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2 The Vanishing Gradient Problem for Recurrent Nets and Solutions2. Decaying Gradient2.1. Conventional backpropagation through time (BPTT)Assume a fully connected recurrent net with units 1; : : : ; n is given. The acti-vation of a non-input unit i with activation function fi and net input neti (t) =Pj wijyj (t � 1) is yi (t) = fi (neti (t)). wij is the weight on the connection fromunit j to i. dk (t) denotes output unit k's target at current time t. Using meansquared error, k's external (target) error isEk (t) = �dk (t)� yk (t)� (1)(all non-output units i have zero external error Ei (t) = 0). At an arbitrary time� � t non-input unit j's error signal is the sum of the external error and thebackpropagated error signal from the previous time step:#j (� ) = f 0j (netj (� )) Ej (� ) +Xi wij#i (� + 1)! : (2)Error signals are set to zero when activations are reset at time � :#j (� ) = 0 and f 0j (netj (� )) = 0. The weight update at time � iswnewjl = woldjl + �#j (� ) yl (� � 1) ; (3)where � is the learning rate, and l is an arbitrary unit connected to unit j.Error ow scaling factor. See also earlier contributions to the analysis of thevanishing gradient.6;7;1 Backpropagating an error occurring at an unit u at timestep t to an unit v for q time steps, scales the error by:@#v (t� q)@#u (t) = ( f 0v (netv (t� 1))wuv q = 1f 0v (netv (t� q))Pnl=1 @#l(t�q+1)@#u(t) wlv q > 1 : (4)With lq = v and l0 = u, the scaling factor is@#v (t � q)@#u (t) = nXl1=1 : : : nXlq�1=1 qYm=1 f 0lm (netlm (t�m))wlmlm�1 . (5)Analyzing Eq. (5). The relation between the experimentally observed vanishinggradient and Eq. (5) will be explained. The sum of the nq�1 termsqYm=1 f 0lm (netlm (t�m))wlmlm�1 (6)scales the error back ow. If� (m; lm; lm�1) := ��f 0lm (netlm (t �m))wlmlm�1 �� < 1:0 (7)



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 3for all m the largest product in Eq. (5) decreases exponentially with q, that is,the error ow vanishes. A vanishing error back ow has almost no e�ect on weightupdates. Given constant ylm�1 6= 0, � (m; lm; lm�1) is maximal wherewlmlm�1 = 1ylm�1 coth�12netlm� : (8)For increasing absolute weight values ��wlmlm�1 �� !1, � (m; lm; lm�1) converges tozero. Thus, the vanishing gradient cannot be avoided by increasing the absoluteweight values. Terms as in formula (6) may have di�erent signs. Therefore, in-creasing the number of units n does not necessarily increase the absolute error owvalue. But with more units the expectation of the error back ow's absolute valueincreases.If flm is the logistic sigmoid function, the maximalvalue of f 0lm is 0.25. Therefore,� (m; lm; lm�1) is less than 1:0 for ��wlmlm�1 �� < 4:0. If wmax < 4:0 holds for theabsolute maximal weight value wmax (e.g. initialization) then all � (m; lm; lm�1)are smaller than 1.0. Hence, with logistic activation functions the error ow tendsto vanish especially at the beginning of learning.Increasing the learning rate does not countermand the e�ects of vanishing gra-dients, because it won't change the ratio of long-range error ow and short-rangeerror ow (recent inputs have more inuence on the current output).2.2. Upper bound for the absolute scaling factorMatrix A's element in the i-th column and j-th row is denoted by [A]ij. Thei-th component of vector x is denoted by [x]i. The activation vector at time twith net input vector Net (t) := W Y (t� 1) and weight matrix [W ]ij := wij is[Y (t)]i := yi (t) (for simplicity the external input is suppressed).The activation function vector is [F (Net (t))]i := fi (neti (t)), thereforeY (t) = F (Net (t)) = F (W Y (t� 1)) : (9)F 0 (t) is the diagonal matrix of �rst order derivatives de�ned as:[F 0 (t)]ij := f 0i (neti (t)) if i = j, and [F 0 (t)]ij := 0 otherwise. Wv is unit v'soutgoing weight vector ([Wv]i := [W ]iv = wiv) and WuT is unit u's incoming weightvector ([WuT ]i := [W ]ui = wui). The vector @Y (t)@netv(t�q) is de�ned as� @Y (t)@netv (t� q)�i := @yi (t)@netv (t � q) (10)for q � 0 and the matrix rY (t�1)Y (t) is de�ned as�rY (t�1)Y (t)�ij := @yi (t)@yj (t � 1) : (11)From the de�nitions rY (t�1)Y (t) = F 0 (t) W (12)



4 The Vanishing Gradient Problem for Recurrent Nets and Solutionsis obtained. Again, the scaling factor of an error owing back from an unit u (attime t) for q time steps to an unit v is computed:@#v (t� q)@#u (t) = @netu (t)@netv (t� q) = rY (t�1)netu (t) @Y (t� 1)@netv (t� q) =rY (t�1)netu (t) q�2Ym=1 �rY (t�m�1)Y (t�m)� @Y (t� q + 1)@netv (t � q) =(WuT )T q�2Ym=1 (F 0 (t �m)W ) F 0 (t � q + 1) Wv f 0v (netv (t � q)) ; (13)where T is the transposition operator.Using a matrix norm k:kA compatible with vector norm k:kx, f 0max is de�nedas f 0max := maxm=1;:::;qfkF 0 (t�m)kAg. For maxi=1;:::;nfjxijg � kxkx one gets��xTy�� � n kxkx kykx. Since jf 0v (netv (t � q))j � kF 0 (t� q)kA � f 0max, thefollowing inequality is obtained:����@#v (t� q)@#u (t) ���� � n (f 0max)q kWvkx kWuT kx kWkq�2A � n (f 0max kWkA)q : (14)This inequality results fromkWvkx = kWevkx � kWkA kevkx � kWkA (15)and kWuT kx = WT eux � kWkA keukx � kWkA ; (16)where ek is the unit vector of zeros and only the k-th component is 1.This best case upper bound will only be reached if all kF 0 (t �m)kA are maximal,and contributions from all error ow paths have equal sign (see the product termsin Eq. (5)). A large kWkA, however, leads to small values of kF 0 (t �m)kA becausemost sigmoid units are saturated and the derivatives are small (also con�rmed byexperiments). Taking the norms kWkA := maxrPs jwrsj and kxkx := maxr jxrj,f 0max = 0:25 holds for the logistic sigmoid. Forjwijj � wmax < 4:0n 8i; j (17)one gets kWkA � nwmax < 4:0. With the value � := �nwmax4:0 � < 1:0 we get theexponential decay ����@#v (t� q)@#u (t) ���� � n (�)q : (18)2.3. Information theoretic considerationFrom another point of view the vanishing gradient corresponds to a vanishinginformation in the internal states of a recurrent net. Let G be the function mappingthe previous internal states Y (t� 1) to the actual internal statesG (Y (t� 1)) := Y (t) = F (Net (t)) = F (W Y (t� 1)) : (19)



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5Considering Y (t) and Y (t� 1) as randomvariables the mutual informationbetweenthese random variables isH (Y (t)) �H (Y (t) j Y (t� 1)) ; (20)where H denotes the entropy of a random variable and (Y (t) j Y (t� 1)) means theconditional random variable Y (t) given Y (t� 1).For the entropy of Y (t)H (Y (t)) � H (Y (t� 1)) +E (log jdet (J (Y (t� 1)))j) (21)holds,8 where E is the expectation of a random variable and J is the Jacobian ofG. The stability of the recurrent net requiresjdet (J (Y (t� 1)))j � 1: (22)This requirement makes the recurrent net resistant to noise (small changes of theinput do not drive the net to very di�erent states).9;6 The left-hand side of Eq. (22)is usually below 1 such that the information in the internal states vanishes overtime. The problem of vanishing information gets worse with increasing length ofthe time interval over which the information has to be stored. To avoid vanishinginformation det (J (Y (t� 1))) = 1 (23)must be enforced (volume-conserving mappings8). A volume-conserving mappingrestricted to only one internal state is the main idea of \Long Short Term Memory"(LSTM10;11;1) mentioned in the next section.3. Methods for Long Time Lag LearningGradient descent based algorithms. Many widely used methods 12;13;14;15;16;17su�er from a vanishing gradient. They have considerable di�culties learning long-term dependencies. To overcome the vanishing gradient problem there are fourtypes of solutions:(i) Methods which do not use gradients.(ii) Methods which enforce higher gradients.(iii) Methods which operate on higher levels.(iv) Methods which use special architectures.(i) Global search methods do not use gradient information. Methods such assimulated annealing, multi-grid random search,6 and randomweight guessing18 wereinvestigated. It was found that global search methods work well on \simple" prob-lems involving long-term dependencies. \Simple" problems are characterized bysolutions with nets containing few parameters and the absence of precise computa-tion (these solutions correspond to \at minima"19).



6 The Vanishing Gradient Problem for Recurrent Nets and Solutions(ii) Larger values of the gradient can be enforced by time-weighted pseudo-Newton optimization and discrete error propagation.6 It seems that these methodshave problems learning to store precise real-valued information over time.(iii) An EM approach for target propagation has previously been proposed.20This approach uses a discrete number of states and, therefore, will have problemswith continuous values.Kalman �lter techniques are used for recurrent network training.2 But a deriva-tive discount factor leads to vanishing gradient problems.If a long-time lag problem contains local regularities, a hierarchical chunkersystem works well.21(iv) Second order nets (using sigma-pi units) are in principle capable to increasethe error ow, but vanishing error problems can hardly be avoided.22;23With a \Time-Delay Neural Network" (TDNN24), net activations from previoustime steps are fed back into the net using �xed delay lines. In TDNNs the errordecrease is slowed down because the error uses \shortcuts" as it gets propagatedback. TDNNs have to deal with a trade-o�: increasing the length of delay lineincreases the error ow but the net has more parameters/units. Special cases ofTDNNs are NARX networks,25 and the weighted sum of old activations insteadof a �xed delay line.26 A more complex version of a TDNN, called the \GammaMemory", was proposed,27 but its performance on problems involving long-termdependencies does not appear to be better than the performance of TDNNs.In some architectures time constants determine the scaling factor of the error ifit gets propagated back for one time step at a single unit.3 But extended time gapscannot be processed because an appropriate time constant �ne tuning is almostimpossible.Updating a single unit by adding the old activation and the scaled current netinput avoids the vanishing gradient.28 But the stored value is sensible to pertur-bations by later irrelevant net inputs. \Long Short Term Memory" (LSTM10;11;1)uses a special architecture to enforce constant error ow through special units (in-cluding a volume-conserving mapping). Unlike in the method avoiding vanishinggradients28 mentioned above, perturbations by current irrelevant signals are pre-vented by multiplicative units.4. ExperimentsA more detailed presentation of the experiments can be found in an extendedarticle.14.1. Experiment 1: embedded Reber grammarTask. The \embedded Reber grammar" was often used as a benchmark problemfor recurrent nets.29;30;13 This task does not include long time lags and, therefore,can be learned by conventional methods. The experiment serves to show that evenon short time lag problems alternative methods outperform conventional gradient



International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 7descent methods. Being at the leftmost node (with an empty string) in Fig. 2
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REBERFig. 2. Embedded Reber grammar. Boxesrepresent the Reber grammar in Fig. 1.a string is produced by following the directed edges and adding the correspondingsymbols to the current string until arriving in the rightmost node. Alternative edgesare chosen randomly (probability: 0.5). The net sequentially processes the stringobtaining as input the actual symbol and having to predict the next symbol. Inorder to predict the last but one string symbol (\T" or \P") the net has to storethe second symbol (\T" or \P").RTRL, Elman nets (ELM), Fahlman's \Recurrent Cascade-Correlation" (RCC),and LSTM are applied to this task. Experimental details can be found in thereferences listed in Table 1, which gives the results. Only LSTM almost alwayslearned the task. Also it learned faster then the competitors.Table 1. Experiment 1 | embedded Reber grammar. Percentage of successful trials and learn-ing time for successful trials for RTRL, Elman nets, RCC and LSTM. Results taken from otherarticles.29;30;13;1method hidden units # weights learning rate % of success success afterRTRL 3 � 170 0.05 \some fraction" 173,000RTRL 12 � 494 0.1 \some fraction" 25,000ELM 15 � 435 0 >200,000RCC 7-9 � 119-198 50 182,000LSTM 4 blocks, size 1 264 0.1 100 39,740LSTM 3 blocks, size 2 276 0.1 100 21,730LSTM 3 blocks, size 2 276 0.2 97 14,060LSTM 4 blocks, size 1 264 0.5 97 9,500LSTM 3 blocks, size 2 276 0.5 100 8,4404.2. Experiment 2: long time lagsThe limitations of gradient descent based methods can be seen on the simpletask 2a involving long minimal time lags. But advanced methods can learn thedi�cult task 2b even with minimal time lags of 1000.Task 2a | long time lags with regularities. Two sequences are use for training:(y; a1; a2; : : : ; ap�1; y) and (x; a1; a2; : : : ; ap�1; x). The symbols are coded locally bya (p + 1)-dimensional input vector. Strings are processed sequentially and the net



8 The Vanishing Gradient Problem for Recurrent Nets and Solutionshas to predict the next string symbol in each step. For predicting the last symbolthe net has to remember the �rst symbol. Therefore this task involves a minimaltime lag of p. Note: The sequences have local regularities required by the neuralsequence chunker but not by LSTM.RTRL 5, BPTT, the neural sequence chunker (CH21), and LSTM are compared.Table 2 gives the results. Gradient based methods (RTRL, BPTT) get into troublewhen the minimal time lag exceeds 10 steps.Table 2. Task 2a | long time lags with regularities. Success percentage and learning time untilsuccess. Results taken from another article.1Method Delay p Learning rate # weights % Successful trials Success afterRTRL 4 1.0 36 78 1,043,000RTRL 4 4.0 36 56 892,000RTRL 4 10.0 36 22 254,000RTRL 10 1.0-10.0 144 0 > 5,000,000RTRL 100 1.0-10.0 10404 0 > 5,000,000BPTT 100 1.0-10.0 10404 0 > 5,000,000CH 100 1.0 10506 33 32,400LSTM 100 1.0 10504 100 5,040Task 2b | very long time lags without regularities. The goal is to predictthe last symbol of a sequence. There are p + 4 possible input symbols denoteda1; :::; ap�1; ap; ap+1 = e; ap+2 = b; ap+3 = x; ap+4 = y. Again, ai is locally repre-sented by a (p + 4)-dimensional vector. Training sequences are randomly chosenfrom two very similar sets of sequences:f(b; y; ai1; ai2 ; : : : ; aiq+k ; e; y) j 1 � i1; i2; : : : ; iq+k � qg andf(b; x; ai1; ai2 ; : : : ; aiq+k; e; x) j 1 � i1; i2; : : : ; iq+k � qg. The minimal sequencelength is q + 4; k is chosen randomly with probability 110( 910)k. To solve the taskthe net has to learn to store a representation of the second element for at least q+1time steps. To our knowledge no other recurrent net algorithm can solve it.Table 3 lists the mean number of training sequences required by LSTM to besuccessful. It can be seen in Table 3 that letting the number of input symbols (andweights) increase in proportion to the time lag, learning time increases very slowly.Table 3. Task 2b | very long time lags without regularities. The rightmost column lists thenumber of training sequences required by LSTM. Results taken from another article.1q (time lag �1) # weights Success after50 364 30,000100 664 31,000200 1264 33,000500 3064 38,0001,000 6064 49,0005. ConclusionThe error ow for gradient based recurrent learning methods was theoreticallyanalyzed. This analysis showed that learning to bridge long time lags can be dif-�cult. Advanced methods to overcome the vanishing gradient problem were men-
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