
LOCOCODE versus PCA and ICASepp HochreiterTechnische Universit�at M�unchen80290 M�unchen, Germany J�urgen SchmidhuberIDSIA, Corso Elvezia 36CH-6900-Lugano, SwitzerlandAbstractWe compare the performance of three unsupervised learning algorithmson visual patterns that are mixtures of few underlying sources: \Inde-pendent Component Analysis" (ICA), \Principal Component Analysis"(PCA), and our new method \Low-complexity coding and decoding" (Lo-cocode). ICA and PCA fail to separate the sources no matter whethertheir number is known or not. Lococode, however, always separatesthem. It also codes with fewer bits per pixel than ICA and PCA.1 IntroductionRecently several methods have been proposed for separating and extractingindependent sources of given data: \Independent Component Analysis" (ICA,e.g. [3, 1, 2, 11]), methods enforcing sparse codes [4, 6, 12, 10], and \low-complexity coding and decoding" (Lococode) [8, 9] based on Flat MinimumSearch (FMS) [7]. Previous research already highlighted some of Lococode'sadvantages [8]. Here we experimentally compare ICA, \Principal ComponentAnalysis" (PCA), and Lococode on visual data. Our criteria are: (1) Are theunderlying statistical causes of the data discovered and separated? (2) Whatis the input reconstruction error? (3) How many bits per pixel are needed tocode the input?2 The compared methodsFor PCA a standard MATLAB routine is used. ICA is realized by the JADE al-gorithm (Joint Approximate Diagonalization of Eigen-matrices, see [3]). JADEis based on whitening and subsequent joint diagonalization of 4th-order cumu-lant matrices. We used the MATLAB JADE version obtained via FTP fromsig.enst.fr.Lococode is realized by training a 3-layer autoassociator (AA) by FlatMinimum Search (FMS) [7]. Each layer is fully connected to the next. Thehidden layer represents the code. FMS is a general, gradient-based regulariza-tion method for �nding low-complexity networks (that can be described withfew bits of information and require low weight precision) with low, tolerabletraining error. Such nets tend to exhibit high generalization capability. Duringlearning FMS automatically prunes weights and units, and minimizes outputsensitivity with respect to remaining weights and units. See [7] for details. It



has been shown that FMS-based Lococode will result in sparse codes if inputsare describable by relatively few features (such as edges in images) [9].3 ExperimentsTo measure the information conveyed by the various codes of the input data wetrain a standard backprop net on the training set used for code generation. Itsinputs are the code components; its task is to reconstruct the original input.The average MSE on a test set is used to determine the reconstruction error.Coding e�ciency is measured by the average number of bits needed to codea test set input pixel. The code components are scaled to the interval [0; 1]partitioned into I discrete intervals | this results in I possible discrete valuesreecting an input noise assumption (large I ! little noise). Assuming inde-pendence of the code components we estimate the probability of each discretecode value by Monte Carlo sampling on the training set. To obtain the bitsper pixels (Shannon's optimal value) on the test set we divide the sum of thenegative logarithms of all code component probabilities (averaged over the testset) by the number of input components.3.1 Experiment 1: noisy independent barsWe use a standard benchmark task: the input is a 5 � 5 pixel grid with hor-izontal and vertical bars at random, independent positions (10 possible barlocations). Each bar is activated with probability 15 . The inputs are noisy:pixels of activated bars randomly vary in [0:1; 0:5]. Input units not a�ected bycurrently active bars adopt activation �0:5. Then Gaussian zero mean noisewith variance 0.05 is added to each input. The task is to extract the statisti-cally independent features (the bars), and is adapted from [5, 6] but even moredi�cult because vertical and horizontal bars may be mixed in the same input.Experimental conditions. The Lococode-trained AA has 25 input,25 output, and 25 hidden units (HUs), although just 10 HUs are needed foroptimal coding. Biased sigmoid output units are active in [�1; 1], HUs areactive in [0; 1]. Normal weights are initialized in [�0:1; 0:1], bias weights with-1.0, the learning rate is 1.0. The net is trained on 500 randomly generatedpatterns for 5,000 epochs. Etol = 2:5 (see [7]). The test set consists of 500o�-training set exemplars. For PCA and ICA, 1,000 training exemplars areused.Lococode results: see Figure 1 and Table 1. 15 of the 25 HUs are prunedaway. Lococode extracts an optimal (factorial) code which exactly mirrorsthe pattern generation process. It automatically �nds the correct number ofsources.PCA and ICA results: see Figure 2 and Table 1. PCA codes and ICA-15codes are unstructured and dense. For ICA-10 codes some sources are recog-nizable. They are not separated though: ICA and PCA fail to extract the trueinput causes and the optimal features. But at least PCA/ICA codes with 10
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Figure 1: Independent noisy bars. Left: Lococode's input-to-hidden weights.Right: hidden-to-output weights.components do convey as much information as 10-component codes found byLococode.
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Figure 2: Independent noisy bars. PCA and ICA: weights to code components(ICA with 10 and 15 components). Only ICA-10 codes reect a few sources,but they do not achieve the quality of codes obtained through Lococode.



3.2 Experiment 2: village imageAs in Experiment 1 the goal is to extract features from visual data, this timethe aerial shot of a village. Figure 3 shows two images with 150� 150 pixels,each taking on one of 256 gray levels. They are mostly dark except for certainwhite regions. 7 � 7 pixels subsections, corresponding to 49 inputs/outputs,from the left (right) image are randomly chosen as training (test) inputs, wheregray levels are scaled to input activations in [�0:5; 0:5]. Targets are scaled to[�0:7; 0:7].
Train Test

Figure 3: Village image. Image sections used for training (left) and testing(right).Experimental conditions. Like in Experiment 1, except that training isstopped after 150,000 training examples, Etol = 3:0. For PCA and ICA, 3,000training exemplars are used.Lococode results: see Figure 4 and Table 1. 9 to 11 HUs survive the6 trials. The entire input is covered by white on-centers of surviving unitsthat exhibit on-center-o�-surround weight structures. This allows for detectingall white regions in the input �eld. Since most bright spots are connected,output/input units near an active output/input unit tend to be active, too.PCA and ICA results: see Table 1. PCA-10 codes and ICA-10 codesare about as informative as 10-component codes found by Lococode. In fact,PCA's eigenvalues indicate that there are about 10 signi�cant code components.Lococode automatically discovers this.4 ConclusionLococode achieves success solely by reducing information-theoretic (de)cod-ing costs. Unlike previous approaches it does not depend on explicit terms
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Figure 4: Village. Left: Lococode's input-to-hidden weights. Right: hidden-to-output weights. Most units are essentially pruned away.Exp. input meth. num. rec. code code e�cency { reconst.�eld comp. error type 20 100bars 5� 5 LOC 10 1.05 sparse 0.84 - 1.15 1.37 - 1.06bars 5� 5 ICA 10 1.02 sparse 1.09 - 1.22 1.68 - 1.03bars 5� 5 PCA 10 1.03 dense 1.06 - 1.13 1.66 - 1.04bars 5� 5 ICA 15 0.71 dense 1.60 - 1.11 2.50 - 0.73bars 5� 5 PCA 15 0.72 dense 1.58 - 0.82 2.47 - 0.72village 7� 7 LOC 10 8.29 sparse 0.37 - 8.52 0.69 - 8.29village 7� 7 ICA 10 7.90 dense 0.46 - 8.44 0.80 - 7.91village 7� 7 PCA 10 9.21 dense 0.46 - 9.60 0.80 - 9.22village 7� 7 ICA 15 6.57 dense 0.70 - 7.40 1.20 - 6.58village 7� 7 PCA 15 8.03 dense 0.69 - 8.43 1.19 - 8.04Table 1: Overview over experiments: name of experiment, input �eld size,coding method, code size, reconstruction error, nature of code observed on thetest set. PCA's and ICA's code sizes are prewired. Lococode's, however, arefound automatically. The �nal 2 columns show the coding e�ciency measuredin bits per pixels and the reconstruction error, for code components mapped to20 and 100 discrete intervals. Lococode exhibits superior coding e�ciency.enforcing independence or zero mutual information among code components,or sparseness.Codes obtained by ICA, PCA and Lococode convey about the same in-formation, as indicated by the reconstruction error. But Lococode's codinge�ciency is much higher: it needs fewer bits per input pixel.PCA does not separate data sources in the noisy bars experiment. ICA
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