
Source Separation as aBy-Product of RegularizationSepp HochreiterFakult�at f�ur InformatikTechnische Universit�at M�unchen80290 M�unchen, Germanyhochreit@informatik.tu-muenchen.de J�urgen SchmidhuberIDSIACorso Elvezia 366900 Lugano, Switzerlandjuergen@idsia.chAbstractThis paper reveals a previously ignored connection between twoimportant �elds: regularization and independent component anal-ysis (ICA). We show that at least one representative of a broadclass of algorithms (regularizers that reduce network complexity)extracts independent features as a by-product. This algorithm isFlat Minimum Search (FMS), a recent general method for �ndinglow-complexity networks with high generalization capability. FMSworks by minimizing both training error and required weight pre-cision. According to our theoretical analysis the hidden layer ofan FMS-trained autoassociator attempts at coding each input bya sparse code with as few simple features as possible. In experi-ments the method extracts optimal codes for di�cult versions ofthe \noisy bars" benchmark problem by separating the underlyingsources, whereas ICA and PCA fail. Real world images are codedwith fewer bits per pixel than by ICA or PCA.1 INTRODUCTIONIn the �eld of unsupervised learning several information-theoretic objective func-tions (OFs) have been proposed to evaluate the quality of sensory codes. Most OFsfocus on properties of the code components | we refer to them as code component-oriented OFs, or COCOFs. Some COCOFs explicitly favor near-factorial, mini-mally redundant codes of the input data [2, 17, 23, 7, 24] while others favor localcodes [22, 3, 15]. Recently there has also been much work on COCOFs encouragingbiologically plausible sparse distributed codes [19, 9, 25, 8, 6, 21, 11, 16].While COCOFs express desirable properties of the code itself they neglect the costsof constructing the code from the data. E.g., coding input data without redun-



dancy may be very expensive in terms of information required to describe the code-generating network, which may need many �nely tuned free parameters. We believethat one of sensory coding's objectives should be to reduce the cost of code genera-tion through data transformations, and postulate that an important scarce resourceis the bits required to describe the mappings that generate and process the codes.Hence we shift the point of view and focus on the information-theoretic costs ofcode generation. We use a novel approach to unsupervised learning called \low-complexity coding and decoding" (Lococode [14]). Without assuming particulargoals such as data compression, subsequent classi�cation, etc., but in the spiritof research on minimum description length (MDL), Lococode generates so-calledlococodes that (1) convey information about the input data, (2) can be computedfrom the data by a low-complexity mapping (LCM), and (3) can be decoded by anLCM. We will see that by minimizing coding/decoding costs Lococode can yielde�cient, robust, noise-tolerant mappings for processing inputs and codes.Lococodes through regularizers. To implement Lococode we apply regular-ization to an autoassociator (AA) whose hidden layer activations represent the code.The hidden layer is forced to code information about the input data by minimizingtraining error; the regularizer reduces coding/decoding costs. Our regularizer ofchoice will be Flat Minimum Search (FMS) [13].2 FLAT MINIMUM SEARCH: REVIEW AND ANALYSISFMS is a general gradient-based method for �nding low-complexity networks withhigh generalization capability. FMS �nds a large region in weight space such thateach weight vector from that region has similar small error. Such regions are called\at minima". In MDL terminology, few bits of information are required to pick aweight vector in a \at" minimum (corresponding to a low-complexity network) |the weights may be given with low precision. FMS automatically prunes weightsand units, and reduces output sensitivity with respect to remaining weights andunits. Previous FMS applications focused on supervised learning [12, 13].Notation. Let O;H; I denote index sets for output, hidden, and input units,respectively. For l 2 O [ H , the activation yl of unit l is yl = f (sl), wheresl =Pmwlmym is the net input of unit l (m 2 H for l 2 O and m 2 I for l 2 H),wlm denotes the weight on the connection from unit m to unit l, f denotes theactivation function, and for m 2 I , ym denotes the m-th component of an inputvector. W = j(O �H) [ (H � I)j is the number of weights.Algorithm. FMS' objective function E features an unconventional error term:B = Xi;j: i2O[H logXk2O� @yk@wij �2 +W logXk2O0BB@ Xi;j:i2O[H ��� @yk@wij ���rPk2O � @yk@wij �21CCA2 :E = Eq + �B is minimized by gradient descent, where Eq is the training set meansquared error (MSE), and � a positive \regularization constant" scaling B's in-uence. Choosing � corresponds to choosing a tolerable error level (there is no apriori \optimal" way of doing so). B measures the weight precision (number ofbits needed to describe all weights in the net). Given a constant number of outputunits, FMS can be implemented e�ciently, namely, with standard backprop's orderof computational complexity [13].



2.1 FMS: A Novel AnalysisSimple basis functions (BFs). A BF is the function determining the activationof a code component in response to a given input. Minimizing B's termT1 := Xi;j: i2O[H logXk2O� @yk@wij�2obviously reduces output sensitivity with respect to weights (and therefore units).T1 is responsible for pruning weights (and, therefore, units). T1 is one reason whylow-complexity (or simple) BFs are preferred: weight precision (or complexity) ismainly determined by @yk@wij .Sparseness. Because T1 tends to make unit activations decrease to zero it favorssparse codes. But T1 also favors a sparse hidden layer in the sense that few hiddenunits contribute to producing the output. B's second termT2 := W logXk2O0BB@ Xi;j: i2O[H ��� @yk@wij ���rPk2O � @yk@wij �21CCA2
punishes units with similar inuence on the output. We reformulate it:T2 =W log0BB@ Xi;j: i2O[H Xu;v: u2O[H Pk2O ���@yk@yi ��� ��� @yk@yu ���rPk2O �@yk@yi �2rPk2O � @yk@yu�21CCA =W log0BB@jOj jO �H j2 + jI j2 Xk2OXi2H Xu2H ���@yk@yi ��� ��� @yk@yu ���rPk2O �@yk@yi �2rPk2O � @yk@yu�21CCA :See intermediate steps in [14]. We observe: (1) an output unit that is very sensitivewith respect to two given hidden units will heavily contribute to T2 (compare thenumerator in the last term of T2). (2) This large contribution can be reduced bymaking both hidden units have large impact on other output units (see denominatorin the last term of T2).Few separated basis functions. Hence FMS tries to �gure out a way of using(1) as few BFs as possible for determining the activation of each output unit, whilesimultaneously (2) using the same BFs for determining the activations of as manyoutput units as possible (common BFs). (1) and T1 separate the BFs: the force to-wards simplicity (see T1) prevents input information from being channelled througha single BF; the force towards few BFs per output makes them non-redundant. (1)and (2) cause few BFs to determine all outputs.Summary. Collectively T1 and T2 (which make up B) encourage sparse codesbased on few separated simple basis functions producing all outputs. Due to spacelimitations a more detailed analysis (e.g. linear output activation) had to be left toa TR [14] (on the WWW).



3 EXPERIMENTSWe compare Lococode to \independent component analysis" (ICA, e.g., [5, 1,4, 18]) and \principal component analysis" (PCA, e.g., [20]). ICA is realized byCardoso's JADE algorithm, which is based on whitening and subsequent joint diag-onalization of 4th-order cumulant matrices. To measure the information conveyedby resulting codes we train a standard backprop net on the training set used forcode generation. Its inputs are the code components; its task is to reconstruct theoriginal input. The test set consists of 500 o�-training set exemplars (in the caseof real world images we use a separate test image). Coding e�ciency is the averagenumber of bits needed to code a test set input pixel. The code components arescaled to the interval [0; 1] and partitioned into discrete intervals. Assuming inde-pendence of the code components we estimate the probability of each discrete codevalue by Monte Carlo sampling on the training set. To obtain the test set codes'bits per pixel (Shannon's optimal value) the average sum of all negative logarithmsof code component probabilities is divided by the number of input components. Alldetails necessary for reimplementation are given in [14].Noisy bars adapted from [10, 11]. The input is a 5�5 pixel grid with horizontaland vertical bars at random positions. The task is to extract the independentfeatures (the bars). Each of the 10 possible bars appears with probability 15 . Incontrast to [10, 11] we allow for bar type mixing | this makes the task harder.Bar intensities vary in [0:1; 0:5]; input units that see a pixel of a bar are activatedcorrespondingly others adopt activation �0:5. We add Gaussian noise with variance0.05 and mean 0 to each pixel. For ICA and PCA we have to provide informationabout the number (ten) of independent sources (tests with n assumed sources willbe denoted by ICA-n and PCA-n). Lococode does not require this | using 25hidden units (HUs) we expect Lococode to prune the 15 superuous HUs.Results. See Table 1. While the reconstruction errors of all methods are similar,Lococode has the best coding e�ciency. 15 of the 25 HUs are indeed automati-cally pruned: Lococode �nds an optimal factorial code which exactly mirrors thepattern generation process. PCA codes and ICA-15 codes, however, are unstruc-tured and dense. While ICA-10 codes are almost sparse and do recognize somesources, the sources are not clearly separated like with Lococode | compare theweight patterns shown in [14].Real world images. Now we use more realistic input data, namely subsections of:1) the aerial shot of a village, 2) an image of wood cells, and 3) an image of stripedpiece of wood. Each image has 150 � 150 pixels, each taking on one of 256 graylevels. 7 � 7 (5 � 5 for village) pixels subsections are randomly chosen as traininginputs. Test sets stem from images similar to 1), 2), and 3).Results. For the village image Lococode discovers on-center-o�-surround hiddenunits forming a sparse code. For the other two images Lococode also �nds appro-priate feature detectors | see weight patterns shown in [14]. Using its compact,low-complexity features it always codes more e�ciently than ICA and PCA.



exp. input meth. num. rec. code bits per pixel: # intervals�eld comp. error type 10 20 50 100bars 5� 5 LOC 10 1.05 sparse 0.584 0.836 1.163 1.367bars 5� 5 ICA 10 1.02 sparse 0.811 1.086 1.446 1.678bars 5� 5 PCA 10 1.03 dense 0.796 1.062 1.418 1.655bars 5� 5 ICA 15 0.71 dense 1.189 1.604 2.142 2.502bars 5� 5 PCA 15 0.72 dense 1.174 1.584 2.108 2.469village 5� 5 LOC 8 1.05 sparse 0.436 0.622 0.895 1.068village 5� 5 ICA 8 1.04 sparse 0.520 0.710 0.978 1.165village 5� 5 PCA 8 1.04 dense 0.474 0.663 0.916 1.098village 5� 5 ICA 10 1.11 sparse 0.679 0.934 1.273 1.495village 5� 5 PCA 10 0.97 dense 0.578 0.807 1.123 1.355village 7� 7 LOC 10 8.29 sparse 0.250 0.368 0.547 0.688village 7� 7 ICA 10 7.90 dense 0.318 0.463 0.652 0.796village 7� 7 PCA 10 9.21 dense 0.315 0.461 0.648 0.795village 7� 7 ICA 15 6.57 dense 0.477 0.694 0.981 1.198village 7� 7 PCA 15 8.03 dense 0.474 0.690 0.972 1.189cell 7� 7 LOC 11 0.840 sparse 0.457 0.611 0.814 0.961cell 7� 7 ICA 11 0.871 sparse 0.468 0.622 0.829 0.983cell 7� 7 PCA 11 0.722 sparse 0.452 0.610 0.811 0.960cell 7� 7 ICA 15 0.360 sparse 0.609 0.818 1.099 1.315cell 7� 7 PCA 15 0.329 dense 0.581 0.798 1.073 1.283piece 7� 7 LOC 4 0.831 sparse 0.207 0.269 0.347 0.392piece 7� 7 ICA 4 0.856 sparse 0.207 0.276 0.352 0.400piece 7� 7 PCA 4 0.830 sparse 0.207 0.269 0.348 0.397piece 7� 7 ICA 10 0.716 sparse 0.535 0.697 0.878 1.004piece 7� 7 PCA 10 0.534 sparse 0.448 0.590 0.775 0.908Table 1: Overview of experiments: name of experiment, input �eld size, codingmethod, number of relevant code components (code size), reconstruction error, na-ture of code observed on the test set. PCA's and ICA's code sizes need to be prewired.Lococode's, however, are found automatically (we always start with 25 HUs). The�nal 4 columns show the coding e�ciency measured in bits per pixel, assuming thereal-valued HU activations are partitioned into 10, 20, 50, and 100 discrete inter-vals. Lococode codes most e�ciently.4 CONCLUSIONAccording to our analysis Lococode attempts to describe single inputs with as fewand as simple features as possible. Given the statistical properties of many visualinputs (with few de�ning features), this typically results in sparse codes. Unlikeobjective functions of previous methods, however, Lococode's does not containan explicit term enforcing, say, sparse codes | sparseness or independence are notviewed as a good things a priori. Instead we focus on the information-theoreticcomplexity of the mappings used for coding and decoding. The resulting codestypically compromise between conicting goals. They tend to be sparse and exhibitlow but not minimal redundancy | if the cost of minimal redundancy is too high.Our results suggest that Lococode's objective may embody a general principle ofunsupervised learning going beyond previous, more specialized ones. We see thatthere is at least one representative (FMS) of a broad class of algorithms (regularizersthat reduce network complexity) which (1) can do optimal feature extraction as aby-product, (2) outperforms traditional ICA and PCA on visual source separationtasks, and (3) unlike ICA does not even need to know the number of independentsources in advance. This reveals an interesting, previously ignored connection be-



tween regularization and ICA, and may represent a �rst step towards uni�cation ofregularization and unsupervised learning.More. Due to space limitations, much additional theoretical and experimentalanalysis had to be left to a tech report (29 pages, 20 �gures) on the WWW: see[14].Acknowledgments. This work was supported by DFG grant SCHM 942/3-1 andDFG grant BR 609/10-2 from \Deutsche Forschungsgemeinschaft".References[1] S. Amari, A. Cichocki, and H.H. Yang. A new learning algorithm for blindsignal separation. In David S. Touretzky, Michael C. Mozer, and Michael E.Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages757{763. The MIT Press, Cambridge, MA, 1996.[2] H. B. Barlow, T. P. Kaushal, and G. J. Mitchison. Finding minimum entropycodes. Neural Computation, 1(3):412{423, 1989.[3] H. G. Barrow. Learning receptive �elds. In Proceedings of the IEEE 1st AnnualConference on Neural Networks, volume IV, pages 115{121. IEEE, 1987.[4] A. J. Bell and T. J. Sejnowski. An information-maximization approach toblind separation and blind deconvolution. Neural Computation, 7(6):1129{1159, 1995.[5] J.-F. Cardoso and A. Souloumiac. Blind beamforming for non Gaussian signals.IEE Proceedings-F, 140(6):362{370, 1993.[6] P. Dayan and R. Zemel. Competition and multiple cause models. NeuralComputation, 7:565{579, 1995.[7] G. Deco and L. Parra. Nonlinear features extraction by unsupervised redun-dancy reduction with a stochastic neural network. Technical report, SiemensAG, ZFE ST SN 41, 1994.[8] D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559{601, 1994.[9] P. F�oldi�ak and M. P. Young. Sparse coding in the primate cortex. In M. A.Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 895{898. The MIT Press, Cambridge, Massachusetts, 1995.[10] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithmfor unsupervised neural networks. Science, 268:1158{1161, 1995.[11] G. E. Hinton and Z. Ghahramani. Generative models for discovering sparsedistributed representations. Philosophical Transactions of the Royal Society B,352:1177{1190, 1997.[12] S. Hochreiter and J. Schmidhuber. Simplifying nets by discovering at minima.In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in NeuralInformation Processing Systems 7, pages 529{536. MIT Press, Cambridge MA,1995.[13] S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1{42, 1997.[14] S. Hochreiter and J. Schmidhuber. LOCOCODE. Technical Report FKI-222-97, Revised Version, Fakult�at f�ur Informatik, Technische Universit�at M�unchen,1998.



[15] T. Kohonen. Self-Organization and Associative Memory. Springer, second ed.,1988.[16] M. S. Lewicki and B. A. Olshausen. Inferring sparse, overcomplete image codesusing an e�cient coding framework. In M. I. Jordan, M. J. Kearns, and S. A.Solla, editors, Advances in Neural Information Processing Systems 10, 1998.To appear.[17] R. Linsker. Self-organization in a perceptual network. IEEE Computer, 21:105{117, 1988.[18] L. Molgedey and H. G. Schuster. Separation of independent signals using time-delayed correlations. Phys. Reviews Letters, 72(23):3634{3637, 1994.[19] M. C. Mozer. Discovering discrete distributed representations with iterativecompetitive learning. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky,editors, Advances in Neural Information Processing Systems 3, pages 627{634.San Mateo, CA: Morgan Kaufmann, 1991.[20] E. Oja. Neural networks, principal components, and subspaces. InternationalJournal of Neural Systems, 1(1):61{68, 1989.[21] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive �eldproperties by learning a sparse code for natural images. Nature, 381(6583):607{609, 1996.[22] D. E. Rumelhart and D. Zipser. Feature discovery by competitive learning. InParallel Distributed Processing, pages 151{193. MIT Press, 1986.[23] J. Schmidhuber. Learning factorial codes by predictability minimization. Neu-ral Computation, 4(6):863{879, 1992.[24] S. Watanabe. Pattern Recognition: Human and Mechanical. Willey, New York,1985.[25] R. S. Zemel and G. E. Hinton. Developing population codes by minimizingdescription length. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,Advances in Neural Information Processing Systems 6, pages 11{18. San Mateo,CA: Morgan Kaufmann, 1994.


