
Detecting rare copy number variations (CNVs) 
with sparse coding

Motivation:Motivation:Motivation:Motivation: High-density oligonucleotide genotyping microarrays, especially Affymetrix 
SNP6 chips, are widely used for high-resolution copy number analysis. The spiraling list of 
new identified copy number variations (CNVs) which are associated with human disease, 
evidence suggests that CNVs are extremely relevant in medical research. In order to identify 
CNVs more reliable, we have proposed a Maximum a posteriori factor analysis model 
called cn.FARMS. The latent variable, the factor, captures the simultaneous increase or 
decrease of DNA amount at neighboring chromosome locations measured by the intensity 
of oligonucleotide probes. This increase or decrease indicates amplification or deletion of a 
DNA region that is a CNV. cn.FARMS considerably reduces the false discovery rate (FDR) by 
combining adjacent chromosome locations to an ensemble voting (agreement of multiple 
measurements) instead of relying on a single measurement as other method do.

Nevertheless, standard cn.FARMS assumes that the latent variable is Gaussian distributed, 
which implies that the distribution of amplifications and deletions are also Gaussian 
distributed. However Redon et al. 2006 showed that most CNVs affect less than three 
individuals out of 270 HapMap samples. These rare events are hard to detect by cn.FARMS 
as they would be interpreted as noise. An appropriate approach would model those 
changes by a sparse factor, meaning that the factor takes for most cases its default value 
(CN 2) and deviates only in few cases considerably from this value. Therefore we propose 
a factor analysis model with a Laplacian prior, which leads to a sparse factor distribution. 
But now we face another problem: the likelihood much harder to compute. We tackled this 
problem by applying an algorithm that employs a variational expectation maximization 
algorithm to the sparse prior, which optimizes a lower bound on the likelihood and is 
based on a local Gaussian approximation to the mode of the Laplacian prior distribution. 
We have also developed an exact approach.

Results:Results:Results:Results: We have applied the Laplacian cn.FARMS model on the HapMap dataset to detect 
CNVs. We could verify most of published copy number variable regions and found new 
ones. However some  known CNVs seem to be false positives.
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The ModelThe ModelThe ModelThe Model

ProblemProblemProblemProblem

Likelihood:

Experiments on HapMap DatasetExperiments on HapMap DatasetExperiments on HapMap DatasetExperiments on HapMap Dataset

• Dataset: 270 HapMap individuals evaluated by Affymetrix SNP6 microarrays

• Multiloci window mode: combine adjacent probe sets to one measurement

• Reference results: McCarroll et al. 2008
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is non-Gaussian for Laplace prior which makes computation more difficult

ConclusionConclusionConclusionConclusion
We have showed that a Laplace prior for cn.FARMS is superior to a Gaussian prior at 
detecting sparse CNVRs. 

Most of the copy number variable regions from McCarroll et al. 2008 could be confirmed by 
our approach while we also detected novel CNVRs. 

From the top ranked 744 regions found by Laplace cn.FARMS but only partly by McCarroll
et al. 2008 , 678 are rediscoveries as they are reported in the Database of Genomic Variants 
--- the remaining are new discoveries.

These results verify our approach to detect rare CNVRs by Laplacian priors.

:   hidden factor due to CNVs

:   independent noise

:   diagonal covariance matrix (independent noise)
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Standard EM:

Variational approach:

Solution 1: Variational approachSolution 1: Variational approachSolution 1: Variational approachSolution 1: Variational approach

Lower bound on the Likelihood by introducing distribution Q(z)
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Solution 2: Exact computationSolution 2: Exact computationSolution 2: Exact computationSolution 2: Exact computation

Based on truncated Gaussian moments

cn.FARMS with Gaussian prior (left graph) vs. cn.FARMS with Laplace Prior (right graph)

Deletions on three individuals can clearly be detected by Laplacian cn.FARMS

(chr5:104,464,614-104,506,104 – confirmed deletion region)
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� Probe level data

1. Normalization

• sparse.FARMS

• ACC

• Quantile

• VSN

2. Correction for sequence effects

3. Allele signals correction

PM_A + PM_B

4. Single locus modeling
• Laplace FARMS
• Medianpolish
• MBEI

5. Fragment length correction
6. Multi loci modeling

• Laplace FARMS
� Raw copy number


