weight 1.0) and identity function as activation function (see de�nition of scj below). Inaddition to netcj (t) = Pu wcjuyu(t � 1), cj also gets input from a special unit outj (the\output gate"), and from another special unit inj (the \input gate"). inj 's activation at



time t is denoted by yinj (t). outj 's activation at time t is denoted by youtj (t). We haveyoutj (t) = foutj (netoutj (t)); yinj (t) = finj (netinj (t)), where netoutj (t) =Pu woutjuyu(t�1),netinj (t) = Pu winjuyu(t � 1). The summation indices u may stand for input units, gateunits, memory cells, or even conventional hidden units if there are any (see also paragraph on\network topology" below). All these di�erent types of units may convey useful informationabout the current state of the net. For instance, an input gate (output gate) may useinputs from other memory cells to decide whether to store (access) certain information in itsmemory cell. There even may be recurrent self-connections like wcjcj . It is up to the userto de�ne the network topology. At time t, cj 's output ycj (t) is computed in a sigma-pi-likefashion:ycj (t) = youtj (t)h(scj (t)); where scj (0) = 0; scj (t) = scj (t�1)+yinj (t)g �netcj (t)� for t > 0:The di�erentiable function g scales netcj . The di�erentiable function h squashes memorycell outputs computed from the internal state scj .Why gate units? inj controls the error 
ow to memory cell cj 's input connections wcju.The net can use inj to decide when to keep or override information in memory cell cj . outjcontrols the error 
ow from unit j's output connections. The net can use outj to decidewhen to access memory cell cj and when to prevent other units from being perturbed bycj . Error signals trapped within a memory cell cannot change { but di�erent error signals
owing into the cell (at di�erent times) via its output gate may get superimposed. Theoutput gate will have to learn which errors to trap in its memory cell, by appropriatelyscaling them. Likewise, the input gate will have to learn when to release errors. The gateunits open and close access to constant error 
ow.Network topology. There is one input layer, one hidden layer, and one output layer. Thefully self-connected hidden layer contains memory cells and corresponding gate units. Thehidden layer may also contain \conventional" hidden units providing inputs to gate unitsand memory cells. All units (except for gate units) in all layers have directed connections(serve as inputs) to all units in higher layers.Memory cell blocks. S memory cells sharing one input gate and one output gate forma \memory cell block of size S". Memory cell blocks facilitate information storage | likewith conventional neural nets, it is not so easy to code multiple distributed inputs within asingle cell.Learning with excellent computational complexity | see details in appendix of [12]. Weuse a variant of RTRL which properly takes into account the altered (sigma-pi-like) dynamicscaused by input and output gates. However, to ensure constant error backprop, like withtruncated BPTT [33], errors arriving at \memory cell net inputs" (for cell cj , this includesnetcj , netinj , netoutj ) do not get propagated back further in time (although they do serveto change the incoming weights). Only within memory cells, errors are propagated backthrough previous internal states scj . This enforces constant error 
ow within memory cells.Thus, like with Mozer's focused recurrent backprop algorithm [18], only the derivatives @scj@wilneed to be stored and updated. Hence, the algorithm is very e�cient, and LSTM's updatecomplexity per time step is excellent in comparison to other approaches such as RTRL: givenn units and a �xed number of output units, LSTM's update complexity per time step is atmost O(n2), just like BPTT's.4 ExperimentsOur previous experimental comparisons [10] (on widely used benchmark problems) with\Real-Time Recurrent Learning" (RTRL, e.g., [25]; results compared to the ones in [28]),\Recurrent Cascade-Correlation" [8], \Elman nets", (results compared to the ones in [4]),and \Neural Sequence Chunking" [26], already demonstrated that LSTM leads to manymore successful runs than its competitors, and learns much faster [10]. The following tasks,



though, are more di�cult than the above benchmark problems: they cannot be solved at allin reasonable time by random search (we tried various architectures) nor any other recurrentnet learning algorithm we are aware of, e.g., [25, 20, 7, 8, 33, 14, 21, 5, 15, 29, 1, 24, 26, 19].In the experiments below, gate units (finj ; foutj ) and output units are sigmoid in [0; 1].h is sigmoid in [�1; 1], and g is sigmoid in [�2; 2]. Weights are initialized in [�0:1; 0:1]. Allnon-input units are biased, and the output layer receives connections from memory cellsonly. Memory cells/gate units receive inputs from input units, memory cells, gate units(fully connected hidden layer | less connectivity works as well). Error signals occur onlyat sequence ends.4.1 Experiment 1: Adding ProblemThe experiment will show that LSTM can solve non-trivial, complex long time lag problemsinvolving distributed, high-precision, continuous-valued representations.Task. Each element of each input sequence is a pair consisting of two components.The �rst component is a real value randomly chosen from the interval [�1; 1]. The secondcomponent is either 1.0, 0.0, or -1.0, and is used as a marker: at the end of each sequence,the task is to output the sum of the �rst components of those pairs that are marked bysecond components equal to 1.0. The value T is used to determine average sequence length,which is a randomly chosen integer between T and T + T10 . With a given sequence, exactlytwo pairs are marked as follows: we �rst randomly select and mark one of the �rst ten pairs(whose �rst component is called X1). Then we randomly select and mark one of the �rstT2 � 1 still unmarked pairs (whose �rst component is called X2). The second componentsof the remaining pairs are zero except for the �rst and �nal pair, whose second componentsare -1 (X1 is set to zero in the rare case where the �rst pair of the sequence got marked).An error signal is generated only at the sequence end: the target is 0:5 + X1+X24:0 (the sumX1 + X2 scaled to the interval [0; 1]). A sequence was processed correctly if the absoluteerror at the sequence end is below 0.04.Architecture. We use a 3-layer net with 2 input units, 1 output unit, and 2 memory cellblocks of size 2 (a cell block size of 1 works well, too). The output layer receives connectionsonly from memory cells. Memory cells/gate units receive inputs from memory cells/gateunits (fully connected hidden layer | less connectivity may work as well).State drift versus initial bias. Note that the task requires to store the precise values ofreal numbers for long durations | the system must learn to protect memory cell contentsagainst even minor \internal state drifts". Our simple but highly e�ective way of solvingdrift problems at the beginning of learning is to initially bias the input gate inj towardszero. There is no need for �ne tuning initial bias: with sigmoid logistic activation functions,the precise initial bias hardly matters because vastly di�erent initial bias values producealmost the same near-zero activations. In fact, the system itself learns to generate themost appropriate input gate bias. To study the signi�cance of the drift problem, we biasall non-input units, thus arti�cially inducing internal state drifts. Weights (including biasweights) are randomly initialized in the range [�0:1; 0:1]. The �rst (second) input gate biasis initialized with �3:0 (�6:0) (recall that the precise initialization values hardly matters,as con�rmed by additional experiments).Training / Testing. The learning rate is 0.5. Training examples are generated on-line.Training is stopped if the average training error is below 0.01, and the 2000 most recentsequences were processed correctly (see de�nition above).Results. With a test set consisting of 2560 randomly chosen sequences, the average testset error was always below 0.01, and there were never more than 3 incorrectly processedsequences. The following results are means of 10 trials: For T = 100 (T = 500, T = 1000),training was stopped after 74,000 (209,000; 853,000) training sequences, and then only 1 (0,1) of the test sequences was not processed correctly. For T = 1000, the number of requiredtraining examples varied between 370,000 and 2,020,000, exceeding 700,000 in only 3 cases.



The experiment demonstrates even for very long time lags: (1) LSTM is able to workwell with distributed representations. (2) LSTM is able to perform calculations involvinghigh-precision, continuous values. Such tasks are impossible to solve within reasonable timeby other algorithms: the main problem of gradient-based approaches (including TDNN,pseudo Newton) is their inability to deal with very long minimal time lags (vanishing gra-dient). A main problem of \global" and \discrete" approaches (random search, Bengio'sand Frasconi's EM-approach, discrete error propagation) is their inability to deal with high-precision, continuous values.4.2 Experiment 2: Temporal OrderIn this subsection, LSTM solves another task that cannot be solved at all by any otherrecurrent net learning algorithm we are aware of. The task was suggested by Mike Mozer(personal communication).Task 2a: two relevant, widely separated symbols. The goal is to classify sequences. El-ements are represented locally (binary input vectors with only one non-zero bit). Thesequence starts with an E, ends with a B (the \trigger symbol") and otherwise consists ofrandomly chosen symbols from the set fa; b; c; dg except for two elements at positions t1 andt2 that are either X or Y . The sequence length is randomly chosen between 100 and 110,t1 is randomly chosen between 10 and 20, and t2 is randomly chosen between 50 and 60.There are 4 sequence classes Q;R; S; U which depend on the temporal order of X and Y .The rules are: X;X ! Q; X;Y ! R; Y;X ! S; Y; Y ! U .Task 2b: three relevant, widely separated symbols. Again, the goal is to classify sequences.Elements are represented locally. The sequence starts with an E, ends with a B (the \triggersymbol"), and otherwise consists of randomly chosen symbols from the set fa; b; c; dg exceptfor three elements at positions t1; t2 and t3 that are either X or Y . The sequence lengthis randomly chosen between 100 and 110, t1 is randomly chosen between 10 and 20, t2 israndomly chosen between 33 and 43, and t2 is randomly chosen between 66 and 76. There are8 sequence classes Q;R; S; U; V;A;B;C which depend on the temporal order of the Xs andY s. The rules are: X;X;X ! Q; X;X; Y ! R; X;Y;X ! S; X;Y; Y ! U ; Y;X;X !V ; Y;X; Y ! A; Y; Y;X ! B; Y; Y; Y ! C.With both tasks, error signals occur only at the end of a sequence. The sequence isclassi�ed correctly if the �nal error of all output units is below 0.3.Architecture. We use a 3-layer net with 8 input units, 2 (3) cell blocks of size 2 for task 2a(2b), 4 (8) output units for task 2a (2b). Again, non-input units are biased, and the outputlayer receives connections from memory cells only. Memory cells/gate units receive inputsfrom input units, memory cells, gate units (fully connected hidden layer | less connectivityworks as well).Training / Testing. The learning rate is 0.5 (0.1) for experiment 2a (2b). Trainingexamples are generated on-line. Training is stopped if average training error is below 0.1,and the 2000 most recent sequences were classi�ed correctly. Weights are initialized in[�0:1; 0:1]. The �rst (second) input gate bias is initialized with �2:0 (�4:0) (again, preciseinitialization values hardly matter, as con�rmed by additional experiments).Results. With a test set consisting of 2560 randomly chosen sequences, the averagetest set error was always below 0.1, and there were never more than 3 incorrectly classi�edsequences. The following results are means of 20 trials: For task 2a (2b), training wasstopped (see stopping criterion in previous paragraph) after on average 31,390 (571,100)training sequences, and then only 1 (2) of the 2560 test sequences were not classi�ed correctly(see de�nition above). Obviously, LSTM is able to extract information conveyed by thetemporal order of widely separated inputs.Conclusion. For non-trivial tasks (where random weight guessing is infeasible), we rec-ommend LSTM.
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