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Abstract:
This contribution provides an overview of practical

applications of similarity-based fuzzy orderings. These
applications include flexible database querying, robust
statistics, natural language semantics, and fuzzy rule-
based machine learning.
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1 Introduction

It is an outstanding feature of human thinking to
inherently employ a gradual concept of equal-
ity with a tolerance for imprecision. Consider
the notorious example how to define a set of tall
people. Specifying a sharp limit, e.g. 180cm,
leads to unnatural preciseness. While a per-
son of 179.95cm would be classified as not tall,
somebody of 180.05cm would be classified as
tall, although it is virtually impossible to dis-
tinguish between the two. Allowing a grad-
ual transition of membership between the two
classes “not tall” and “tall”—as fuzzy sets do—
solves this problem in a simple and pragmatic
way. This viewpoint suggests that gradual sim-
ilarity is, in some sense, an inherent component
of fuzziness. The example also indicates that
this kind of gradual similarity appears in ordi-
nal contexts too, as the height of people and the
concept “tall” have an ordinal structure.

Equivalence relations and orderings are
Siamese twins in classical mathematics.
Within the early gold rush of fuzzification
of any classical mathematical concept, these
two fundamental types of relations did not
have to await the introduction of their fuzzy
counterparts for a long time [35].

On the one hand, a rich theory of fuzzy equiv-
alence relations has been developed since the

1970ies. It has turned out that fuzzy equiva-
lence relations are most suitable concepts for
modeling gradual similarity in the sense dis-
cussed above. The study of fuzzy equivalence
relations has not only brought insight into this
class of fuzzy relations, but also deep insight
into the inherent principles underlying fuzzy
sets [13, 29, 30, 34].

On the other hand, different concepts of fuzzy
orderings have existed, but the theory remained
underdeveloped. This is astonishing and seems
almost paradoxical, as almost all fuzzy systems
make implicit use of ordinal structures—there
might be only a small minority of fuzzy sys-
tems in which expressions, such as “small”,
“medium”, or “large’, do not occur. This was
the starting point of a long-term research ef-
fort the outcome of which is subsumed in the
present contribution. The long-term goal was
not only to create a reasonable theory of fuzzy
orderings, but also to achieve the integration of
this concept into real-world applications. This
talk aims at providing an overview from the
viewpoint of applications.

2 “Similarity-Based” Fuzzy Order-
ings

In classical mathematics, equivalence relations
and orderings are both special cases of pre-
orderings (reflexive and transitive relations).
While equivalence relations can be constructed
as symmetric kernels of preorderings, orderings
are obtained from preorderings by factorization
with respect to this symmetric kernel. This fun-
damental correspondence did not hold for fuzzy
orderings in the sense of Zadeh [35]. The rel-
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atively unknown paper [26], for the first time,
proposes a generalization that explicitly links
fuzzy orderings to fuzzy equivalence relations
in a way analogous to classical mathematics.
This idea has been revitalized and further de-
veloped in [1–3].

Definition 1 A binary fuzzy relation L on a do-
main X is called fuzzy ordering with respect to
a t-norm T and a T -equivalence E on X , for
brevity T -E-ordering, if it fulfills the following
three axioms for all x, y ∈ X:

(i) E-Reflexivity: E(x, y) ≤ L(x, y)

(ii) T -E-antisymmetry:
T (L(x, y), L(y, x)) ≤ E(x, y)

(iii) T -transitivity:
T (L(x, y), L(y, z)) ≤ L(x, z)

It is not the main focus of this paper to go
deeply into constructions and representations of
fuzzy orderings. We only mention an important
subclass that will be of particular practical in-
terest throughout the remaining paper.

Definition 2 A T -E-ordering L is called
strongly linear if, for all x, y ∈ X ,

max(L(x, y), L(y, x)) = 1.

As the term “strong linearity” suggests, this
property can be considered as a generalization
of the classical linearity property. However,
strong linearity is usually too strong a require-
ment to be acceptable as a general concept of
linearity [10].

Definition 3 A crisp ordering � on a domain
X and a T -equivalence E on X are called com-
patible, if and only if the following holds for all
x, y, z ∈ X:

x � y � z ⇒ E(x, z) ≤ min(E(x, y), E(y, z))

Compatibility between a crisp ordering � and a
fuzzy equivalence relation E can be interpreted

as follows: the two outer elements of an ordered
three-element chain are at most as similar as any
two inner elements.

Theorem 3.1 [1,2] Consider a binary fuzzy re-
lation L on a domain X and a T -equivalence
E on X . Then the following two statements are
equivalent:

(i) L is a strongly linear T -E-ordering.

(ii) There exists a linear ordering � the rela-
tion E is compatible with such that L can
be represented as follows:

L(x, y) =

{
1 if x � y
E(x, y) otherwise (1)

Theorem 3.1 allows to consider strongly linear
T -E-orderings as “linear orderings with impre-
cision”, which are common phenomena in ev-
eryday life. Reconsider the example of compar-
ing the heights of people. Although we have a
clear crisp concept for ordering heights (which
are just positive real numbers), there is undoubt-
edly a certain tolerance for imprecision or indis-
tinguishability in the way we actually perform
such a comparison. Similar situations occur in
virtually any application where values have to
be processed for which a crisp ordering would
exist, but where the distinction of small differ-
ences is either impossible or unnecessary.

3 Flexible Query Answering Sys-
tems

The use of fuzzy equivalence relations has had
a long tradition in flexible query answering sys-
tems (FQAS’s) [23, 27, 31, 32], while fuzzy or-
derings have never been applied in this do-
main. The reason was simply that previous
approaches to fuzzy orderings were not rich
enough to fulfill the needs of applications in
FQAS’s. In the new framework, linear order-
ings with imprecision (see Theorem 3.1 and the
discussion thereafter) provide a simple and ele-
gant means to interpreting ordinal queries in a
flexible manner.
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In [12], we have proposed a way how to fur-
ther enrich flexible querying by fuzzy order-
ings. This has been demonstrated by a pro-
totype system that acts as a proxy to an SQL
database. This system uses an extension of SQL
in which the conditions “IS”, “IS AT LEAST”,
“IS AT MOST”, and “IS WITHIN” can be in-
terpreted in a fuzzy way (generalizing the stan-
dard SQL constructs “=”, “>=”, ‘<=”, and “BE-
TWEEN”, respectively). Provided that we are
given an attribute on a domain X for which
we know a crisp linear ordering � and a T -
equivalence E which is compatible to �, the
fuzzy relation defined in (1) is a strongly linear
T -E-ordering. Then we can compute the de-
grees of fulfillment of the following query frag-
ments in the following way (for a query value q
and a record x):

t(“x IS q”) = E(q, x)

t(“x IS AT LEAST q”) = L(q, x)

t(“x IS AT MOST q”) = L(x, q)

t(“x IS WITHIN (a, b)”) =

T
(
L(min(a, b), x), L(x,max(a, b))

)
The standard case is X = R (or X ⊂ R).
In this case, we can use simple distance-based
constructions to define E and L in an intuitive
and interpretable way [7, 12, 17].

4 Robust Rank Correlation Mea-
sures

Rank correlation measures are intended to mea-
sure to which extent a monotonic function is
able to model the dependence between the two
observables. They neither assume a specific
parametric model nor specific distributions of
the observables. They can be applied to ordinal
data and, if some ordering relation is given, to
numerical data too. Therefore, rank correlation
measures are ideally suited for detecting mono-
tonic relationships, in particular, if more spe-
cific information about the data is not available.
The most common approaches are Spearman’s
rho [33], Kendall’s tau [28], and Goodman’s
and Kruskal’s gamma [24].

All these rank correlation measures need to
correct for ties, i.e. equally ranked observa-
tions. For real-valued data, these corrections
fail, since they are based on crisp equalities. In
particular in the presence of noise, it would be
desirable to handle ties such that the extent to
which monotonicity is violated is taken into ac-
count too. This can be achieved by using fuzzy
orderings in a straightforward way. In [11], we
have proposed a fuzzy ordering-based extension
of Goodman’s and Kruskal’s gamma.

In the classical setting, for a given set of pairs of
observations (xi, yi)

n
i=1, the numbers of concor-

dant and discordant pairs are defined as follows:

C = |{(i, j) | xi < xj and yi < yj}|
D = |{(i, j) | xi < xj and yi > yj}|

The classical gamma measure is then defined as

γ =
C −D
C +D

.

It is obvious that the above definitions are
highly sensitive to small random variations of
the data. Our idea is based on replacing the
crisp strict ordering < by a strict fuzzy order-
ing.

Given a T -E-ordering L, the fuzzy relation

R(x, y) = min(L(x, y), NT (L(y, x))),

where NT (x) = sup{y ∈ [0, 1] | T (x, y) = 0}
is the residual negation of T , is the most appro-
priate choice for extracting a strict fuzzy order-
ing from a given fuzzy orderingL (for a detailed
argumentation, see [9]).

If we assume that RX is an appropriate strict
fuzzy ordering for the first component (the x
values) and RY is a strict fuzzy ordering for the
second component (the y values), we can com-
pute the degree to which (i, j) is a concordant
pair as

C̃(i, j) = T̄ (RX(xi, xj), RY (yi, yj))

and the degree to which (i, j) is a discordant
pair as

D̃(i, j) = T̄ (RX(xi, xj), RY (yj, yi)),
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where T̄ is some t-norm to aggregate the rela-
tionships of x and y components. If we adopt
the simple sigma count idea to measure the car-
dinality of a fuzzy set [18], we can compute the
numbers of concordant pairs C̃ and discordant
pairs D̃, respectively, as

C̃ =
n∑

i=1

∑
j 6=i

C̃(i, j), D̃ =
n∑

i=1

∑
j 6=i

D̃(i, j).

Finally, we can define a fuzzy ordering-based
rank correlation measure γ̃ as

γ̃ =
C̃ − D̃
C̃ + D̃

.

It is worth to point out that, in case that the strict
fuzzy orderings and the operations involved are
continuous, γ̃ depends continuously on the in-
put data (xi, yi)

n
i=1. Further analyses [11] sug-

gest that this new way of measuring correlations
is highly suitable for noisy data—although the
analyses are still far from being statistically pro-
found.

5 Ordering-Based Modifiers

Ordering-based modifiers, such as ‘at least’, ‘at
most’, or ‘between’ are ubiquitous in natural
language. The queries highlighted in Section 3
above also make use of these constructs. Given
a fuzzy ordering L on the domain under consid-
eration, we can use the same way as in Section 3
to define fuzzy sets modeling the expressions
‘at least q’, ‘at most q’, or ‘between r and q’,
where r and q are crisp values. From that point
of view, fuzzy orderings also provide us with
means to model ordinal predicates that we can
use directly in fuzzy systems applications.

For many fuzzy systems, however, it might be
desirable to have a way of defining the mean-
ing of expressions like ‘at least medium’, where
‘medium’ is a fuzzy set. It is clear that it would
be most convenient if we could define the se-
mantics of the modifier ‘at least’ in a strictly
functional manner, i.e. that the fuzzy set mod-
eling ‘at least A’ is a function of the fuzzy set
modeling the expression ‘A’.

If we are given a T -E-ordering L on the do-
main under consideration X , we can use direct
images with respect to fuzzy relations [25] to
achieve this goal (for brevity, ATL stands for
‘at least’ and ATM stands for ‘at most’) [8]:

ATLL(A)(x)

= sup{T (A(y), L(y, x)) | y ∈ X}
ATML(A)(x)

= sup{T (A(y), L(x, y)) | y ∈ X}

If a crisp ordering � is considered, the above
definitions simplify to

ATL�(A)(x) = sup{A(y) | y � x},
ATM�(A)(x) = sup{A(y) | x � y}.

If L is a strongly linear T -E-ordering that is a
direct fuzzification of a crisp linear ordering �,
we can prove that the equalities [8]

ATLL(A) = ATL�(EXTE(A))

= EXTE(ATL�(A))

ATML(A) = ATM�(EXTE(A))

= EXTE(ATM�(A))

hold for all fuzzy sets A ∈ F(X), where

EXTE(A)(x)

= sup{T (A(y), E(y, x)) | y ∈ X}

is the extensional hull of A with respect to E.
This means that, for the practically important
case of direct fuzzifications, the image of the
fuzzy ordering is obtained from the images of
the crisp ordering and the fuzzy equivalence re-
lation (which then even commute). Figure 1
shows an example of this correspondence.

These ordering-based modifiers can be applied
directly in fuzzy modeling and, equally im-
portant, in fuzzy rule-based machine learning.
Ordering-based modifiers can be used to in-
troduce additional linguistic expressions, pos-
sibly allowing more expressive and more com-
pact rule systems, without compromising inter-
pretability in any way. Indeed, several fuzzy
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Figure 1: A fuzzy set and the results obtained by applying various ordering-based modifiers.

rule-based machine learning methods have been
introduced in recent years that make use of
ordering-based modifiers [19–22]. These meth-
ods have been used successfully in industrial
applications and they are available as part of a
commercial machine learning software.1

6 Further Topics

Orderings of fuzzy sets. Based on the defini-
tion of ordering-based modifiers, it is possible
to define a preordering of arbitrary fuzzy sets
on any domain for which a T -E-ordering L is
known [4, 5]. This relation is defined as

A �L B ⇔
(
ATLL(A) ⊇ ATLL(B) and

ATML(A) ⊆ ATML(B)
)
,

where ⊆ denotes the usual crisp inclusion of
fuzzy sets. It is easy to see (compare with
Fig. 1) that the first inclusion ATLL(A) ⊇
ATLL(B) corresponds to the fact that the left
flank of A is above (to the left) of the left flank
of B, while the second inclusion ATML(A) ⊆
ATML(B) means that the right flank ofA is be-
low (to the left) of the right flank of B.

The unique feature of this approach is that it can
be applied to any kind of fuzzy sets on a domain

1http://www.unisoftwareplus.com/
products/mlf/

for which a crisp or fuzzy ordering is known.
In particular, no special assumptions concern-
ing the structure of the space X (e.g., linearity
of the ordering, restriction to real numbers or in-
tervals, etc.) have to be made. For more details
on the properties of the relation �L, see [4, 5].

Interpretability of Linguistic Variables In-
terpretability is often used a selling argument
to promote fuzzy systems. In recent years,
the community has increasingly acknowledged
the fact that interpretability is not a feature
that fuzzy systems have per se. Instead, inter-
pretability has to be ensured by appropriate con-
straints in order to avoid that a fuzzy system de-
generates to a black box [15].

In [6], we have proposed an axiomatic approach
to the interpretability of linguistic variables. It
is based on the idea that the fuzzy sets model-
ing the linguistic expressions should also obey
the same relationships one would expect from
the linguistic expressions. As a simple exam-
ple, the fuzzy sets modeling ‘small’, ‘medium’,
and ‘large’ should be in proper order. Since
such ordinal expressions are ubiquitous in fuzzy
modeling, it is clear that orderings of fuzzy
sets are essential for assessing interpretability.
The paper [6] elaborates these thoughts until, in
the end, practically feasible interpretability con-
straints are devised.
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Using these constraints in fuzzy rule-based ma-
chine learning leads to more complex optimiza-
tion problems that require more sophisticated
solution strategies. One option are genetic algo-
rithms and other heuristics [16]. In [14], a reg-
ularized numerical algorithm is proposed that
allows for a quick and reliable optimization of
Sugeno fuzzy systems.

7 Conclusion

This paper is intended as a pleading for the
importance of fuzzy orderings in applications
aside of preference modeling and decision anal-
ysis. In order to support this claim, several
fields of practical applications have been dis-
cussed. They clearly underline that fuzzy or-
derings are not just of pure theoretical interest,
but can also have fruitful practical applications.
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