
Coulomb Classi�ers:Reinterpreting SVMs as Eletrostati SystemsSepp Hohreiter and Mihael C. MozerTehnial Report CU-CS-921-01Department of Computer SieneUniversity of ColoradoBoulder, CO 80309{0430fhohreit,mozerg�s.olorado.eduMay 2001AbstratWe introdue a family of lassi�ers based on a physial analogy to aneletrostati system of harged ondutors. The family, alled Coulomblassi�ers, inludes the two best-known support-vetor mahines (SVMs),the �{SVM and the C{SVM. In the eletrostatis analogy, a training ex-ample orresponds to a harged ondutor at a given loation in spae, thelassi�ation funtion orresponds to the eletrostati potential funtion,and the training objetive funtion orresponds to the Coulomb energy.The eletrostati framework not only provides a novel interpretation ofexisting algorithms and their interrelationships, but it suggests a varietyof new methods for SVMs inluding kernels that bridge the gap betweenpolynomial and radial-basis funtions, objetive funtions that do not re-quire positive-de�nite kernels, regularization tehniques that are not astin terms of violation of margin onstraints, and speed-up tehniques us-ing either approximate or restrited-but-exat algorithms. Based on theframework, we propose novel SVMs and perform simulation studies toshow that they are omparable or superior to standard SVMs. The ele-trostati framework subsumes not only SVMs but also nearest neighbor,density estimation, vetor quantization, and lustering tehniques.1 IntrodutionReently, Support Vetor Mahines (SVMs) [1, 8, 5℄ have attrated muh inter-est in the mahine-learning ommunity and are onsidered state of the art forlassi�ation and regression problems. One appealing property of SVMs is thatthey are based on a onvex optimization problem, whih means that a single1



minimum exists and an be omputed eÆiently. In this paper, we present anew derivation of SVMs by analogy to an eletrostati system of harged on-dutors. The eletrostati framework not only provides a physial interpretationof SVMs, but it also gives insight as to some of the seemingly arbitrary aspetsof SVMs (e.g., the diagonal elements in the quadrati form), and it allows us toderive novel SVM approahes.We will disuss the lassi�ation of an input vetor x 2 X into one of twoategories, \+" or \�". We assume a supervised learning problem in whih Ntraining examples are available, eah example i onsisting of an input xi and alabel yi 2 f�1;+1g.We will introdue three eletrostati models that have diret analogy tomahine-learning (ML) lassi�ers, starting with a relatively limited eletrostatimodel and the following two building on and generalizing from the previous. Foreah model, we desribe the physial system and show its orrespondene to anML lassi�er.1.1 Eletrostati model 1: Unoupled point hargesConsider an eletrostati system of point harges populating a spae X 0 homol-ogous to X . Eah point harge orresponds to a partiular training example;point harge i is �xed at loation xi in X 0, and has a harge of sign yi. Wede�ne two sets of �xed harges: S+ = fxi j yi = +1g and S� = fxi j yi = �1g.The harge of point i is denoted Qi � yi �i, where �i � 0 is the amount ofharge, to be disussed below.We briey review some elementary physis. If a unit positive harge is atx in X 0, it will be repelled by all harges in S+ and attrated to all hargesin S�. To move the harge from x to ~x, the fore must be overome at everypoint along the trajetory; the path integral of the fore along the trajetory isalled the work and does not depend on the trajetory. The potential at x is thework that must be done to move a unit positive harge from a referene point(usually in�nity) to x.The potential at x is ' (x) =PNi=1Qi G (xi; x), where G is a kernel measur-ing the distane between x and xi (in eletrostati systems, G (a; b) = 1= ka� bk2).From this de�nition, one an see that the potential at x is negative (positive) ifx is in a neighborhood of relatively many negative (positive) harges. Thus, thepotential indiates the sign and amount of harge in the loal neighborhood.Turning bak to the ML lassi�er, one might propose a lassi�ation rulefor some input x that assigns the label \+" if '(x) > 0 or \�" otherwise.Abstrating from the eletrostati system, if �i = 1 and G is a funtion thatdereases suÆiently steeply with distane, we obtain a nearest-neighbor las-si�er. (By \suÆiently steeply," we mean that if xi is the losest point to xthen G (xi; x) > N G (xj ; x)8j 6= i.) The potential an also be viewed as thedi�erene between a kernel density estimator for the \+" lass and a kernel2



density estimator for the \�" lass if �i = jSyi j�1 (S+1 � S+ and S�1 � S�)and 8a : R G (a; x) dx = 1.1.2 Eletrostati model 2: Coupled point hargesConsider now an eletrostati model that extends the previous model in two re-spets. First, the point harges are replaed by ondutors, e.g., metal spheres.Eah ondutor i has a self{potential oeÆient, denoted Pii, whih is a mea-sure of how muh harge it an easily hold; for a metal sphere, Pii is relatedto sphere's diameter. Seond, the ondutors in S+ are oupled, as are theondutors in S�. \Coupling" means that harge is free to ow between theondutors. (Tehnially, S+ and S� an eah be viewed as a single ondutor,but we will still use \ondutor" in orrespondene with i 2 f1 : : :Ng.)In this model, we initially plae the same harge on eah ondutor, and allowharges within S+ and S� to ow freely (we assume no resistane in the ouplingand no polarization of the ondu-tors). After the harges redistribute,harge will tend to end up on theperiphery of a homogeneous neigh-borhood of ondutors, beause likeharges repel. Charge will also tendto end up along the S+{S� bound-ary beause opposite harges attrat.See Figure 1 for a depition of the re-distributed harges. The shading is
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-Figure 1: Coupled ondutor system at the en-ergy minimum. Shading indiates the hargemagnitude. The zero potential isoline is shown.proportional to the magnitude �i.An ML lassi�er an be built based on this model, one again using '(x) >0 as the deision rule for lassi�ation. In this model, however, the �i arenot uniform; the ondutors with large �i will have the greatest inuene onthe potential funtion. Consequently, one an think of �i as the weight orimportane of example i. As we will show shortly, the examples with �i > 0 areexatly support vetors of an SVM.1.2.1 Formal PresentationThe potential on ondutor i, 'i � '(xi) an be desribed by the oeÆientsof potential Pij [6℄: 'i =PNj=1 Pij Qj , where Pii � Pij � 0 and Pij = Pji. Pijspei�es the potential indued on ondutor i by harge Qj on ondutor j. Touse a onrete physial example, if eah ondutor i is a metal sphere enteredat xi and has radius ri, the system an be modeled by a point harge Qi atxi, Pii = G (xi; �xi), where �xi is an arbitrary point on the sphere surfae, andPij = G (xi; xj) [2, 6℄. G (a; b) must be isotropi, i.e., depend only on ka� bk2.The free harge ow in S+ and S� orresponds to minimizing the Coulomb3



energy,E = 12 NXi=1 'i Qi = 12 QT P Q = 12 NXi;j=1Pij yi yj �i �j :Initially, we set �i = K= jSyi j to assign the same total harge magnitude K toS+ and S� and to make the harge uniform for eah ondutor in eah set.Coulomb energy minimization redistributes the harges.In order for this eletrostati model to serve as a lassi�er, we must enforethe onstraint �i � 0 to ensure that an example does not hange its lasslabel. We do this by treating energy minimization as a onstrained optimizationproblem with 0 � �i � C, where C is an optional upper bound (whih an beset to 1 to eliminate the onstraint). In the physial model, the onstraint on�i an be satis�ed by disonneting a ondutor i from the harge ow in S+or S� when �i reahes the lower or upper bound, whih will freeze its value.After the energy minimum is reahed, the potential will be the same for alli 2 S+ whih are still onneted; we denote this potential 'S+ . Similarly, 'S�denotes the potential whih is the same for all i 2 S� whih are still onneted.To use the potential, '(x), to lassify an input x, we must ensure that 'S+ ='S� to eliminate any bias toward lassi�ation as \+" or \�". We an do soby introduing a onstant potential b (something like ionized air in the physialsystem), i.e., ' (x) =PNi=1Qi G (xi; x) + b, where b = �0:5 ('S+ + 'S�).We have desribed a system of oupled ondutors with two additional on-straints: (1) that the harge on a ondutor is bounded, and (2) that positiveand negative potentials are balaned. This physial system orresponds to a �{support vetor mahine (�{SVM) [5℄ if C = 1=N and Pi2S+ �i =Pi2S� �i =0:5 �. The identity holds beause the energy funtion is exatly the �{SVMquadrati objetive funtion, and in both the physial system and the SVM thefuntion is minimized. We know from optimization theory that at the minimum,the Karush{Kuhn{Tuker onditions (KKTs) [1℄ must hold. The KKTs for �{SVMs use the variables �, �i, and �i whih have a physial interpretation in ourmodel. � is the potential di�erene between S+ and S�: � = 0:5 ('S+ � 'S�),or with b, we obtain � = �'S� . Slak variable �i gives the potential di�erenebetween 'i and 'Syi : �i = �� yi 'i � 0. Removing ondutors with �i = 0from the system makes �i > 0 only for �i = C = 1=N . Variable �i mea-sures the harge di�erene to the upper bound �i = 1=N � �i � 0 on i.The diagonal elements in the quadrati form have a physial interpretation asself{potential. As we disuss later, this interpretation will allow us to introduenovel kernels and novel SVM methods.1.3 Eletrostati model 3: Coupled point harges withbatteriesIn eletrostati model 2, the same total harge is applied to S+ and S�4



and the potentials 'S� are balaned by b. However, we annot ontrol themagnitude of the potentials, j'S� j. We an ahieve this ontrol by addingbatteries to the system. We do this in two ways. In model 3.1, we onnetS+ to the positive pole of a battery with potential �+ and S� to the negativepole with potential �� = ��+. The battery fores 'S+ = �+ and 'S� = ��.The battery an then be removed and the potential remains. In model 3.2,we treat eah ondutor not as a (solid) sphere but as a spherial shell. Wealso onnet eah ondutor shell i to its own battery, Bi,but not by diret ontat. Rather, eah shell i has a smallsphere at its enter whih is onneted to the positive poleof Bi if yi = �1 and the negative pole if yi = +1 (Figure 2).Consequently, the indued onstant potential, �i, has polarityopposite that of the ondutor (�yi). To add harges to S+and S� we ground both. Charges ow into the system until B
atteryFigure 2: Condutorwith battery.the potentials equalize. Therefore, after removing the batteries and �xing theharges we have 'i = ��i (unless a ondutor is disonneted).1.3.1 Formal Presentation�i = � �i yi (�i � 0) is the potential indued by the battery Bi on ondutori, the total potential on ondutor i is �i = 'i + �i, the energy ontribution ofthe battery Bi is 1=2 �i Qi [2℄, and the total Coulomb energy is:12 NXi=1 (�i + �i) Qi = 12 QT P Q + �T Q = 12 NXi;j=1Pij yi yj �i �j � NXi=1 �i �i :This physial system orresponds to a C{support vetor mahine (C{SVM)[1, 8℄ if 8i : �i = 1 (that is, model 3.1 with j��j = 1). The Coulomb energyis the C{SVM objetive funtion. Our model yields 'S+ � b = �'S� � b. TheKKT-ondition variables reeive a physial interpretation analogous to that inthe �{SVM.2 Comparison of existing and novel models2.1 Novel KernelsE = R G (x; y) h (x) h (y) dxdy � 0 must hold in a ontinuous physialsystem for the energy E. Here h+ (h�) is the density of positive (negative)harges and h = h+ � h�. This is exatly Merer's ondition in the ontextof SVM whih ensures positive de�nite kernels [1℄. To maintain properties ofthe physial model (e.g., b = 0 in model 3.2), we ful�ll Merer's ondition byrestriting G to isotropi kernels, i.e., G (xi; xj) � g(kxi � xjk22), where g isompletely monotoni, i.e., (�1)k g(k) (x) � 0, 8x � 0 [7℄.The eletrostati perspetive makes apparent that SVM algorithms an breakdown in high dimensions. The reason is that fast dereasing kernels indue5



small potentials and, therefore, almost every ondutor retains harge. Wewant to use kernels whih do not derease exponentially. The self{potentialallows the use of kernels that would otherwise be invalid, suh as a general-ization of the eletri �eld to d dimensions: g (z) = z1�0:5d, where we de�neG (xi; xi) := Pii = g �r2i �. Smoothing this kernel by � and using an expo-nent n leads to the Plummer potential whih is used in omputational physisto simulate eletrostati �elds g (z) = �z + �2��0:5n with ri = minj kxi; xjk2.For  � 0 = maxf0:5 z j z = kxi � xjk22 _ z = r2i g (we used  = 0) isg (z) = (� 0:5z)n a polynomial and for n = 1 the onventional linear kernel.2.2 Novel SVM modelsOur eletrostati framework an help to derive many distint SVM approahes,several representative examples we now illustrate.2.2.1 �{Support Vetor Mahine (�{SVM)We an exploit the physial interpretation of Pii as ondutor i's self{potential,(i.e., how easy it is to put harges on i). The Pii's determine the entropy of theharge distribution at the energy minimum. We an resale the self potential|Pnewii = � P oldii |and use � to ontrol the omplexity of the SVM in eletrostatimodels 3.1 and 3.2 with C =1.2.2.2 p{Support Vetor Mahine (p{SVM)Without onstraints, PQ + � = 0 at the energy minimum of model 3.1and 3.2, whih is 8i : 'i + �i = 0. In physial terms this means thatpotentials equalize. However, the solution Q = �P�1� su�ers from violatingthe onstraint that �i � 0. We an instead minimize the potential di�er-ene, 12 kPQ + �k22 = 12QTP TPQ + QTP T� + 12�T�, where the last termis onstant. Without onstraints, the minimum is Q = �P TP ��1 P T�, where�P TP ��1 P T is P 's pseudo inverse. Using physial model 3.1, and de�ning�i := �i PNj=1 yiyjPij , we obtain:min� 12�TK���T� s.t. yT� = 0 ^ 0 � �i � C, whereKij := yiyj �P TP �ij .K is by onstrution positive de�nite so that this formulation does not de-mand positive de�nite kernels. If we set �i = 1PNj=1 yiyjPij then we obtainthe generalized SVM in [3℄; however, for other values of �i (e.g., �i = 1) weobtain an SVM that automatially removes outliers, e.g., the p{SVM. Outliersgets a negative or small �i, whih results in a small �i.
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2.3 ExperimentsFor the representative models we've introdued, we perform simulations andmake omparisons to the standard SVM models. The datasets are from theUCI Benhmark Repository and preproessed in [4℄, where the \banana" dataset stems from (http://www.first.gmd.de/~raetsh/data). We did 100-foldvalidation on eah data set, restriting the training set to 200 examples, andusing the remainder of examples for testing. We ompared C{SVM, �{SVM, �{SVM, and p{SVM. Additionally we ombined the later to �{p{SVM allowing �values whih lead to not positive de�nite kernels. We used radial basis funtion(RBF), polynomial (POL), and Plummer (PLU) kernels. Hyperparameters aredetermined by 5{fold ross validation on the �rst 5 training sets. The searhfor hyperparameter was not as intensive as in [4℄.C � � p �-p C � � p �-pthyroid heartRBF 6.4 9.4 7.7 5.4 8.6 21.4 19.1 17.9 22.4 17.8POL 22.8 12.6 7.0 13.3 6.9 20.4 20.4 19.3 23.0 19.3PLU 6.1 6.2 6.1 5.7 6.1 16.3 16.3 16.3 17.4 16.3breast{aner bananaRBF 33.6 31.6 33.8 32.4 33.7 13.2 36.7 13.2 11.6 13.4POL 36.0 25.7 29.6 27.1 29.1 35.3 35.0 11.5 22.4 11.5PLU 33.4 33.1 33.4 30.6 33.4 15.7 15.7 15.7 21.9 15.7germanRBF 28.7 29.3 29.0 27.8 28.8POL 33.7 29.6 26.2 31.8 26.2PLU 28.8 28.5 33.3 27.1 33.3Table 1: Mean % mislassi�ation over 100 repliations. The olumns orre-spond to SVMs and the rows to kernel funtions.The Plummer potential is more robust against hyperparameter and SVMhoies. The proposed novel methods performed well ompared to known ap-proahes.2.4 Other SVM approahesThis work leads to many models that ould be explored. For example, thevariables �i in model 3.2 were not further investigated. With �xed harge, �idetermines how ondutor i retains its harge. Here, however, we will presentSVM speed ups. 7



2.4.1 Support Vetor Mahine By Linear ProgrammingWe minimize kP Q + �k1 by minimizing PNi=1 si with onstraints �i � si �yi [P Q℄i � �i+si,Pi yi �i = 0, and �i � 0. Maximizing the �i as well resultsin the linear SVM formulation, e.g., [3℄.2.4.2 Support Vetor Mahine By Solving One EquationWe will adjust the Pii so that Q = �P�1� does not violate �i � 0. We divideP = ~P +D into diagonal matrix D (Dii = �i) and zero diagonal matrix ~P .Fast, iterative algorithm.�i � Pj;j 6=i Pij ensures �i � 0. This means that P is diagonal dominantand the fast Jaobi iteration is possible.Standard equation solving algorithms.We set 8i : �i = �0 and perform a k{step bisetion to �nd a minimal �0whih does not violate �i � 0.2.4.3 Support Vetor Mahine By A Quik and Dirty Approxima-tionWe solve yiPNj=1 yjPij�j = �i with the assumption that ondutors are sur-rounded by ondutors with the same harge magnitude, i.e. �j = �i. We get�i = �i=�i, where we keep �i � �.2.5 Vetor quantization and lusteringSVMs fous on the boundaries whereas vetor quantization and lustering algo-rithms fous on high density regions in order to obtain prototype vetors or lus-ter enters. This orresponds to energy maximization in our physial systemswith �i � �. We get a dual between SVM and vetor quantization/lustering.For example, onstraints an determine the number of lusters or prototypes.3 ConlusionThe eletrostati framework and its analogy to SVMs has led to several im-portant ideas: (1) It suggests SVM methods that are valid for kernels that arenot positive de�nite. (2) It allowed us to derive fast SVM methods based onlinear programming and linear equations. (3) It suggested novel approahes andkernels that perform at least as well as standard methods.We argued that the eletrostati framework not only haraterizes a fam-ily of support-vetor mahines, but it also haraterizes other tehniques suhas nearest neighbor lassi�ation, lassi�ation by density estimation, vetorquantization, and lustering. Perhaps the most important ontribution of theeletrostati framework is that, by interrelating and enompassing a variety8



of methods, it lays out a broad spae of possible algorithms. At present, thespae is sparsely populated and has barely been explored. But by making thedimensions of this spae expliit, the eletrostati framework allows one to eas-ily explore the spae and disover novel algorithms. In the history of mahinelearning, suh general frameworks have led to important advanes in the �eld.Referenes[1℄ C. J. C. Burges. A tutorial on support vetor mahines for pattern reogni-tion. Data Mining and Knowledge Disovery, 2(2):1{47, 1998.[2℄ L. N. Kantorovih, A. I. Livshits, and M. Stoneham. Eletrostati energyalulation for the interpretation of sanning probe mirosopy experiments.Journal of Physis: Condensed Matter, 12:795{814, 2000.[3℄ O. Mangasarian. Generalized support vetor mahines. Tehnial Report98-14, Computer Sienes Dep., Univ. of Wisonsin, Madison, Wisonsin,1998.[4℄ G. R�atsh, T. Onoda, and K.-R. M�uller. Soft margins for AdaBoost. Teh-nial Report NC-TR-1998-021, Dep. of Computer Siene, Univ. of London,1998.[5℄ B. Sh�olkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New supportvetor algorithms. Neural Computation, 12(5):1207{1245, 2000.[6℄ M. Shwartz. Priniples of Eletrodynamis. Dover Publiations, NY, 1987.[7℄ A. J. Smola, B. Sh�olkopf, and K.-R. M�uller. The onnetion between reg-ularitzation operators and support vetor kernels. Neu. Net., 11:211{231,1998.[8℄ V. Vapnik. The nature of statistial learning theory. Springer, NY, 1995.
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