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Abstract

This paper aims to demonstrate that estab-
lished rank correlation measures are not ide-
ally suited for measuring rank correlation for
numerical data that are perturbed by noise.
We propose a robust rank correlation mea-
sure on the basis of fuzzy orderings. The su-
periority of the new measure is demonstrated
by means of illustrative examples.

Keywords: Fuzzy Orderings, Rank Corre-
lation, Robust Statistics.

1 Introduction

Correlation measures are among the most basic tools
in statistical data analysis and machine learning. They
are applied to pairs of observations (n ≥ 2)

(xi, yi)n
i=1 (1)

to measure to which extent the two observations com-
ply with a certain model. The most prominent rep-
resentative is surely Pearson’s product moment coeffi-
cient [1, 14], often nonchalantly called correlation co-
efficient for short. Pearson’s product moment coeffi-
cient is applicable to numerical data and assumes a
linear relationship as the underlying model; therefore,
it can be used to detect linear relationships, but no
non-linear ones.

Rank correlation measures [9, 11, 13] are intended
to measure to which extent a monotonic function is
able to model the inherent relationship between the
two observables. They neither assume a specific para-
metric model nor specific distributions of the observ-
ables. They can be applied to ordinal data and, if
some ordering relation is given, to numerical data too.
Therefore, rank correlation measures are ideally suited
for detecting monotonic relationships, in particular, if

more specific information about the data is not avail-
able. The two most common approaches are Spear-
man’s rank correlation coefficient (short Spearman’s
rho) [16, 17] and Kendall’s tau (rank correlation co-
efficient) [2, 10, 11].

This paper argues why the well-known rank correla-
tion measures are not ideally suited for measuring rank
correlation for numerical data that are perturbed by
noise. Consequently, we propose a robust rank corre-
lation measure on the basis of fuzzy orderings. The su-
periority of the new measure is demonstrated by means
of illustrative examples.

2 An Overview of Rank Correlation
Measures

Assume that we are given a family of pairs as in (1),
where all xi and yi are from linearly ordered domains
X and Y , respectively. Spearman’s rho is computed as

ρ = 1− 6
∑n

i=1(r(xi)− r(yi))2

n(n2 − 1)
,

where r(xi) is the rank of value xi if we sort the list
(x1, . . . , xn); r(yi) is defined analogously. So, Spear-
man’s rho measures the sum of quadratic distances of
ranks and scales this measure to the interval [−1, 1].
It can be checked easily that a value of 1 is obtained
if the two rankings coincide and that a value of −1 is
obtained if one ranking is the reverse of the respec-
tive other. Note that the above definition of r(xi) and
r(yi) was simplified, because it did not take coinciding
values, so-called ties, into account. In such a case, the
values r(xi) are usually defined as the mean value of
all ranks of consecutive coinciding values in the sorted
list.

With the same assumptions as above, Kendall’s tau is
computed as the quotient

τa =
C −D

1
2n(n− 1)

,



where C and D denote the numbers of concordant and
discordant pairs, respectively:

C = |{(i, j) | xi < xj and yi < yj}|
D = |{(i, j) | xi < xj and yi > yj}|

As above, if we have no ties and the two rankings coin-
cide, we have 1

2n(n− 1) concordant and no discordant
pairs, so τa = 1; if we have no ties and one ranking
is the reverse of the respective other, we have no con-
cordant and 1

2n(n − 1) discordant pairs, so a value of
τa = −1 is obtained.

In the above definition of τa, ties, no matter whether in
the first or in the second list, are not counted. So ties
lower the absolute value of τa. Therefore, τa is best
suited for detecting strictly monotonic relationships,
but not ideally suited in the presence of ties. A well-
established second variant [11],

τb =
C −D√

1
2n(n− 1)− T

√
1
2n(n− 1)− U

,

where

T = |{(i, j) | xi = xj}|, U = |{(i, j) | yi = yj}|,

takes ties into account, but is still not fully robust to
ties. A simple and tie-robust rank correlation measure
is the gamma rank correlation measure according to
Goodman and Kruskal [9] that is defined as

γ =
C −D

C + D
.

3 Motivation

All rank correlation measures highlighted above have
been introduced with the aim to measure rank corre-
lation of ordinal data (e.g. natural numbers, marks,
quality classes, ranks). The measurement of rank cor-
relation for real-valued data, however, is equally im-
portant in statistics and machine learning, but raises
completely new issues. Depending on the source, nu-
merical data are almost always subject to random
perturbations—noise. The concepts introduced above
do not take this into account. Pairs are counted as
concordant or discordant only on the basis of ordering
relations, but without taking into account that only
minimal differences may decide whether a pair is con-
cordant or discordant. If one observable depends on
the other in a clearly monotonic way and if the level
of noise is low, then the rank correlation measures in-
troduced above will still reveal this strictly monotonic
relationship and will not be compromised by minor
local effects of noise. In the presence of a larger per-
centage of ties, however, already the slightest pertur-
bations may lead to situations in which the above rank

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Noise level: 0.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Noise level: 0.001

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Noise level: 0.01

Figure 1: Scatter plots of a simple monotonic relation-
ship with different noise levels.

correlation coefficients cannot yield meaningful results
anymore. Consider the data sets in Figure 1. We see
a monotonic, yet not strictly monotonic, relationship.
The left plot shows data without noise, i.e. yi = f(xi)
for a non-decreasing function f . For these data, we ob-
tain ρ = 0.737, τb = 0.639 and γ = 1 (which confirms
that γ is most robust to ties). The middle plot shows
the same data, but with additive normally distributed
noise with zero mean and σ = 0.001. Although it is
hard to see the noise at all, we obtain ρ = 0.519 and
τb = γ = 0.387. These results indicate that none of
the three measures can adequately handle a large pro-
portion of ties in the presence of noise. For σ = 0.01
(right plot), the values are slightly lower, but not sig-
nificantly: ρ = 0.456 and τb = γ = 0.331. So we
can conclude that it is rather the presence of noise in
general than the magnitude of noise that distracts the
three rank correlation measures.

The obvious reason for the weakness described above
is the fact that all measures only take ordering rela-
tionships into account, but neglect similarities of data
points. To illustrate that, consider the two pairs (a, c)
and (b, c), where b > a. Obviously, this is a tie in the
second component. If we add some noise to the second
component of the second pair, i.e., if we replace (b, c)
by (b, c + ε), then ε decides whether ((a, c), (b, c + ε))
is a tie (for ε = 0), concordant (ε > 0), or discor-
dant ε < 0), where the magnitude of ε plays no role at
all. So we observe a discontinuous behavior. This toy
example thereby serves as a proof that all measures in-
troduced above depend on the data in a discontinuous
way.

The question arises how we can define a robust rank
correlation measure that depends continuously on the
data by taking similarities into account, but still serves
as a meaningful measure of rank correlation. Obvi-
ously, the measure should be designed such that close-
to-tie pairs receive less attention than pairs that are
clearly concordant or discordant. A reasonable idea
would be to base such a concept on the probabilities
to which concordant/discordant pairs are observed as
such compared to the probabilities that they are falsely
observed as something else. That may be a reasonable
approach. Note, however, that such probabilities can



only be computed if we know the joint distribution of
x and y values or at least if we make distribution as-
sumptions. In practice, such information is most often
unavailable and, surely, we do not want to sacrifice the
unique feature of rank correlation measures that they
are distribution-free.

In our opinion, fuzzy orderings provide a meaningful
way to overcome the difficulties explained above.

4 Fuzzy Orderings

Before we can introduce a fuzzy ordering-based rank
correlation coefficient, we need to provide some ba-
sics of fuzzy orderings. We restrict to an absolutely
necessary minimum and refer to literature for details.
We assume that the reader is aware of the most basic
concepts of triangular norms and fuzzy relations.

A fuzzy relation L : X2 → [0, 1] is called fuzzy ordering
with respect to a t-norm T and a T -equivalence E, for
brevity T -E-ordering, if and only if it is T -transitive
and fulfills the following two axioms for all x, y ∈ X:

(i) E-Reflexivity: E(x, y) ≤ L(x, y)

(ii) T -E-antisymmetry: T
(
L(x, y), L(y, x)

)
≤ E(x, y)

Moreover, we call a T -E-ordering L strongly complete
if max

(
L(x, y), L(y, x)

)
= 1 for all x, y ∈ X [4].

Several correspondences between distances and fuzzy
equivalence relations are available [6, 7, 12, 18]. From
these results, we can easily infer that (assume r > 0
in the following)

Er(x, y) = max(0, 1− 1
r |x− y|)

is a TL-equivalence on R, where TL(x, y) = max(0, x+
y − 1) denotes the  Lukasiewicz t-norm. Analogously,

E′
r(x, y) = exp(− 1

r |x− y|)

is a TP-equivalence on R, where TP(x, y) = xy denotes
the product t-norm.

Based on a general representation theorem for strongly
complete fuzzy orderings [4], we can further prove that

Lr(x, y) = min(1, max(0, 1− 1
r (x− y)))

is a strongly complete TL-Er-ordering on R and that

L′
r(x, y) = min(1, exp(− 1

r (x− y))

is a strongly complete TP-E′
r-ordering on R. As TL ≤

TP, we can trivially conclude that L′
r is also a strongly

complete TL-E′
r-ordering.

In order to generalize the notion of concordant and
discordant pairs, we need the notion of a strict fuzzy

ordering. We call a binary fuzzy relation R a strict
fuzzy ordering with respect to T and a T -equivalence
E, for brevity strict T -E-ordering, if it is irreflexive
(i.e. R(x, x) = 0 for all x ∈ X), T -transitive, and E-
extensional, that is,

T (E(x, x′), E(y, y′), R(x, y)) ≤ R(x′, y′)

for all x, x′, y, y′, z ∈ X [5].

Given a T -E-ordering L,

R(x, y) = min(L(x, y), NT (L(y, x))), (2)

where NT (x) = sup{y ∈ [0, 1] | T (x, y) = 0} is the
residual negation of T , is the most appropriate choice
for extracting a strict fuzzy ordering from a given
fuzzy ordering L (for a detailed argumentation, see
[5]). From this construction, we can infer that the
fuzzy relation

Rr(x, y) = min(1, max(0, 1
r (y − x)))

is a strict TL-Er-ordering and that

R′
r(x, y) = max(0, 1− exp(− 1

r (y − x)))

is a strict TL-E′
r-ordering.

If a given TL-E-ordering L is strongly complete, it can
be proved that the fuzzy relation R defined as in (2)
simplifies to

R(x, y) = 1− L(y, x)

and that the following holds:

R(x, y) + E(x, y) + R(y, x) = 1 (3)
min(R(x, y), R(y, x)) = 0 (4)

5 A Fuzzy Ordering-Based Rank
Correlation Coefficient

The previous section has provided us with the appa-
ratus that is necessary to define a generalized rank
correlation measure. Assume that the data are given
as in (1) again (with xi ∈ X and yi ∈ Y for all i =
1, . . . , n). Further assume that we are given two TL-
equivalences EX : X2 → [0, 1] and EY : Y 2 → [0, 1],
a strongly complete TL-EX -ordering LX : X2 → [0, 1]
and a strongly complete TL-EY -ordering LY : Y 2 →
[0, 1]. Therefore, we can define a strict TL-EX -ordering
on X as RX(x1, x2) = 1−LX(x2, x1) and a strict TL-
EY -ordering on Y as RY (y1, y2) = 1− LY (y2, y1).

Spearman’s rho is based on rankings. Rankings are
crisp concepts in which it is not easy to accommodate
degrees of relationship in a straightforward way. Thus
it is more meaningful to use pairwise comparisons to



define a concept of rank correlation, just like Kendall’s
tau and the gamma measure do.

Given an index pair (i, j), we can compute the degree
to which ((xi, yi), (xj , yj)) is a concordant pair as

C̃(i, j) = min(RX(xi, xj), RY (yi, yj))

and the degree to which ((xi, yi), (xj , yj)) is a discor-
dant pair as

D̃(i, j) = min(RX(xi, xj), RY (yj , yi)).

If we adopt the simple sigma count idea to measure
the cardinality of a fuzzy set [8], we can compute the
numbers of concordant pairs C̃ and discordant pairs
D̃, respectively, as

C̃ =
n∑

i=1

∑
j 6=i

C̃(i, j),

D̃ =
n∑

i=1

∑
j 6=i

D̃(i, j).

The question arises whether we should attempt to gen-
eralize τa, τb or γ. As the main motivation is to get
rid of the influence of close-to-ties pairs in the pres-
ence of noise, it is immediate that the idea behind γ
is the most promising one. So, with the assumptions
from above, we define our fuzzy ordering-based rank
correlation measure γ̃ as

γ̃ =
C̃ − D̃

C̃ + D̃
.

To interpret the meaning of γ̃, we note that, for all
index pairs (i, j), the equality

C̃(i, j) + C̃(j, i) + D̃(i, j) + D̃(j, i) + T̃ (i, j) = 1 (5)

holds, where T̃ (i, j) denotes the degree to which (i, j)
is a tie in either variable:

T̃ (i, j) = max(EX(xi, xj), EY (yi, yj))

Moreover, we can infer the following:

C̃ =
n∑

i=1

∑
j>i

(C̃(i, j) + C̃(j, i))

D̃ =
n∑

i=1

∑
j>i

(D̃(i, j) + D̃(i, j))

Thus, by (5), C̃ +D̃ equals the number of non-tie pairs
if we consider each choice of indices i, j only once (in
contrast to considering (i, j) and (j, i) independently
for each i and j). So γ̃ measures the difference of
concordant and discordant pairs relative to the number
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dle), and T̃ (i, j) (right) plotted as functions of xj and
yj for fixed xi and yi (using the relations Er and Rr).
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dle), and T̃ (i, j) (right) plotted as functions of xj and
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of non-tie pairs; the concept of “tiedness” is a fuzzy
one, however.

It is obvious that, in case that EX and EY are crisp
equalities and that RX and RY are crisp linear strict
orderings, that γ̃ coincides with γ. So what is the
difference if RX and RY are non-trivial fuzzy rela-
tions? The above interpretation shows that concor-
dant/discordant pairs are counted more if they are
dissimilar and less if they are similar—which perfectly
corresponds to our intention. Let us demonstrate this
fact with an example.

Assume X = Y = R, EX = EY = Er, and RX =
RY = Rr for some r > 0. Fixing some xi and yi

and considering C̃(i, j) + C̃(j, i), D̃(i, j) + D̃(j, i), and
T̃ (i, j) as functions of the two variables xj and yj , the
graphs shown in Figure 2 can be obtained. It can be
seen that pairs are counted fully if |xi − xj | > r and
|yi − yj | > r (i.e. like in the classical γ measure). If
one of the two distances is smaller than r, the pair is
considered as a tie to the corresponding degree T̃ (i, j)
and only counted to a degree of 1 − T̃ (i, j). One also
sees that, if r is chosen so large that |xi − xj | ≤ r
and |yi − yj | ≤ r for all pairs, all pairs are counted
to a degree proportionally to the minimum of these
two distances. If the relations EX = EY = E′

r, and
RX = RY = R′

r are used, the effect is qualitatively
similar, r also controls to which degree a close-to-tie
pair is counted, also in a monotonic, yet asymptotic
fashion (see Figure 3).

It is clear from the above examples that, the smaller
r, the more γ̃ resembles to γ. For both, the variant
based on Er/Rr and the variant based on E′

r/R′
r, it

can be proved that γ̃ converges to γ for r → 0.
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Figure 4: Different data sets obtained from contami-
nating a non-decreasing relationship by normally dis-
tributed noise with different standard deviations.

Another property of γ̃ is immediate to see: if the fuzzy
relations RX and RY are continuous (assuming that
this notion makes sense on X and Y ), then γ̃ depends
continuously on the data set (xi, yi)n

i=1.

6 Experiments

Let us first reconsider the example from Section 3.
More specifically, we are given 100 uniformly dis-
tributed random values (x1, . . . , x100) from the unit
interval. The list (y1, . . . , y100) is computed as yi =
f(xi), where f is a simple, piecewise linear, non-
decreasing function that has a relatively large flat area.
In order to study how different rank correlation mea-
sures react to noise, we contaminated the data points
with additive, independent, normally distributed noise
with 0 mean and standard deviation σ. Figure 4 shows
these data sets. Figure 6 displays the results that we
obtained for different rank correlation measures. We
compared ρ, τb, γ and different variants of γ̃. Every
line in Figure 6 corresponds to the results obtained by
one rank correlation measure depending on the noise
level σ. The two lines for τb (dotted, black) and γ (dot-
ted, light gray) coincide except for no noise (σ = 0).
Both lines reveal that these two measures react to noise
in an non-robust way. More or less the same is true
for ρ (dotted, medium gray). The other lines corre-
spond to different variants of γ̃. Solid lines correspond
to γ̃ using Rr and dashed lines denote the results for
γ̃ using R′

r (where we use the same r for both compo-
nents). We used r = 0.05 (black), r = 0.2 (medium
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Figure 5: Noisy data sets that correspond to mono-
tonic (q ≤ 0.5) and non-monotonic relationships (q >
0.5).

gray), and r = 0.5 (light gray). We see that all six
different variants react to the noise in a more robust
way than the three crisp measures. Clearly, the higher
r, the more noise is neglected. Note, however, that,
the larger r, the more difficult it is for γ̃ to find out
whether there are slightly non-monotonic parts in the
data.

So let us consider a different setting. Now we fix the
noise level σ = 0.01 and use different functions to cre-
ate the second list (y1, . . . , y100). Right of x = 0.5,
we use f(x) = x

2 + 1
4 and to the left or x = 0.5, we

linearly interpolate between (0, q) and (0.5, 0.5). It is
clear, that this relationship is monotonic if and only
if q ≤ 0.5. The data sets are displayed in Figure 5
and the results are presented in Figure 7, where we
use the same conventions to distinguish the lines as
in Figure 6. We see that all variants of γ̃ show ac-
ceptable results for q ≤ 0.5, whereas ρ, τb and γ again
have problems to handle the noise in case of the large
proportion of ties that occurs for q = 0.5. We also
see that γ̃ already yields significantly lower values for
q = 0.6 in the case r = 0.05 (no matter which of the
two variants is considered). For larger r, however, we
see that γ̃ cannot detect the slight non-monotonicity
for q = 0.6 that well. These two examples demonstrate
that, when choosing r, there is a trade-off between ro-
bustness (the larger r, the better) and sensitivity (the
smaller r, the better).

As a third set of experiments, we have tried to figure
out the variance of γ̃. For this study, we have com-
puted all rank correlation measures used in the above
experiments for different test data several times and
computed the variance of the results. In all experi-
ments, we have encountered that τb and γ had higher
variances than all variants of γ̃. The variances we
obtained for different variants of γ̃ obeyed a simple



and unsurprising rule: the larger r, the smaller the
variance. Interestingly, the variances we obtained for
Spearman’s ρ were also very low, comparable to the
lower values for γ̃ with a large r.

Note that the authors have carried out numerous ex-
periments to solidify the above claims. As the space
in this paper is limited, we just quoted the most inter-
esting and demonstrative results.

7 Concluding Remarks

This paper, as the appellative term “towards” in the
title suggests, attempts to present first ideas that the
authors consider promising. The examples of the pre-
vious section are intended to support this viewpoint.
They are illustrative and indicative, but they cannot
replace a formal investigation of the properties of γ̃. As
it has been done exhaustively for Spearman’s rho and
Kendall’s tau, a significance analysis and a variance
analysis have to be carried out. Note, however, that
this cannot be done analogously for γ̃. Both Spear-
man’s rho and Kendall’s tau are fully determined by
the ranking of the lists (x1, . . . , xn) and (y1, . . . , yn).
Thus, combinatorial techniques can be used to study
variances and significance levels [11]—not so for γ̃ that
always depends on the distance relationships of the
values, too, so this analysis can only be done by some
distribution assumptions. These studies are left to fu-
ture research.

To determine the right choice for the parameter r
is another open question. As we have noted above,
there is a trade-off between robustness on the one side
and sensitivity/significance on the other side. So this
topic goes hand in hand with a more formal statistical
analysis. Profound results concerning the choice of r,
again, can only be expected with specific distribution
assumptions. In any case, we want to note in advance
that γ̃ depends continuously on r, so at least we can
be sure that γ̃ will react robust to slightly sub-optimal
choices of r.

Finally, we would like to remark that this investi-
gation was inspired by a problem in bioinformatics:
how to infer sets of co-transcribed genes in procaryotic
genomes (so-called operons) from the gene expression
levels measured by microarray experiments [3, 15, ?].
It will also be subject of future research to evaluate the
rank correlation measures introduced in this paper in
this domain.
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Figure 6: Results obtained by applying different rank correlation measures to the data sets shown in Figure 4.

0 0.2 0.4 0.6 0.8 1
q

-0.5

-0.25

0

0.25

0.5

0.75

1

C
o
r
r
e
l
a
t
i
o
n

Figure 7: Results obtained by applying different rank correlation measures to the data sets shown in Figure 5.


