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Recurrent nets are in principle capable to store past inputs to produce the currently
desired output. Because of this property recurrent nets are used in time series predic-
tion and process control. Practical applications involve temporal dependencies spanning
many time steps, e.g. between relevant inputs and desired outputs. In this case, however,
gradient based learning methods take too much time. The extremely increased learning
time arises because the error vanishes as it gets propagated back. In this article the de-
caying error flow is theoretically analyzed. Then methods trying to overcome vanishing
gradients are briefly discussed. Finally, experiments comparing conventional algorithms
and alternative methods are presented. With advanced methods long time lag problems
can be solved in reasonable time.

Keywords: recurrent neural nets; vanishing gradient; long-term dependencies; Long
Short-Term Memory.

1. Introduction

Recurrent neural nets can extract temporal dependencies. Therefore recurrent nets
are used for applications including temporal delays of relevant signals, e.g., speech
processing, non-Markovian control, time series analysis, process control,? and music
composition.® Recurrent nets must learn which past inputs have to be stored to
produce the current desired output. With gradient based learning methods the
current error signal has to “flow back in time” over the feedback connections to past
inputs for building up an adequate input storage. Conventional backpropagation,
however, suffers from a too long learning time, when minimal time lags between
relevant inputs and corresponding teacher signals are extended. For instance, with
“backprop through time” (BPTT*) or “Real-Time Recurrent Learning” (RTRL?),
error signals flowing backwards in time tend to vanish. Long-term dependencies
are hard to learn because of insufficient weight changes. Section 2 theoretically
analyzes the vanishing gradient. Section 3 presents methods trying to overcome the
problem of vanishing gradients. In Section 4 conventional algorithms are compared
with advanced methods on several tasks including long time lags.

*This article is partly based on previous publications.’
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2. Decaying Gradient
2.1. Conventional backpropagation through time (BPTT)

Assume a fully connected recurrent net with units 1,...,n is given. The acti-
vation of a non-input unit ¢ with activation function f; and net input net; (t) =
Zj wijyj (t—1)is ¥ (t) = fi (net; (1)). w;; 1s the weight on the connection from
unit j to i. dj (t) denotes output unit k’s target at current time ¢. Using mean
squared error, k’s external (target) error is

Ei (1) = (d (1) =" () (1)

(all non-output units ¢ have zero external error F; (f) = 0). At an arbitrary time
7 < t non-input unit j’s error signal is the sum of the external error and the
backpropagated error signal from the previous time step:

0; (7) = f} (net; (1)) ( —|—Zw” T+1) (2)

Error signals are set to zero when activations are reset at time 7:
Uj(r) =0 and f;j (net; (7)) = 0. The weight update at time 7 is
wif = wi® +ad; (1)y (1= 1), (3)
where « is the learning rate, and [ is an arbitrary unit connected to unit j.
Error flow scaling factor. See also earlier contributions to the analysis of the
vanishing gradient.® "' Backpropagating an error occurring at an unit u at time
step £ to an unit v for ¢ time steps, scales the error by:

0y (t—q) I (nety (8 — 1)) wy g=1 )
9. () | ety (=) Sy 2=y, g > 1

With I, = v and ly = u, the scaling factor is

5 t—q Z Z Hf, (nety,, (t—m))wi,1,_, - (5)

lg—1=1m=1
Analyzing Fq. (5). The relation between the experimentally observed vanishing
gradient and Eq. (5) will be explained. The sum of the n?=! terms

q

H (nety,, (t —m))wi 1,._, (6)

scales the error back flow. If

p (Ml b)) == |f] (nety,, (t —m))wi,i,_, | <1.0 (7)
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for all m the largest product in Eq. (5) decreases exponentially with ¢, that is,
the error flow vanishes. A vanishing error back flow has almost no effect on weight
updates. Given constant y'm=1 £ 0, p (m, Ly, l;—1) is maximal where

1 1
w1, , = ——coth <§n6tlm) . (8)

ylm—l

For increasing absolute weight values |wl | — 00, p (M, lm, lm—1) converges to

mlm—l
zero. Thus, the vanishing gradient cannot be avoided by increasing the absolute
weight values. Terms as in formula (6) may have different signs. Therefore, in-
creasing the number of units n does not necessarily increase the absolute error flow
value. But with more units the expectation of the error back flow’s absolute value
increases.

If f1,, is the logistic sigmoid function, the maximal value of f; is 0.25. Therefore,
| < 4.0. If wpaee < 4.0 holds for the

absolute maximal weight value wpq, (e.g. initialization) then all p(m,{n, lnh-1)

p(mylm,lm_1) is less than 1.0 for |wlmlm_1
are smaller than 1.0. Hence, with logistic activation functions the error flow tends
to vanish especially at the beginning of learning.

Increasing the learning rate does not countermand the effects of vanishing gra-
dients, because it won’t change the ratio of long-range error flow and short-range
error flow (recent inputs have more influence on the current output).

2.2. Upper bound for the absolute scaling factor

Matrix A’s element in the ¢-th column and j-th row is denoted by [A]Z»j. The

i-th component of vector z is denoted by [z];,. The activation vector at time ¢

with net input vector Net(t) := W Y (¢t — 1) and weight matrix [W];; := w;; is
[V (1)), := ¢ (t) (for simplicity the external input is suppressed).
The activation function vector is [F' (Net (t))], := fi (net; (t)), therefore
Y@)=F(Net(t))=F(WY (t-1)). (9)

F'(t) is the diagonal matrix of first order derivatives defined as:
[F'(0)];; = fi (net; (1)) if i = j, and [F'(t)];; := 0 otherwise. W, is unit v’s
outgoing weight vector ([W,], := [W],, = w;y) and W, is unit «’s incoming weight

vector ([Wyr]; := [W],; = wu;). The vector OV __ g defined as

dnet,(t—q)
dnety (t —q) ], Onety (t —q)
for ¢ > 0 and the matrix Vy;_1)Y (t) is defined as
_ oy
[Vy(-nY 0)];; = W E—1) (11)

From the definitions

Vy@-nY (1) = F' (1) W (12)
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is obtained. Again, the scaling factor of an error flowing back from an unit « (at
time t) for ¢ time steps to an unit v is computed:

00, (t—q)  Onety (1) oy (t—-1)
Oy (t)  Onet, (t—q) Vy-nnetu () Onet, (t —q)

q—2
Y (t—q+1
Vyg—nynety (t) ] (Vy@emen)Y (t = m)) W -

m=1
q—2
(WUT)T H (F't—m)W) F'(t—q+1) Wy [l (net, (t —q)), (13)
m=1
where 7' i1s the transposition operator.

Using a matrix norm ||.||, compatible with vector norm ||.||,, fl,4. is defined
as fhae = Maxm=1__ {|[F" (t =m)|[4}. For maxi=y _n{|e:[} < |lz]|, one gets
[z7y] < n |zl llyll,- Since |f] (nety (t = @) < [ (t = d)llg < Fhae, the
following inequality is obtained:

9y (t = q) s
‘W < (Fae)” Wl IWerlle WG < 0 (Fae IWILA)Y - (14)
This inequality results from
IWoll, = Weull, < (W, lleull, < [IWl4 (15)
and
Werll, = [[WTeu], < W4 lleall, < NIWIl4, (16)

where ej, 1s the unit vector of zeros and only the k-th component is 1.

This best case upper bound will only be reached if all ||F’ (¢ — m)||, are maximal,
and contributions from all error flow paths have equal sign (see the product terms
in Eq. (5)). A large ||W]||,, however, leads to small values of ||[F’ (t — m)|| , because
most sigmoid units are saturated and the derivatives are small (also confirmed by

experiments). Taking the norms ||W/||, := max, )" |w,| and ||z||, := max, |z,|,
! . = 0.25 holds for the logistic sigmoid. For
4.0
|wij| S Wmar < —— Vl,j (17)
n

one gets ||W]|, < nwmae < 4.0. With the value p := (24maz) < 1.0 we get the
exponential decay

\%@)Q)\ < n(w? (18)

2.3. Information theoretic consideration

From another point of view the vanishing gradient corresponds to a vanishing
information in the internal states of a recurrent net. Let (G be the function mapping
the previous internal states Y (¢t — 1) to the actual internal states

GY(t—1):=Y (t)=F(Net(t)) = F(W Y (t—1)). (19)
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Considering Y (¢) and Y (¢ — 1) as random variables the mutual information between
these random variables is

HY @) -H Y ()Y (t-1)), (20)

where H denotes the entropy of a random variable and (Y (¢) | Y (t — 1)) means the
conditional random variable Y (t) given Y (¢ — 1).
For the entropy of Y ()

H(Y (1)) < H (Y (t = 1)) + B (log |det (J (¥ (1 = 1)))] (21)

holds,® where E is the expectation of a random variable and J is the Jacobian of
(. The stability of the recurrent net requires

|det (J (Y (¢ = 1)) < 1. (22)

This requirement makes the recurrent net resistant to noise (small changes of the
input do not drive the net to very different states).”% The left-hand side of Eq. (22)
is usually below 1 such that the information in the internal states vanishes over
time. The problem of vanishing information gets worse with increasing length of
the time interval over which the information has to be stored. To avoid vanishing
information

det (J (Y (1—1))) =1 (23)

must be enforced (volume-conserving mappings®). A volume-conserving mapping
restricted to only one internal state 1s the main idea of “Long Short Term Memory”
(LSTM!%1L1) mentioned in the next section.

3. Methods for Long Time Lag Learning

Gradient descent based algorithms. Many widely used methods 1213:14,15,16,17

suffer from a vanishing gradient. They have considerable difficulties learning long-
term dependencies. To overcome the vanishing gradient problem there are four
types of solutions:

(i) Methods which do not use gradients.

(i1) Methods which enforce higher gradients.
(iii) Methods which operate on higher levels.
(iv) Methods which use special architectures.

(i) Global search methods do not use gradient information. Methods such as
simulated annealing, multi-grid random search,® and random weight guessing'® were
investigated. It was found that global search methods work well on “simple” prob-
lems involving long-term dependencies. “Simple” problems are characterized by
solutions with nets containing few parameters and the absence of precise computa-

tion (these solutions correspond to “flat minima”!?).
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(i1) Larger values of the gradient can be enforced by time-weighted pseudo-
Newton optimization and discrete error propagation.® It seems that these methods
have problems learning to store precise real-valued information over time.

(iii) An EM approach for target propagation has previously been proposed.?°
This approach uses a discrete number of states and, therefore, will have problems
with continuous values.

Kalman filter techniques are used for recurrent network training.? But a deriva-
tive discount factor leads to vanishing gradient problems.

If a long-time lag problem contains local regularities, a hierarchical chunker
system works well.2!

(iv) Second order nets (using sigma-pi units) are in principle capable to increase
the error flow, but vanishing error problems can hardly be avoided.??23

With a “Time-Delay Neural Network” (TDNN?*), net activations from previous
time steps are fed back into the net using fixed delay lines. In TDNNs the error
decrease 18 slowed down because the error uses “shortcuts” as it gets propagated
back. TDNNs have to deal with a trade-off: increasing the length of delay line
increases the error flow but the net has more parameters/units. Special cases of
TDNNs are NARX networks,?® and the weighted sum of old activations instead
of a fixed delay line.?® A more complex version of a TDNN, called the “Gamma
Memory”, was proposed,?” but its performance on problems involving long-term
dependencies does not appear to be better than the performance of TDNNs.

In some architectures time constants determine the scaling factor of the error if
it gets propagated back for one time step at a single unit.? But extended time gaps
cannot be processed because an appropriate time constant fine tuning is almost
impossible.

Updating a single unit by adding the old activation and the scaled current net
input avoids the vanishing gradient.?® But the stored value is sensible to pertur-
bations by later irrelevant net inputs. “Long Short Term Memory” (LSTM!%111)
uses a special architecture to enforce constant error flow through special units (in-
cluding a volume-conserving mapping). Unlike in the method avoiding vanishing
gradients?® mentioned above, perturbations by current irrelevant signals are pre-
vented by multiplicative units.

4. Experiments
A more detailed presentation of the experiments can be found in an extended
article.!

4.1. FEzperiment 1: embedded Reber grammar

Task. The “embedded Reber grammar” was often used as a benchmark problem
for recurrent nets.?3%13 This task does not include long time lags and, therefore,
can be learned by conventional methods. The experiment serves to show that even
on short time lag problems alternative methods outperform conventional gradient
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descent methods. Being at the leftmost node (with an empty string) in Fig. 2
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Fig. 2. Embedded Reber grammar. Boxes

REBER

Fig. 1. Reber grammar. represent the Reber grammar in Fig. 1.

a string is produced by following the directed edges and adding the corresponding
symbols to the current string until arriving in the rightmost node. Alternative edges
are chosen randomly (probability: 0.5). The net sequentially processes the string
obtaining as input the actual symbol and having to predict the next symbol. In
order to predict the last but one string symbol (“T” or “P”) the net has to store
the second symbol (“T” or “P”).

RTRL, Elman nets (ELM), Fahlman’s “Recurrent Cascade-Correlation” (RCC),
and LSTM are applied to this task. Experimental details can be found in the
references listed in Table 1, which gives the results. Only LSTM almost always
learned the task. Also it learned faster then the competitors.

Table 1. Experiment 1 — embedded Reber grammar. Percentage of successful trials and learn-

ing time for successful trials for RTRL, Elman nets, RCC and LSTM. Results taken from other

articles,?9,30,13,1

| method | hidden units | # weights | learning rate | % of success | success after |

RTRL 3 =~ 170 0.05 “some fraction” 173,000
RTRL 12 =~ 494 0.1 “some fraction” 25,000
ELM 15 =~ 435 0 >200,000
RCC 7-9 2 119-198 50 182,000
LSTM 4 blocks, size 1 264 0.1 100 39,740
LSTM 3 blocks, size 2 276 0.1 100 21,730
LSTM 3 blocks, size 2 276 0.2 97 14,060
LSTM 4 blocks, size 1 264 0.5 97 9,500
LSTM 3 blocks, size 2 276 0.5 100 8,440

4.2. FExperiment 2: long time lags

The limitations of gradient descent based methods can be seen on the simple
task 2a involving long minimal time lags. But advanced methods can learn the
difficult task 2b even with minimal time lags of 1000.

Task 2a — long time lags with regularities. Two sequences are use for training:
(y,a1,as,...,ap_1,y) and (x,a1,as, ..., ap_1,2). The symbols are coded locally by
a (p+ 1)-dimensional input vector. Strings are processed sequentially and the net
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has to predict the next string symbol in each step. For predicting the last symbol
the net has to remember the first symbol. Therefore this task involves a minimal
time lag of p. Note: The sequences have local regularities required by the neural
sequence chunker but not by LSTM.

RTRL °, BPTT, the neural sequence chunker (CH?!), and LSTM are compared.
Table 2 gives the results. Gradient based methods (RTRL, BPTT) get into trouble
when the minimal time lag exceeds 10 steps.

Table 2. Task 2a — long time lags with regularities. Success percentage and learning time until
success. Results taken from another article.!

| Method | Delay p | Learning rate | # weights | % Successful trials | Success after |

RTRL 4 1.0 36 78 1,043,000
RTRL 4 4.0 36 56 892,000
RTRL 4 10.0 36 22 254,000
RTRL 10 1.0-10.0 144 0 > 5,000,000
RTRL 100 1.0-10.0 10404 0 > 5,000,000
BPTT 100 1.0-10.0 10404 0 > 5,000,000
CH 100 1.0 10506 33 32,400
LSTM 100 1.0 10504 100 5,040

Task 2b — very long time lags without regularities. The goal is to predict
the last symbol of a sequence. There are p + 4 possible input symbols denoted
A1,y Qp_1,Gp, Gpy1 = €,0py2 = b, dpp3 = &, dppa = y. Again, a; is locally repre-
sented by a (p + 4)-dimensional vector. Training sequences are randomly chosen
from two very similar sets of sequences:

{(b’y’ailﬁai2"'"aiq+k’e’y) | 1 S ilaiZa"'aiq-I—k S Q} and

{(b,z, a5, a5y, ... a5, e,2) | 1 < iy, ia,. . g4 < q}. The minimal sequence
length 1s ¢ + 4; & is chosen randomly with probability 11—0(%)’“. To solve the task

the net has to learn to store a representation of the second element for at least ¢+ 1
time steps. To our knowledge no other recurrent net algorithm can solve it.

Table 3 lists the mean number of training sequences required by LSTM to be
successful. Tt can be seen in Table 3 that letting the number of input symbols (and
weights) increase in proportion to the time lag, learning time increases very slowly.

Table 3. Task 2b — very long time lags without regularities. The rightmost column lists the
number of training sequences required by LSTM. Results taken from another article.!

| ¢ (timelag —1) [ # weights | Success after |

50 364 30,000
100 664 31,000
200 1264 33,000
500 3064 38,000

1,000 6064 49,000

5. Conclusion

The error flow for gradient based recurrent learning methods was theoretically
analyzed. This analysis showed that learning to bridge long time lags can be dif-
ficult. Advanced methods to overcome the vanishing gradient problem were men-
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tioned, but most of these approaches have serious disadvantages (e.g. practicable
only for discrete problems). The experiments confirmed that conventional learning
algorithms for recurrent nets cannot learn long time lag problems in a reasonable
time. Advanced methods (like LSTM) performed well on long time lag problems
involving time lags of 1000 steps.
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