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Abstract

Motivation: Current clinical and biological studies apply different biotechnologies and subsequently combine the

resulting -omics data to test biological hypotheses. The plethora of -omics data and their combination generates

a large number of hypotheses and apparently increases the study power. In contrary to these expectations, the

wealth of -omics data may even reduce the statistical power of a study because of a large correction factor for

multiple testing. Typically this loss of power at -omics data is caused by an increased false detection rate (FDR)

in single measurements like falsely detected DNA copy numbers or falsely identified differentially expressed genes.

The false detections are likely to fail the test because they are random and, therefore, are not related to the

tested conditions. Thus, a high FDR at the detection level considerably decreases the discovery power of studies,

specifically if different -omics data are involved.

Methods: A remedy for suffering from too high FDRs is to filter out putative false detections. We suggest to

use probabilistic latent variable models to identify putative false detections by large noise or by measurement

inconsistencies across samples. To select such a model, a Bayesian approach starts with the maximum a priori

model that assumes no detection and selects the maximum a posteriori model. Hence a detection results in a

deviation of the maximal posterior from the maximal prior model measured by the information gain obtained

by the data. If this information gain exceeds a threshold then the selected model obtains an informative/non-

informative (I/NI) call that indicates a detection. Even if the I/NI call filtering has been successfully applied, it
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was not shown that correction for multiple testing after I/NI call filtering still controls the type I error rate. We

prove this important property of the I/NI and show that it is independent from commonly used test statistics for

null hypotheses. We apply the I/NI call to transcriptomics (gene expression), where the prior model corresponds

to constant gene expression level across samples, and to genomics (copy number variation) data, where the prior

model corresponds to constant DNA copy number 2 across samples.

Results: On a HapMap data set, where known CNVs have to be re-detected, I/NI call filtering was much more

efficient than variance-based filtering. In particular the I/NI call filter outperforms variance-based filters on data

with rare events like the CNVs in the HapMap data set. We assessed the efficiency of the I/NI call filter in

reducing the FDR on two different cancer cell lines where it reduces the FDR 18 to 22 fold.

Introduction

Currently, bio-medical research moves more and more from hypothesis-driven to data-driven approaches

and therefore more high-throughput technologies are utilized in one study. For example such a study may

first identify genetic variations (e.g. copy number variations or single nucleotide variants) and then correlate

them to the transcriptom (miRNA or mRNA) or may first extract transcriptomics variations (differentially

expressed genes) and then correlate them to the proteom or to the metabolom. For these high-throughput

technologies like oligonucleotide arrays or next generations sequencing, the number of markers like probes or

reads is steadily increasing. Researchers demand more markers because they expect an increase of the study’s

power as obtained by bio-technological innovations of the last decade. These innovations helped to reveal

molecular causes of various diseases like systemic autoimmunity [1], Crohn’s disease and type 1 diabetes [2],

type 2 diabetes [3], malaria, non-small-cell lung cancer [4], multiple sclerosis, and bipolar disorder [5]. These

disease causes were found because more markers allowed to investigate more hypothetical causes from which

the true ones are identified by statistical tests.

However, more markers may even result in a loss of power (one minus type II error rate) through correction

for multiple testing. The more hypotheses are investigated, the larger is the number of type I errors that

are false discoveries due to falsely rejected null hypotheses (p-value below a threshold). Therefore, the type

I error must be controlled through correction for multiple testing by bounding (in probability) either the

familywise error rate (FWER), i.e. the probability of making a type I error, or the false discovery rate,

i.e. the proportion type I errors in a set of rejected hypotheses. Typically a loss of power is caused by an

increased false detection rate (FDR) like falsely detected DNA copy numbers or falsely identified differentially

expressed genes. The false detections are likely to fail the test because they are not caused by bio-molecular
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states but by random noise and, therefore, they are not related to the tested conditions. More markers

are prone to increase the FDR because of larger noise for single markers, increased dependencies between

the markers, or higher sensitivity to small biological variations. For example gene expression markers that

target different iso-forms show larger noise, copy number markers may be related if they target the same DNA

fragment, or markers may be sensitive to the local GC content [6]. In the context of integrative analyses

of -omics data, the problem of power loss due to high FDR becomes even more apparent because of the

combinatorial multiplicity in generating hypotheses (e.g. each CNV may be correlated with each gene). An

approach to reduce the FDR and thereby to increase the study’s power is to filter out false detections in single

-omics data [7, 8]. Such filters have successfully been applied to transcriptomics [7–13]. The filter removes

hypotheses that are based on false detections and very likely will not obtain low p-values. Consequently for

fewer hypotheses has to be corrected while the hypotheses with low p-values are kept. Thus, the discovery

power of the study is increased. Concluding, a stringent filter criterion, which allows for filtering out false

detections, is highly desired.

However, not every filter is appropriate to increase the study’s power. Correction for multiple testing to

control the type I error rate requires a test that produces independently, uniformly distributed p-values of true

negatives (null hypotheses) [7, 14, 15]. This must also hold after filtering. Thus, an appropriate filter must

fulfill three conditions: (a) it should be dependent on the test statistic for alternative hypotheses to enrich

the remaining hypotheses with low p-values, (b) it must not introduce dependencies between hypotheses,

and (c) it must be independent of the subsequent test statistic for null hypotheses in order to control the

type I error rate [7]. Item (a) assures an increase of the study’s power while (b) and (c) ensure control of

the type I error rate. We briefly review existing filtering methods in the framework of gene expression and

CNV analysis.

Gene-filtering methods. In array-based gene expression analysis filtering is typically done by removing probes

(the markers) or probe sets which have a small expected signal-to-noise ratio. The variation across the

conditions may be used to estimate the signal strength while fluctuations of the background intensities or

non-specific binding effects using mis-match probes allow both to estimate the measurement noise. The

Absent/Present call (A/P) [9] for Affymetrix arrays was one of the first methods which estimates the signal

strength by a Wilcoxon’s signed rank test on perfect-match and mis-match probes. Probe sets with small

expected signal are filtered out. McClintick and Edenberg [10] improved the A/P call by additionally filtering

out signals with low intensities as they cannot contain large signals. Then Calza et al. [11] proposed the
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“Filtering Likely Uninformative Sets of Hybridizations” (FLUSH) method, which treats probes and arrays as

fixed effects in a linear model. The FLUSH filter excludes probe sets that have statistically small array-effects

(small signals) or large residual variance (large noise). Note, that Affymetrix’s most recent arrays no longer

contain mis-match probes and therefore neither permit A/P calls nor FLUSH. Later, in Talloen et al. [12] we

introduced the Informative/Non-Informative (I/NI) call based on our “Factor Analysis for Robust Microarray

Summarization” (FARMS) algorithm [16] (see subsection “FARMS algorithm”). Bourgon et al. [7] found

that variance-based filtering can tremendously increase a study’s power. To keep control of the type I

error after filtering is important to increase the power. Therefore the filter must be independent under the

null hypotheses of the test statistic. On the other hand, filter and test statistic must be correlated under

alternative hypotheses to enrich the remaining hypotheses with low p-values and to increase the power.

CNV-filtering methods. In copy number variations analysis, false detections, that are falsely identified CNVs,

result from random variations which may occur during sample preparation, during DNA fragment extraction,

or during the actual measurement. CNV detection in oligonucleotide arrays first segments the data to identify

CNVs and then filters the CNVs using criteria such as the length of a CNV in base pairs or the number

of probes that a CNV contains [17]. Note that DNA segmentation methods apply the same model to

each chromosome location and, therefore, may introduce dependencies between CNV detection values. For

example the difference between segmental mean and chromosomal mean in cancer data may depend on the

number and sizes of deletions in this chromosome. Therefore p-values of a test using this segmental mean

differences in diseased and matched normals may be correlated. To avoid such dependencies Clevert et

al. [18], adapted the I/NI call to CNV detection. The I/NI calls were determined by locally independent

models without using information from a segmentation algorithm.

We successfully extended the principle of I/NI calls to CNV detection in next generation sequencing

data [19]. For sequencing data an I/NI call is present, if read counts in adjacent intervals mutually agree on

the copy number. The interval’s copy number is determined by the maximum a posteriori mixture component

of a mixture of Poissons model where each mixture represents a certain copy number.

Next section introduces the I/NI call filter and proofs some of its properties. Its first subsection briefly

summarizes the FARMS algorithm and the I/NI call. Its second subsection is devoted to the properties of

the I/NI call filter like its independence of certain test statistics. The last section provides an experimental

evaluation of the I/NI call filter on phase 2 data of “The International HapMap Project” and on two tumor

genome data sets.
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Methods

We introduce the I/NI call filter and show that it is an appropriate filter which fulfills above mentioned

conditions (a) to (c). We first review the FARMS algorithm and the I/NI call and show then properties of

the I/NI call filter. In particular we show its independence of the test statistic under null hypotheses for

permutation invariant test statistics and for the t-test statistic.

Brief Review of the I/NI Call
FARMS Algorithm

The I/NI call filter is derived from the “Factor Analysis for Robust Microarray Summarization” (FARMS)

algorithm [16, 18] which is a method to summarize microarray probe set data. Its main idea is to detect a

common hidden cause in the measurements assuming independent noise. The probabilistic FARMS model

(1) regards that probes measuring the same target (fragment or region) can only be positively correlated,

(2) estimates probe-specific characteristics, (3) automatically trades off signal against noise via the latent

variable posterior distribution, (4) can adjust the signal/noise trade-off via the priors on the parameters,

and (5) allows for Informative/Non-Informative calls (see next subsection).

The vector x of n probes, the probe set, is modeled by probe effects λ and a factor z (latent variable or

signal) representing the DNA or mRNA fragment concentration. Higher concentrations will lead to higher

intensities of the single probes which is modeled by

x = λ z + ε , (1)

where x,λ ∈ Rn and z ∼ N (0, 1), ε ∼ N (0,Ψ). Here Ψ ∈ Rn×n is the diagonal noise covariance matrix

resulting from the assumption of independent measurement noise. ε and z are assumed to be statistically

independent. The model parameters are the factor loadings λ and the noise variance Ψ.

Given these assumptions, x is distributed according to the following Gaussian:

x ∼ N
(
0 , λλT + Ψ

)
. (2)

The covariance matrix of x is decomposed into a signal part λλT and a noise part Ψ. Because Ψ is diagonal,

probe correlations are attributed to the signal z via λ. That means highly correlated probes lead to large λ

which in turn leads to low noise because the diagonal of the covariance matrix of x is mainly explained by

λ.

Higher intensity of the probes means higher fragment concentration and vice versa, therefore noise-free

probe measurements must be positively correlated. FARMS integrates this prior knowledge and ensures the
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positive correlation of probes by enforcing non-negative components of λ through a rectified Gaussian [16]

as prior on the components of λ. Further, the prior prefers models with small factor loadings and, therefore,

selected models tend to explain probe variation rather by noise than by a signal. The mean and variance of

the prior are hyperparameters that determine how much of the data variance the maximum posterior model

explains by signal and how much by noise.

FARMS selects the model parameters λ and Ψ by an expectation-maximization algorithm [20] that

maximizes the parameter posterior.

Informative/Non-Informative Call

The Informative/Non-Informative call (I/NI-call) has been introduced in [8,12] and measures the information

gain of the maximum posterior model over the maximum prior model. The maximum prior model assumes

that no signal is present in the data, that is a constant gene expression level or a constant DNA copy number

2 across samples. Therefore the I/NI call is a propensity for a detection through a signal in the data.

We measure the information gain of the maximum posterior model over the maximum prior model by

the difference of the signal part of the latent variable. In contrast to information theoretic approaches which

are dependent on data scaling, the focus of the I/NI call is on the signal-to-noise ratio which is independent

of data scaling. To assess the signal-to-noise ratio, the variance of the latent variable is decomposed into a

signal and a noise part. The I/NI call is the noise part, therefore a small I/NI call corresponds to low noise

and high signal. The maximum prior model explains the data only by noise, thus the signal variance is zero

and the I/NI call one. The I/NI call filter removes detections with large I/NI call values and keeps those

with small values that correspond to low noise and high signal.

From the model eq. (2) and the Gaussian z-prior N (0, 1), we can compute the z-posterior p(z | x) after

observing x as

z | x ∼ N
(
µz|x , σ

2
z|x

)
, (3)

Ez|x (z) = µz|x = (x)
T

Ψ−1λ
(
1 + λTΨ−1λ

)−1
,

Ez|x

((
z − µz|x

)2)
= σ2

z|x =
(
1 + λTΨ−1λ

)−1
.
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The variance var(z) of the latent variable z is decomposed into signal and noise part:

1 = var(z) ≈ 1

N

N∑
i=1

Ezi|xi

(
z2i
)

(4)

=
1

N

N∑
i=1

(
Ezi|xi

(zi)
)2

+
1

N

N∑
i=1

Ezi|xi

((
zi − µzi|xi

)2)
=

1

N

N∑
i=1

µ2
zi|xi

+ σ2
z|x ,

where the noise part is

σ2
z|x = var(z | x) (5)

and the signal part

1

N

N∑
i=1

µ2
zi|xi

= 1 − σ2
z|x = 1 − var(z | x) . (6)

According to eq. (3) σ2
z|x is independent of xi and serves as I/NI call in FARMS [12]:

I/NI = var(z | x) (7)

= σ2
z|x =

(
1 + λTΨ−1λ

)−1
.

Low I/NI calls values identify probe sets that contain a high signal and low noise. Therefore, detections

for which the I/NI call is beyond a threshold are filtered out.

The I/NI calls has been applied to 30 real-life transcriptomics data and excluded 70 to 99% (in mean

84(±1.5)%) of all probe sets (genes) while never excluding a gene that was known to be biologically mean-

ingful [12].

Properties of the I/NI Call

As mentioned in the introduction an appropriate filter must fulfill three conditions: (a) it should enrich the

remaining hypotheses for with p-values, (b) it must not introduce dependencies between hypotheses, and (c)

it must be independent of the subsequent test statistic in order to control the type I error rate [7].

Item (a) ensures that the power of study increases because the filter keeps most hypotheses with low

p-values while removing many with high p-values. Condition (a) is fulfilled by the I/NI call because false
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detections that are filtered out are unlikely to obtain low p-values in a test. We will verify this important

property of the I/NI call filter in the experiments (see section “CNV Detection on HapMap”).

Item (b), the independence of p-values, follows from the locality of the latent variable model: a separate

model is constructed for each hypothesis given by a probe set.

Item (c) ensures that an uniform p-value distribution for the null hypotheses is kept after filtering. This

condition prohibits the latent variable model from changing assumptions used in the subsequent test. For

example, the t-test assumes that null hypotheses stem from the same Gaussian distribution. That the I/NI

call filter complies with condition (c) is shown in Theorem 1 for permutation invariant test statistics and for

the t-test statistic T . The theorem guarantees type I error rate control if first hypotheses are filtered by the

I/NI call, then are tested, and finally the test result is corrected for multiple testing.

Theorem 1. For permutation invariant test statistics like the Wilcoxon rank sum statistic and for t-test

statistic, the I/NI call filter applied to null hypotheses is independent of the statistic.

Proof. See Appendix.

Note, that for equal noise on each probe set, the I/NI call is equivalent to variance filtering. Also for a

low noise level relative to the signal, I/NI call is very similar to variance filtering.

Results

We verify that the I/NI call filter reduces the false detection rate (FDR) and quantify the efficiency of the

I/NI call by estimating the FDR on HapMap data from the “The International HapMap Project” and on

cancer genome data sets.

CNV Detection on HapMap

In this subsection we verify and quantify the FDR reduction by I/NI call filtering. The goal is to identify

true CNV regions in Affymetrix SNP 6.0 array data from the “The International HapMap Project” phase 2.

We define as “true CNV regions” those regions which were multiple detected by different platforms in

Conrad et al. [21]. In Conrad et al. [21], first, CNV candidate regions were identified by NimbleGen tiling

arrays with 2.1 million long oligonucleotide probes covering the genome with a median probe spacing of 56bp.

From the identified CNVs, random control samples were selected and successfully verified by quantitative

PCR. The CNV regions extracted with NimbleGen tiling arrays served to design CNV-typing Agilent CGH

arrays comprising 105,000 long oligonucleotide probes. With these Agilent arrays, 4,978 CNVs were detected
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on 450 HapMap phase 3 samples and then completed by 59 CNV regions from McCarroll et al. [22]. The

third platform, Illumina Infinium genotyping (Human660W), detected CNVs of which 87% were already

known from Agilent CGH arrays. Almost all CNVs from Conrad et al. [21] were confirmed by at least

two different platforms (NimbleGen tiling arrays, Agilent CGH, or Illumina Human660W). Of these 5,037

CNV regions, we only selected CNV regions from the 60 CEU HapMap phase 2 samples (CEU trios without

children). Finally, we obtained 2,515 true CNV regions as reference for our experiment.

For detecting CNV regions we applied the I/NI call filter and a variance-based filter on probe sets

summarized by by CRMA v2 [23] and dChip [24].

Using the true CNVs, we can assess the false detection rate (FDR). To compute the FDR we would need

both for the I/NI call filter and the variance-based filter a threshold which trades off the FDR against the

true positive rate. To allow a fair comparison of the filtering approaches, we present the CNV detection and

filtering results as precision-recall curves (PRCs). PRCs plot the precision (which is 1-FDR) as a function

of the true positive rate (recall or sensitivity). Thus, a PRC that is more in the upper-right-hand corner

performs better. A larger y-value of the PRC means a lower FDR for a given sensitivity. Figure 1 shows the

PRC plots where I/NI call filter has indeed lower FDRs compared to the variance-based filtering methods.

The corresponding areas under the precision-recall curves are listed in Table 1. A larger value means that

the filter leads to lower FDR averaged over different given recall values. We observed that the FDR was

significantly lower with cn.FARMS’ I/NI call filter than with variance-based filtering with CRMA v2 and

dChip.

Figure 2 shows I/NI call plots across chromosome 4 for 3-loci and 5-loci regions. The y-axis gives the

I/NI call and for both CRMA v2 and dChip the variance across samples. Filter values are scaled such that

the maximum is one. Local calling densities are encoded by blue color shades. True CNVs (reported in

Conrad et al. [21]) are marked as light-rose bars and calls at these loci by red circles. A perfect filter would

call all true CNVs (red circles at 1) and would not call others (dark-blue background at 0). The I/NI call

filter separates called true positives (true CNVs) from true negatives better than other methods which can

be seen at less variance in true negatives indicated by dark-blue density at the bottom. The red arrows, e.g.

at positions 65 or 85mb in the upper I/NI call filter panel, indicate verified CNVs which were detected by

one method, in this case I/NI call filter, but not by variance-based filters. The I/NI call filter reduces the

FDR more efficiently than variance-based filtering methods.

CNV detection at HapMap data involves highly unbalanced data sets because only few individuals show

copy numbers different from 2 [25]. Only few samples contribute to the signal, therefore variance-based
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filtering methods struggle at distinguishing locations with a signal from locations without a signal. However,

the I/NI call filter relies on the signal variance and, therefore, outperforms the variance-based filters on

unbalanced data sets.

CNAs in Tumor Genomes

In contrast to heritable copy number variation (CNVs), are copy number aberrations (CNAs) the result of

genomic instability in somatic tumor tissue [26]. In this subsection we assess the efficiency of the I/NI call

in reducing the false detection rate (FDR) on a tumor genome association study from Chiang et al. [27].

Following cell lines from the American type culture collection were included into this study: HCC1143 (breast

ductal carcinoma) with matched normal HCC1143BL and HCC1954 (breast ductal carcinoma) with matched

normal HCC1954BL. Affymetrix Genome-Wide Human SNP Arrays 6.0 were used to measure 21 replicates

of HCC1143, 21 replicates of HCC1143BL, 13 replicates of HCC1954, and 11 replicates of HCC1954BL.

To reduce the false positives at CNA detection with for Affymetrix SNP 6 arrays, 8 consecutive probe

sets were merged to a segment in Chiang et al. [27]. Thereafter the segmentation software DNAcopy which

implements the Circular Binary Segmentation algorithm [28] found 454 segments in HCC1954 and 300

segments in HCC1143. From these candidate segments, 153 CNA were detected in the HCC1954 cell line

and 93 in the HCC1143 cell line. The number of false detections were estimated on matched normals to be

22 for HCC1954 and 16 for HCC1143.

We also used DNAcopy for segmentation but increased the resolution by joining 2 consecutive probe sets

instead of 8. The I/NI call filter was based on a 3 probe set FARMS model which was selected without any

information from the segmentation step. The I/NI call filter removed segments having a median I/NI call

above a threshold.

Segments for which the I/NI call was larger than 0.01 are filtered out, where the threshold of 0.01 was

adjusted on the matched normal samples to obtain about 10 false positives. Table 2 shows the results without

filtering as reported in Chiang et al. [27] and those obtained by I/NI call filtering. The number of detections

with I/NI call filtering increased 5 fold because of the higher resolution during segmentation. Despite this

increase of detections, I/NI call filtering reduced the FDR 18 to 22 fold compared to the original results

without filtering.

10



Conclusion

We showed that the I/NI call filter is an appropriate filter. First, we have proven that after I/NI call filtering

type I error control by correction for multiple testing is still valid if the test is permutation invariant or t-test

related. In experiments the I/NI call filter was found to enrich hypotheses that pass the filter with true

detections. We found that the I/NI call filter outperformed variance-based filtering methods on data with

rare events. The experiments further showed that the false detection rate reduces up 18 to 22 fold compared

to the detections without filtering.

The theoretical properties of the I/NI call filter together with its experimental verified efficiency to reduce

the FDR suggest it as an ideal filtering tool to increase the power of bio-medical studies.
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Appendix: Proof of Theorem 1

We proof Theorem 1, where we assume that probe sets are summarized by Robust Multi-array Average

(RMA) and single probes are Gaussian distributed. First we need some results on summarization with RMA

for Gaussian noise and for probe sets containing an additional signal. These results are given in the following

lemmas.

RMA Summarization of Gaussian Probes

Robust Multi-array Average (RMA) [29, 30] summarizes a probe set by median polish. Median polish as

used in RMA first removes the median of each probe and thereby levels the probe distributions by centering

the probes. Then RMA basically computes the median of the probe set.

We assume a probe set with (2n+ 1) probes. According to Chu [31], for (2n+ 1) samples drawn from a

normal distribution with density f(x) ∼ N (ξ, σ) and cumulative distribution function F (x), the distribution
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of samples’ median is

p(x) =
(2n+ 1)!

n! n!
(F (x) (1− F (x))

n
f(x) . (8)

According to Chu [31], p(x) is asymptotically normal which is is formulated in following lemma.

Lemma 1. For 2n + 1 samples randomly drawn according to a normal distribution f(x) ∼ N (ξ, σ), the

sample median is asymptotically normal distributed with mean ξ and variance

σ2
n =

1

4 f2(ξ) (2n+ 1)
. (9)

Proof. This lemma is shown in Chu [31].

Chu [31] states that the distribution of the median “tends ’rapidly’ to normality.” Using the bounds in

Chu [31], for a probe set of 16 probes (a standard Affymetrix probe set), the factor deviating from a normal

distribution is between 0.986 and 1.023.

RMA Summarization of Probe Sets with a Signal

Now we consider summarization for a probe set with correlated probes where the correlation is caused by

varying concentrations of the mRNA they target. We assume a signal ξk for sample k, where ξk is the

intensity of the probes caused by a specific mRNA concentration in sample k. The probe intensities also

contain white Gaussian measurement noise N (0, σ), therefore the median of the probes follows for fixed ξk

the Gaussian distribution N (ξk, σn). The signal ξk is drawn from a Gaussian signal distribution N (µs, σs),

where (µs, σs) determine the signal strength. This setting correlates the probes via a mRNA signal, where

(µs, σs) determines the strength of correlation.

Another way to introduce signal into the probes of a probe set would have been to scale the signal for

each sample. However, this approach is equivalent to above approach. Assume that a multiplicative factor

ρk, which scales the reference signal µ, follows a Gaussian N (µr, σr). Then the new mean values ξk follow

a Gaussian N (µ µr, µ
2 σr). This reveals the equivalence to above approach by setting µs = µ µr and

σs = µ2 σr. Introducing correlations in other ways would not change the results but the convolution for

non-Gaussian signal distributions might be more complicated.

Because the signal distribution determines the mean of the median distribution, the distribution of

the median is the convolution of two Gaussian distributions N (µs, σs) and N (0, σn). The result of this

convolution is presented in the next lemma.
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Lemma 2. If the signal of probes of a probe set is drawn from a Gaussian distribution N (µs, σs) and the

noise of the probes is N (0, σn), then the median distribution is

N (µs, σx) , (10)

where

σ2
x = σ2

s + σ2
n = σ2

s +
1

4 f2N (0,σ)(ξ) (2n+ 1)
(11)

= σ2
s +

π σ2

2 (2n+ 1)
,

Proof. The lemma follows from Lemma 1 which says that the distribution of the median is N (ξk, σn) for

fixed ξk. If ξk is drawn according to N (µs, σs) then the median distribution is obtained by the convolution

of N (0, σn) and N (µs, σs). The distribution given in the lemma is the result of this convolution of two

Gaussians.

Other Summarization Methods

That the summarization value is a Gaussian if signal and probes are normally distributed also holds for other

summarization methods like mean, MAS5, FARMS, dChip (model-based expression indexes — MBEI). The

summarized value for a null hypothesis is a Gaussian composed of a signal and a noise part.

Of course, summarization by computing the mean of the probes results in a Gaussian that comprises

signal and noise. Also weighted, robust averages have similar behavior as the mean or the median like Tukey

biweight which is used by MAS5 summarization.

Our FARMS summarization method (see main text) supplies the signal part as the summarized value.

The signal is estimated by a latent variable model where both the noise and the latent variable are assumed

to be normally distributed. For the null hypotheses the true signal is normally distributed and therefore

FARMS will recover this signal as a normally distributed latent variable (z | x). If a minimal signal variance

is assured for FARMS summarization, then it can be used together with the I/NI call filter.

Similar statements hold for least square estimates as used by model-based expression indexes (MBEI of

dChip), where a normally distributed signal is also recovered from null hypotheses.

Independence of I/NI Filter and Test Statistic for Null Hypotheses

The Informative/Non-Informative (I/NI, [12]) call tries to access the noise part σ2 of the overall variance by

var(z | x). Thus, the amount of signal σs in the probe set is estimated.
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More specifically, the I/NI call is

var(z | x) =

(
(2n+ 1) σ2

s

σ2
+ 1

)−1
< 0.5 , (12)

if all probes have the same noise and signal. Here
σ2
s

σ2 is the squared signal-to-noise ratio for a single probe.

Probe sets are normally distributed regardless of signals. However, probes sets containing a signal result

in larger variance because the signal variance σs is added to the variance of the median according to Lemma

2.

We define permutation invariant test statistic for m samples where we use the notation in Bourgon et

al. [7].

Definition 1. A test statistic U II is permutation invariant if for fixed Yi ∈ Rm, i ∈ H0, and Π drawn

uniformly from Sm (the set of all permutations on m elements), the distribution of the test statistic U II(Yi)

is equal to the distribution of U II(Π(Yi)).

Here H0 is the set of null hypotheses.

Now we can formulate our main theorem that for permutation invariant test statistics and for the t-

test statistic T , the I/NI call filter applied to null hypotheses is independent of the statistic. The theorem

guarantees type I error rate control if applying correction for multiple testing.

Theorem 1. For permutation invariant test statistics like the Wilcoxon rank sum statistic and for t-test

statistic T , the I/NI call filter applied to null hypotheses is independent of the statistic.

Proof. First we note that the I/NI call for one probe set does not dependent on another probe set as the

models are independently selected for each probe set.

A) Permutation invariant test statistics:

For permutation invariant test statistics the statement follows directly from the permutation invariance of the

I/NI call filter. The I/NI call is permutation invariant because the I/NI call model selection objective, the a

posteriori of the parameters, is independent of the permutation of the samples. Further, the implementation

of the algorithm uses only the data covariance matrix [16] which is independent of permutations of the

samples.

All assumptions on the filter of the the proposition “Marginal Independence: Permutation Invariance”

in Bourgon et al. [7] are fulfilled. The independence between the I/NI call filter and permutation invariant

test statistics is shown.

14



B) t-test statistic T :

As pointed out by Bourgon et al. [7] in their supplementary, the test statistics T for the t-test is invariant to

scaling and shifting of the mean. If the noise level σ is equal for each probe set, then I/NI call is equivalent to

variance filtering because only the signal variance σs determines the overall variance. The more interesting

case is where signal and noise differ at each probe set, thus variance filtering and I/NI calls yield different

results.

For probe set i the signal is drawn from a Gaussian distribution N (µsi, σsi). According to Lemma 2 the

RMA summarized data follows the Gaussian N (µsi, σxi), where σxi =
√
σ2
si +

π σ2
i

2 (2n+1) ). The signal strength

and the noise level (µsi, σsi, σi) are assumed to be drawn from some distribution P(µsi,σsi,σi).

The data Yi can be generated by first drawing (2n + 1) samples from a standard normal distribution

giving Xi ∈ R2n+1, where PXi
≡ N (0, I2n+1) with 0 as the (2n + 1)-dimensional zero vector and I2n+1

as the (2n + 1)-dimensional identity matrix. Then Xi is scaled by σxi =
√
σ2
si +

π σ2
i

2 (2n+1) and shifted

component-wise by µsi. The shifting and scaling values are drawn from P(µsi,σsi,σi) which is independent

from PXi
.

For a null hypothesis i ∈ H0, we assume that both distributions PXi
and P(µsi,σsi,σi) are independent of

the conditions C.

For showing the independence of filtering U I and test statistic U II , we are interested in the probability

of the event {U Ii ∈ A, U IIi ∈ B}. Here we define U Ii (Y ) = var(z | x)(Y ) with A = {u | u < 0.5} and

U IIi (Y ) = T (Y ,C) for t-test statistic T , conditions C, and B = {u | u > θ}. Let δA and δB be indicator

functions for A and B.

We consider a probe set Yi for which i ∈ H0 (a true null hypothesis).

P
(
U Ii ∈ A, U IIi ∈ B

)
(13)

=

∫
δA
(
U I(Yi)

)
δB
(
U II(Yi)

)
dPYi

=

∫ ∫
δA
(
U I(µsi 1 + Xi σxi)

)
δB
(
U II(µsi 1 + Xi σxi)

)
dPXi dP(µsi,σsi,σi)

=

∫ ∫
δA
(
U I(σsi, σi

)
δB
(
U II(Xi

)
dPXi dP(µsi,σsi,σi)

=

∫
δA
(
U I(σsi, σi

)
dP(µsi,σsi,σi)

∫
δB
(
U II(Xi)

)
dPXi

= P
(
U Ii ∈ A

)
P
(
U IIi ∈ B

)
,

15



where

σxi =

√
σ2
si +

π σ2
i

2 (2n+ 1)
) (14)

and 1 is the vector of ones with length n. The equality of the 3rd/4th line to the 5th line is obtained by the

shift and scale invariance of U II and the fact that U I depends only on σsi and σi.
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Tables

Table 1: Area under the precision-recall curves on HapMap SNP 6.0 arrays for I/NI call filter and variance-
based filters based on CRMA v2 and dChip at detecting previously multiple confirmed CNVs reported in
Conrad et al. [21]. A larger value means that the filter leads to a lower FDR averaged over different given
recall values. “Area under the PRC for combined loci of” reports the area under the precision-recall curves
for different number of combined loci. Note, that large windows can increase the FDR again because CNV
regions are overestimated. The I/NI call filter clearly outperforms variance-based filters.

Area under the PRC
for combined loci of

Method 3 4 5 7

I/NI call filter 0.20 0.22 0.24 0.26
variance-based filter CRMA v2 0.13 0.16 0.18 0.21
variance-based filter dChip 0.11 0.14 0.16 0.19
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Table 2: Results for CNA detection filtering approaches with Affymetrix SNP 6.0 arrays on the breast
cancer data set from Chiang et al. [27]. The authors used the GenePattern software [32] and call segments
by DNAcopy. The I/NI call filter calls segments found by DNAcopy (with relaxed parameters undo.SD=1
and 2 consecutive probe sets) as detections if the mean of I/NI calls within the segment is larger than 0.01.
“called” is the number of called segments. “FP” and “FDR” is the number of falsely detected segments and
the false detection rate on the normal cell lines, respectively. The I/NI call filter reduces the FDR 18 to 22
fold.

I/NI call filter no filtering

called FP FDR called FP FDR ratio

HCC1954 473 3 6.0e-03 153 22 1.4e-01 22
HCC1143 419 4 9.5e-03 93 16 1.7e-01 18

Figures

Figure 1: Precision-recall curves (PRCs) on HapMap SNP 6.0 arrays for I/NI call filter and variance-based
filters based on CRMA v2 and dChip at detecting previously multiple confirmed CNVs reported in Conrad
et al. [21]. A PRC more in the upper-right-hand corner indicates better performance. Note, that precision
is (1-FDR) thus the FDR is the distance of the curve to the upper limit. Panel (A) and panel (B) gives the
PRC for the whole genome for 3 loci and for 5 loci, respectively. I/NI call filter (solid green) has a clear
advantage over variance-based filters using dChip (dashed purple) and CRMA v2 (dotted blue). I/NI call
filter has a considerable lower FDR compared to variance-based filtering.
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Figure 2: (a)The y-axis gives the I/NI call estimated by cn.FARMS and for both CRMA v2 and dChip it
gives the value of the variance-based filter. Filter values are scaled such that the maximum is one. Local
filter value densities are encode by blue color shades. True CNVs (reported in Conrad et al. [21]) are marked
as light-rose bars and calls at these loci by red circles. A perfect filtering method would call all true CNVs
(red circles at 1) and does not call others (dark-blue background at 0). The I/NI call filter separates called
true positives (true CNVs) from true negatives better than other methods which can be seen at less variance
in true negatives indicated by dark-blue density at the bottom. The red arrows, e.g. at positions 65 or 85mb
in the upper I/NI call filter panel, indicate verified CNVs which were detected by one method, in this case
I/NI call filter, but not by variance-based filters. The I/NI call filter reduces the FDR more efficiently than
variance-based filtering methods. (b) The same plot for 5-loci (each point in the plot summarizes 5 loci).
The FDR is further reduced, as can be seen by the lower variance of non-call values at the bottom. Again,
I/NI call filter leads to a lower FDR than variance-based filtering methods.
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