# panelcn.MOPS: CNV detection in targeted panel sequencing data for diagnostic use



JOHANNES KEPLER UNIVERSITY LINZ

Gundula Povysil<sup>1</sup>, A. Tzika<sup>2</sup>, J. Vogt<sup>2</sup>, V. Haunschmid<sup>1</sup>, L. Messiaen<sup>3</sup>, K. Wimmer<sup>2</sup>, G. Klambauer<sup>1</sup>, S. Hochreiter<sup>1</sup> <sup>1</sup> Institute of Bioinformatics, Johannes Kepler University Linz, Austria, <sup>2</sup> Division of Human Genetics, Medical University Innsbruck, Austria, <sup>3</sup> Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA

## Abstract

While various copy number variation (CNV) detection methods exist for whole-genome and whole-exome sequencing data, highly accurate methods for targeted panel sequencing data that are suitable for a diagnostic setting are still missing. The challenges with analyzing this kind of data include the small size and number of target regions as well as their uneven coverage. For clinical applications a method should furthermore be able to detect both short CNVs affecting only single exons or just parts thereof as well as longer CNVs that affect multiple exons or even an entire gene. Another important issue is the risk of incidental findings.

Our new method panelcn.MOPS for copy number detection extends cn.MOPS to targeted panel sequencing data. We optimized the design of the count windows, the read counting procedure, the parameters of the model and the segmentation algorithm for targeted panel sequencing. Additionally, several quality control criteria both for samples and targeted exons have been implemented to increase the confidence in called CNVs. In contrast to other CNV detection methods all targeted regions are exploited for the detection of CNVs, but only results for user-selected genes are reported to avoid the risk of incidental findings. We have tested panelcn.MOPS on simulated and real sequencing data. The real sequencing data was enriched with the TruSight cancer panel that targets 94 cancer predisposition genes including NF1/2, BRCA1/2 and APC. The performance of panelcn.MOPS was compared on a data set of 170 samples against several CNV detection tools including NextGENe, SeqNext, ExomeDepth, CoNVaDING, and VisCap. The size of the CNVs ranges from a 20bp deletion affecting only part of an exon over duplications of several exons to a 350kb deletion of an entire gene. In contrast to the other methods, panelcn.MOPS not only achieved a sensitivity of 100%, but also the highest specificity. Furthermore, we do not only provide panelcn.MOPS as an R package, but also as a standalone program with a practical graphical user interface (GUI). Therefore, panelcn.MOPS can be conveniently used by users without any programming experience. Our results show that panelcn.MOPS accurately predicts CNVs in targeted panel sequencing data. Consequently complementary biotechnologies to detect CNVs, such as MLPA, can be omitted in order to reduce time and costs.

| Data                    |                 |           |                                  |            |          |             |                 |           |      |        |          |  |  |
|-------------------------|-----------------|-----------|----------------------------------|------------|----------|-------------|-----------------|-----------|------|--------|----------|--|--|
|                         | Training Cohort |           |                                  |            | Test Cor | nort        | Total           |           |      |        |          |  |  |
| CN                      | 13              |           |                                  |            | 110      |             | 123             |           |      |        |          |  |  |
| Multi Exon Deletions    |                 |           |                                  | 5          |          |             | 11              |           | 16   |        |          |  |  |
| Multi Exon Duplications |                 |           |                                  | 2          |          |             | 1               |           |      | 3      |          |  |  |
| Single Exor             | י<br>Dele       | etions    |                                  |            |          |             | 13              |           |      | 13     |          |  |  |
| Single Exon             | Dupli           | cations   |                                  |            |          |             | 2               |           |      | 2      |          |  |  |
| Whole Gen               | e Dele          | etions    |                                  | 4          |          |             | 1               |           | 5    |        |          |  |  |
| Subt                    | total           |           | 24                               |            |          |             | 138             |           | 162  |        |          |  |  |
|                         |                 |           | Cases excluded from calculations |            |          |             |                 |           |      |        |          |  |  |
| Deletions               | S < 1           | ROI       |                                  | 1          |          |             | 2               |           | 3    |        |          |  |  |
| Duplication             | ns < 1          | ROI       |                                  |            |          |             | 2               |           |      | 2      |          |  |  |
| De novo Alu Insertions  |                 |           |                                  | 3          |          |             |                 | 3         |      |        |          |  |  |
| To                      | tal             |           |                                  | 25 145     |          |             |                 |           |      | 170    |          |  |  |
|                         |                 |           |                                  |            |          |             |                 |           |      |        |          |  |  |
| Results: Test Set       |                 |           |                                  |            |          |             |                 |           |      |        |          |  |  |
|                         | nanal           |           | Evomo                            | Donth      |          |             | VicCon          | NovtCE    |      | SocNov | tontimal |  |  |
| ТD                      | paner           | 86        |                                  |            |          |             |                 | NexiGENE  |      | Sequex |          |  |  |
|                         |                 | 7843      |                                  | 8156 7     |          | 7787 7200   |                 | 8080      |      | 700    | 7 8173   |  |  |
|                         |                 | 043       |                                  | 17         | 17 770   |             | 11              | 11        |      | 1901   |          |  |  |
| FN                      |                 | 0         |                                  | 1          | l 1      |             | 1               |           |      |        |          |  |  |
|                         |                 | 330       |                                  | 0          | 0 3      |             | 386 873         |           | 77   |        |          |  |  |
| Total                   |                 | 8259      |                                  | 8259 8     |          | 8259 8259   |                 | 8259      |      | 8259   | 8259     |  |  |
| rotai                   |                 | 0200      |                                  |            |          | 0200 0200   |                 | 0200      |      | 0200   | 0200     |  |  |
| Sensitivity             |                 | 1.0000 0  |                                  | ).9884 0.9 |          | 9882 0.9882 |                 | 1.0000    |      | 0.9884 | 1.0000   |  |  |
| Specificity             |                 | 1.0000 0  |                                  | 0.9979 0.  |          | 9999 0.9985 |                 | 0.9979    |      | 1.0000 | 0 1.0000 |  |  |
| No Call Rate            |                 | 0.0400    | 0.                               | .0000 0.04 |          |             | 467 0.1057 0.00 |           |      | 0.0322 | 2 0.0000 |  |  |
| numbers corre           | spon            | d to numh | ers of                           | ROIs       |          |             |                 |           |      |        |          |  |  |
|                         |                 |           |                                  |            |          |             |                 |           |      |        |          |  |  |
|                         |                 |           |                                  | R          | esults   | S           |                 |           |      |        |          |  |  |
| pan                     |                 | panelcn.N | /IOPS                            | ExomeDepth |          | CoNVaDING   |                 | VisCap Ne |      | ktGENe | SeqNext  |  |  |
| Sensitivity             |                 | +++       |                                  | ++         |          | ++          |                 | ++ ++     |      | +      | ++       |  |  |
| Specificity             |                 | +++       |                                  | +          |          | ++          |                 | + +       |      |        | +++      |  |  |
| No Call Rate            |                 | +         |                                  | +++        |          | +           |                 | - ++      |      |        | +        |  |  |
| Low Quality Filter      |                 | +++       |                                  | +          |          | +++         |                 | + +       |      |        | +++      |  |  |
| CNVs < 1 ROI            |                 | ++        |                                  | ++         |          | +++         |                 | ++ +      |      |        | -        |  |  |
| Whole Gene CNVs         |                 | +++       |                                  | +++        |          | +++         |                 |           |      |        | +        |  |  |
| Incidental Findings     |                 | +++       |                                  | -          |          | -           |                 | - +       |      |        | +        |  |  |
| Runtime                 |                 | +++       |                                  | ++         |          | -           | -               |           | + +  |        | +        |  |  |
| GUI                     |                 | +++       |                                  | -          |          | -           |                 | -         | - ++ |        | +++      |  |  |
| Non-Commercial          |                 | +++       |                                  | +++        |          | +++         |                 | +++ -     |      |        | -        |  |  |

#### cn.MOPS

Mixture Of PoissonS for discovering Copy Number variations:

- low FDR by local modeling across samples
- model decomposes read count variation into:
  - noise variation (Poisson)
  - copy number variation (mixture components)

#### Best performance on

- Whole-Genome Sequencing data (1000 Genomes) and
- Whole-Exome Sequencing data (intellectual disability, ASD, ...)

## panelcn.MOPS

- extension of cn.MOPS for targeted panel sequencing data
- adapted read counting
- quality control for samples and ROIs
- selection of control samples
- improved normalization
- increased sensitivity
- no segmentation
- filter for displaying CNVs only for genes of interest
- boxplots of normalized RCs

## panelcn.MOPS Details

Read counting: all reads that overlap respective window (ROI) counted

#### **Quality control:**

ROIs with low median RC across all samples excluded

| <ul> <li>ROIs with high variation of RCs across all samples marked as "low qu</li> </ul> | ality" |
|------------------------------------------------------------------------------------------|--------|
|------------------------------------------------------------------------------------------|--------|

• samples with low median RC across all ROIs excluded from controls, warning for test

| Read Counting               | panelcn.MOPS Pipeline              |  |  |  |  |  |  |
|-----------------------------|------------------------------------|--|--|--|--|--|--|
| Quality Control             | for n test samples                 |  |  |  |  |  |  |
| Control Sample<br>Selection | for each test sample<br>separately |  |  |  |  |  |  |
| Normalization               |                                    |  |  |  |  |  |  |
| <b>CN</b> Detection         | for each ROI separately            |  |  |  |  |  |  |

# **Graphical User Interface**

CNV Detective powered by panelcn.mops

| 8                           | Samples St    | Samples Show Control Base Create Control Base Results Plot Edit BED File App settings |        |                      |             |          |          |      |               |           |              |                |
|-----------------------------|---------------|---------------------------------------------------------------------------------------|--------|----------------------|-------------|----------|----------|------|---------------|-----------|--------------|----------------|
| d Control Base              | Show CN2      |                                                                                       |        |                      |             |          |          |      | Export as CSV |           |              |                |
|                             | Show 25 🔹 ent | Show 25 • entries Search:                                                             |        |                      |             |          |          |      |               |           |              |                |
| S                           | Sample 💧      | Chr 🗄                                                                                 | Gene 🖕 | Exon                 | ¢           | Start 🔶  | End 🔶    | RC 🔶 | medRC 🖕       | RC.norm 🔶 | medRC.norm 🔶 | lowQual   CN 🔶 |
| d Test Samples              | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E1.chr17.2942229 | 7.29422418  | 29422297 | 29422418 | 779  | 828           | 739       | 765          | CN2            |
| f used samples              | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E2.chr17.2948297 | 0.29483175  | 29482970 | 29483175 | 562  | 1097          | 533       | 1007         | CN1            |
| le                          | CNV_IBK1.bam  |                                                                                       |        |                      |             |          | 29486142 | 676  |               |           | 1150         | CN1            |
| nknown                      | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E4.chr17.2949017 | 3.29490425  | 29490173 | 29490425 | 666  | 1211          | 632       | 1148         | CN1            |
|                             | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E5.chr17.2949687 | 8.29497046  | 29496878 | 29497046 | 550  | 1069          | 522       | 987          | CN1            |
| eters                       | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E6.chr17.2950840 | 9.29508538  | 29508409 | 29508538 | 755  | 1276          | 717       | 1212         | CN1            |
|                             | CNV_IBK1.bam  |                                                                                       |        |                      |             |          |          |      |               |           | 763          | CN1            |
| ames.txt 💌                  | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E8.chr17.2950949 | 5.29509714  | 29509495 | 29509714 | 699  | 1410          | 663       | 1288         | CN1            |
| ilable Selected             | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E9.chr17.2952740 | 9.29527644  | 29527409 | 29527644 | 628  | 1176          | 596       | 1068         | CN1            |
| ▲ NF1 ▲                     | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E10.chr17.295280 | 24.29528208 | 29528024 | 29528208 | 817  | 1572          | 775       | 1436         | CN1            |
| æ                           | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E11.chr17.295283 | 98.29528534 | 29528398 | 29528534 | 696  | 1212          | 661       | 1171         | CN1            |
|                             | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E12.chr17.295332 | 27.29533420 | 29533227 | 29533420 | 228  | 464           | 216       | 429          | CN1            |
| G                           | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E13.chr17.295414 | 38.29541634 | 29541438 | 29541634 | 728  | 1401          | 691       | 1320         | CN1            |
| 2 🗸                         | CNV_IBK1.bam  |                                                                                       |        |                      |             |          | 29546167 | 313  |               |           | 573          | CN1            |
| median RC / exon            | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E15.chr17.295488 | 37.29548978 | 29548837 | 29548978 | 660  | 1165          | 626       | 1097         | CN1            |
|                             | CNV_IBK1.bam  |                                                                                       |        |                      |             |          |          | 322  |               |           | 601          | CN1            |
| 20 30 40 50 60 70 80 90 100 | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E17.chr17.295520 | 82.29552299 | 29552082 | 29552299 | 1188 | 1340          | 1128      | 1244         | CN2            |
|                             | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E18.chr17.295534 | 22.29553733 | 29553422 | 29553733 | 1653 | 1788          | 1569      | 1554         | CN2            |
| Run                         | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E19.chr17.295542 | 05.29554340 | 29554205 | 29554340 | 1319 | 1385          | 1252      | 1252         | CN2            |
| Close window                | CNV_IBK1.bam  | 17                                                                                    | NF1    | NF1.E20.chr17.295545 | 10.29554655 | 29554510 | 29554655 | 510  | 561           | 484       | 512          | CN2            |
|                             | CNV/ IBK1 ham | 17                                                                                    | NF1    | NF1 F21 chr17 295560 | 12 29556514 | 29556012 | 29556514 | 1327 | 1386          | 1260      | 1267         | CN2            |
|                             |               |                                                                                       |        |                      |             |          |          | 1    |               |           |              |                |

CNV\_IBK8.bam

samples

 samples with high variation in ratios between normalized RCs of sample compared to median across all samples excluded from controls, warning for test samples

**Control sample selection:** control samples with high correlation of RCs to the RCs of the test sample, ROIs of gene(s) of interest for specific test sample excluded for calculating correlation

#### **Competing Methods**

ExomeDepth (Plagnol et al. 2012) CoNVaDING (Johansson et al. 2016) VisCap (Pugh et al. 2016) NextGENe (Softgenetics): commercial tool with GUI SeqNext (JSI medical systems): commercial tool with GUI

## TruSight<sup>®</sup> Cancer Panel

- 94 genes associated with cancer predisposition
- e.g.: *NF1/2*, *BRCA1/2*, *APC*, *MSH2/6*, *MLH1* and *PMS2*
- Illumina MiSeq<sup>®</sup>  $\rightarrow$  300 cycles with paired end reads



NF1

#### **R** Package

https://github.com/bioinf-jku/panelcn.mops

#### Conclusion

- panelcn.MOPS for CNV detection in targeted panel sequencing data
- superiority shown for real data

• standalone app

1500

based on R shiny

• simple installer for Windows

results exportable as .csv

quality control for samples and ROIs

• reports only CNs for genes of interest

read count plots for genes of interest

• option for building up control base

• GUI available for better usability

Klambauer G et al. (2012) cn.MOPS: mixture of Poissons for discovering copy number variations in next generation sequencing data with a low false discovery rate. *Nucleic Acids Res* 40(9):e69.

