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Abstract

We introduce an objective function for support vector machines (SVMs)
which is scale invariant and leads to improved bounds on the generaliza-
tion error. Standard SVMs and their margin bounds are not invariant
under linear transformation. The new objective function leads to new
SVM approach, called “Sphered Support Vector Machine” (S-SVM). The
S-SVMs are kernelized and regularized but can be fast implemented by
an incremental learning method and do not require kernel PCA like the
approaches in (Chapelle and Schölkopf, 2002). On real world benchmark
datasets we compare the new S-SVMs to standard ν-SVMs, where the
S-SVMs showed comparable to superior classification performance to ν-
SVMs.

1 Introduction

Support vector machines (SVMs) (Boser et al., 1992; Vapnik, 1995, 1998; Schölkopf
and Smola, 2002) are now well established in the machine learning community
and showed success in various applications. However the selected classifiers as
well as the bounds on the generalization error depend on the data preprocessing
even if it is linear. How should the data normalized for SVMs to obtain good
classification performance? A general rule for data preprocessing is missing for
SVMs.

For artificial neural networks it is common knowledge that normalizing the
input variables to zero mean and unit variance has advantages for learning,
e.g. (Bishop, 1995) Section 8.2. That normalization can be of advantage also
for SVMS was shown in (Vapnik, 1995) for handwritten digit recognition. In
(Herbrich and Graepel, 2000) the conventional margin bound was improved
through the normalized margin, i.e. if the margin is divided by the length of
the data vector producing the margin. As a consequence in (Herbrich and Grae-
pel, 2000) the authors recommend “When training an SVM, always normalize
your data in feature space”. This statement was further confirmed by experi-
ments in (Herbrich and Graepel, 2000). Normalizing the data in feature space
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is straightforward through the kernel matrix. However, here we want to go one
step further and sphere the data in feature space.

Sphering the data in features space is implicitly introduced by a new ob-
jective. It results from a new generalization error bound which simultaneously
estimates the misclassification error and the function class. Previous bounds
(Vapnik, 1995; Schölkopf and Smola, 2002) assume a function class by assuming
an input domain which is based on the observed training data. But it is not
guaranteed that a new data point does not exceed the boundaries imposed by
the training data. The new objective can also be derived by the framework of
(Schölkopf et al., 1998; Chapelle and Schölkopf, 2002) by requiring scale invari-
ance.

We base our approach on new bounds and go beyond the framework of
(Schölkopf et al., 1998; Chapelle and Schölkopf, 2002) at two aspects. First, we
derive for the linear case techniques which are also applicable if the quadratic
part of the objective function is singular. Secondly, the kernelized version does
not rely on kernel PCA because we use special properties of the scaling invari-
ance.

2 Sphered Support Vector Machine

2.1 New Machine

We consider a classification problem, where every object is described by feature
vector x ∈ R

N belongs to one of two classes. A classifier is selected based on L
objects xi, 1 ≤ i ≤ L and their binary labels yi ∈ {+1,−1}. This training set
X =

{

x1, x2, . . . , xL
}

is summarized by a data matrix X :=
(

x1, x2, . . . , xL
)

∈
R

N×L and a label vector y := (y1, y2, . . . , yL). The classifier is selected from
the set {sign (f)} of linear classifiers with

sign (f) = {(x, y) | y = sign (f(x)) = sign (〈w, x〉 + b)} (1)

which are parameterized by the weight vector w and the offset b, where 〈·, ·〉
denotes a dot product. We assume that the parameter w and b of the classifiers
are scaled, such that the hyperplane f(x) = 0 is in its “canonical form”
(Vapnik, 1995), i.e. minx∈X |〈w, x〉 + b| = 1 holds.

The “margin” γ is the distance of the hyperplane to the closest data point

γ =
minx∈X |〈w, x〉 + b|

‖w‖2
. (2)

and can be expressed for hyperplanes in the canonical form by γ = ‖w‖−1
2 .

Conventional support vector machines (SVMs, Vapnik, 1998; Schölkopf and
Smola, 2002) select the hyperplane in canonical form which correctly classifies
the training data and maximizes the margin:

min
w,b

1

2
‖w‖2 (3)

s.t. yi

(〈

w, xi
〉

+ b
)

≥ 1 .



To maximize the margin was motivated by bounds on the generalization
error using the Vapnik-Chervonenkis (VC) dimension h as capacity measure
(e.g. Vapnik, 1998). For linear classifiers on X with γ ≥ γmin the VC dimension
can be bounded by

h ≤ min

{[

R2

γ2
min

]

, N

}

+ 1 (4)

(see Vapnik, 1998; Schölkopf and Smola, 2002). [·] denotes the integer part,
and R is the radius of the smallest sphere in data space, which contains all the
training data. Similar bounds which depend on R

γmin

can be derived for other

capacity measures e.g. for the fat shattering dimension (Shawe-Taylor et al.,
1996, 1998; Schölkopf and Smola, 2002).

If the sphere containing all data is centered at the origin and ŵ := w
‖w‖ is

an unit vector, then

R = max
i,ŵ

∣

∣〈ŵ, xi〉
∣

∣ = max
ŵ

m(f, X) , (5)

where

m(f, X) := max
i

∣

∣〈ŵ, xi〉
∣

∣ . (6)

Because m(f, X) depends on w, as γ does, it seems reasonable to include
m(f, X) in a capacity measure instead of R. Indeed, in Section 4 we show

that
(

m(f,X)
γ

)2

is an upper bound on the generalization error which extends

the known bounds in the SVM context (Vapnik, 1998; Schölkopf and Smola,
2002) (see Section 4 for more details) .

Another disadvantage of using R in the cpacity measure and, therefore, only
maximizing the margin by the SVM thechnique is that both the bound and the
classifier selection are not invariant under linear transformations of the data.
That means preprocessing can considerably change the result. But what is the
best preprocessing? For the bound this invariance can be easily seen. If we scale
with factor s all directions orthogonal to the normal vector of the hyperplane w,
then the margin does not change. However, R maybe scaled, whereas m(f, X)
is not scaled. R is scaled to a minimal value, if s = 0. This situation is depicte
in Fig. 1. That the selected classifier also changes with scaling, is shown in in
the left hand side panel of Fig. 2. The figure shows the separating hyperplane
(top), the separating hyperplane after scaling the data in one direction (middle),
and both hyperplanes in the orginal data where the separating hyperplane after
scaling is projected back. It can be seen that the hyperplanes differ from one
another and, therefore, new data points can be classified differently by both
classifiers – also the number of support vectors changed.

We now upper bound the scale invariant capacity measure m(f,X)
γ :

m(f, X)

γ
= ‖w‖2 max

i
|〈ŵ, xi〉| ≤

√

∑

i

(〈w, xi〉)2 = ‖XT w‖2(7)



R

R̃

Figure 1: Left: The orginal data belonging to one of two classes (indicated by
circles and triangles) and the separating hyperplane with maximal margin (the
closest point to the hyperplane are marked black). Right: The same data but
all directions orthogonal to the normal vector of the separating hyperplane are
scaled to zero. The radius R of the sphere containing all data is scaled to a
smaller radius R̃ whereas the margin remained constant.

and choose as new objective function

‖XT w‖2
2 . (8)

As will be shown below on page 7, the new objective function is invariant under
linear transformation with full rank.

Our objective function is related to approaches which are designed to handle
invariances. In (Schölkopf et al., 1998), and in (Chapelle and Schölkopf, 2002)
for the nonlinear case, the classifier should be invariant against local transfor-
mations Lt of the data vectors. A scaling invariance Lt(x) = (1 + t)x leads
to the covariance matrix of tangent vectors C = XXT , i.e. our new objec-
tive through wT C w. But there is a big difference between our approach and
the approach in (Schölkopf et al., 1998) and in (Chapelle and Schölkopf, 2002).
We use the ‖XT w‖2

2 as a term measuring the capacity or the complexity of a
classifier which must not be zero. In (Schölkopf et al., 1998) and in (Chapelle
and Schölkopf, 2002) the term should be zero in order to enforce the according
invariances.

Now we derive the new method for model selection based on the new ob-
jective function. The constraints for correct classification yi f(xi) ≥ 1 on the
training set X together with the canonical form of the hyperplane are enforced
through

1 ≤ yi
(

〈w, xi〉 + b
)

. (9)

Now we obtain the Sphered Support Vector Machine (S-SVM) optimiza-
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Figure 2: The sphered SVM (right) and the standard SVM (left) on a simple
data set after and before scaling. If the sphered SVM solution on the scaled
data is scaled back, then it coincindeces with the orginal solution. In contrast
to this S-SVM property, the standard SVM solution on the scaled data differs
from the orginal solution if scaled back.

tion problem

min
w,b

1

2
‖XT w‖2

2 (10)

s.t. Y
(

XT w + b1
)

− 1 ≥ 0 .



Note, that X XT is positive semidefinite and above formulation is a convex
problem.

The dual formulation is derived in Appendix A as

min
α

1

2
αT Y X∗X Y α − 1T α (11)

s.t. 1T Y α = 0 , 0 ≤ α ,

where A∗ denotes the pseudo- (Moore-Penrose)-inverse of A.
As with standard support vector machines the value b can be computed for

constraints where the according αi > 0:

αi > 0 : b = yi −
(

xi
)T

w = yi −
(

xi
)T (

XT
)∗

Y α , (12)

where we used the definition of w in Appendix A

w =
(

XT
)∗

Y α , (13)

The selected classifier is

f(x) = xT w + b = xT
(

XT
)∗

Y α + b , (14)

As shown in Appendix B, our model selection through the S-SVM method
is equivalent to sphering and SVM model selection thereafter, if the covariance
matrix X XT has full rank. This answers the question “what is the best pre-
processing?”. However, to integrate sphering and SVM model selection into one
framework has several advantages. First, it is more efficient to do both sphering
and model selection in one procedure. Secondly, the approach allows to apply
the kernel trick and, therefore, carries over to the nonlinear case. Otherwise,
sphering in feature space must rely on kernel PCA (Schölkopf and Smola, 2002).
Thirdly, our approach is applicable where sphering does not work because the
covariance matrix X XT is not invertible. Fourthly, and most importantly,
sphering in high dimensional feature spaces with many data points is too ex-
pensive in terms of computational time, whereas our approach allows for a fast
solver.

In the follwoing we discuss three cases for X∗ and the resulting optimization
problem. We consider the singular value decomposition of X ∈ R

N×L:

X = UT D V and X∗ = V T D∗ U , (15)

where U is an R
N×N orthogonal matrix, V is an R

L×L matrix, D is an R
N×L

diagonal matrix with positive or zero entries, and D∗ is the diagonal matrix
where the non-zero entries are inverted. We consider the cases (1) rk (X) = N
(e.g. N < L), (2) rk (X) = L (e.g. L < N), and (3) rk (X) < min{L, N}.

Case (1) rk (X) = N : Because
(

X XT
)−1

exists we obtain X∗ =

XT
(

X XT
)−1

. In the objective we obtain X∗X = V T IL|NV and the
solution is not unique. Here we used

IL|N :=

(

IN 0
0 0

)

(16)



the N -dimensional identity expanded by zeros to an L × L matrix. To obtain
an unique solution in α a sparseness condition can be imposed on α or the
euclidian length of α may be minimized by adding a positive constant to the
main diagonal of X∗X.

Case (2) rk (X) = L: Because
(

XT X
)−1

exists the pseudo inverse is

X∗ =
(

XT X
)−1

XT and the dual formulation reduces to

min
α

1

2
αT α − 1T α (17)

s.t. 1T Y α = 0 , 0 ≤ α .

For equal number of training examples in each class we obtain α = 1. This dual
reflects the fact that PCA in higher dimensions, i.e. if the dimension is larger
then the number of data points, orthonormalizes the data points. If all xi are
orthonormal and we set w =

∑L
i=1 yi xi then we obtain the perfect classifier

on the training data

〈w, xi〉 = yi . (18)

Case (3) rk (X) = J < min{L, N}: In the objective we obtain X∗X =
V T IL|JV . As in case (1) the solution is not unique.

Now we show explicitely that our apporach is invariant against linear trans-

formation with full rank. We show that for the case that N ≤ L (i.e.
(

XXT
)−1

exists), the S-SVM classification values do not change if all data is linear trans-
formed. This is no restriction for high dimensional spaces because our algorithm
– and also other SVM algorithms – works in the subspace spanned by the data
points, which has dimension L. Therefore our algorithms is invariant against
linear transformaitions in the subspace spanned by the data points.

Assume x is mapped to A x by a full rank matrix A and assume that
rk (X) = N , then the solution of the S-SVM does not change.

(

A1 AT
1

)−1
exists: ⇒ A2A1 (A2A1)

∗
= A2A

∗
2 (19)

(see page 36 equation (17) in (Lütkepohl, 1996)). Transposing eq. (19) and
setting A = AT

1 and X = AT
2 gives:

(AX)∗ AX = X∗X . (20)

Because the dual eqs. (11) contains the data only in the term X∗X, the solution
αA of the transformed dual is equal to the solution α of the original dual.

We apply again eq. (19)

(A x)T
wA = xT AT

(

(AX)T
)∗

Y αA = (21)

xT
(

XXT
)−1

XXT AT
(

XT AT
)∗

Y αA =

xT
(

XXT
)−1

X
(

XT AT
(

XT AT
)∗
)

Y αA =

xT
(

XXT
)−1

XXT
(

XT
)∗

Y αA = xT w ,



where we used rk (X) = N and, therefore
(

XXT
)−1

exists. Because the α
and the values xT w do not change under linear transformations and the offset
b is computed according to eq. (12), the value b does not change, too.

Finally we obtain

fA(A x) = f(x) , (22)

where fA is the classifier selected by the data linearly transformed by A and
f is the classifier selected by the original data. The classification values do
not change, i.e. for classification it does not matter how the data is linearely
preprocessed.

For the case that rk (X) ≤ N , e.g. if N > L, and A is not orthogonal,
the classification function may change with the transformation. The reason is
that the subspace spanned by the training data points changes. For example a
data point z which was orthogonal to all training data points XT z = 0 has
a classification value of zero because zT

(

XT
)∗

= 0. With an appropriate A

the transformed vector A z is no longer orthogonal to all transformed training
points.

2.2 Slack Variables

If the data set is not linearly separable then the constraints for correct clas-
sification cannot be fulfilled. Using slack variables ξi ≥ 0 the optimization
formulation can obey the constraints:

1 − ξi ≤ yi
(

〈w, xi〉 + b
)

. (23)

That leads to

min
w,b,ξ

1

2
‖XT w‖2

2 + M 1T ξ (24)

s.t. Y
(

XT w + b1
)

− 1 + ξ ≥ 0

ξ ≥ 0 .

M penalizes wrong classification. The dual formulation is derived in Appendix
A as

min
α

1

2
αT Y X∗X Y α − 1T α (25)

s.t. 1T Y α = 0 , 0 ≤ α ≤ M 1 .

Note, that the value b is computed through eq. (12) but the condition 0 < αi

must now be replaced by 0 < αi < M .

2.3 Kernelizing the S-SVM

If the classification problem is nonlinear, the approach from previous section is
not sufficient to obtain a nonlinear class boundary. In the case of SVMs a non-
linear class separation boundary is obtained by nonlinear kernels. We do the



same here. Using the “kernel trick” we can replace XT X by the Gram (kernel)
matrix K = XT X, where the vectors xi are now from an unknown feature
space. However the dot products can be computed through the original vectors
oi via 〈xi, xj〉 = Kij = k

(

oi, oj
)

, where xi = φ
(

oi
)

and xj = φ
(

oj
)

. As
shown in Appendix A the dual eq. (11) can be expressed as

min
α

1

2
αT Y K∗K Y α − 1T α (26)

s.t. 1T Y α = 0 , 0 ≤ α .

In Appendix A the classifier is rewritten as

f(o) = k(O, o) K∗ Y α + b , (27)

where k(O, o) is the vector with components k(O, o)i = k
(

oi, o
)

.
Again, the value b is computed for constraints where the according αi > 0:

αi > 0 : b = yi −
(

xi
)T

w = yi − k(O, oi) K∗ Y α . (28)

Only Mercer Kernels. For determining K∗ it is neccessary that K is posi-
tive semidefinite.

Let us consider indefinite kernels which are dot products in Minkowski
spaces. A dot product in a Minkowski space can be expressed through a signa-
ture matrix Ds which is a diagonal N × N matrix with ones and minus ones:

a · b = aT DS b . (29)

Using the singular value decomposition of X,

X = UT D V , (30)

the kernel matrix is

K = XT DSX = V T DT UDSUT D V . (31)

However, XT X cannot be deduced from K if the signature has positive and
negative entries. Therefore, the objective cannot be computed.

If
(

XT X
)−1

exists we can derive a classifer. Setting the derivative of the
Lagrangian with respect to w to zero yields

DS X XT DS w = DS X Y α , (32)

where the left hand side stems from 1
2

∥

∥XT Ds w
∥

∥

2

2
and the right hand side

from αT Y XT Ds w. If we define

w := DS

(

XT
)∗

Y α (33)

then we obtain

DS X XT DS w = DS X XT DS DS

(

XT
)∗

Y α = (34)

DS X Y α ,



where we used DS DS = IN and XT X X∗ = XT . Therefore the w satisfies
above equation eq. (32). The classifier is

f(o) = φ(o)T DSw = xT DSw = (35)

xT
(

XT
)∗

Y α = xT X
(

XT X
)−1

Y α

and cannot be expressed through the kernel which contains the signature DS .
Also the optimization problem

‖XT w‖2 = αT Y X∗DSXXT DS

(

XT
)∗

Y α (36)

cannot be expressed through the kernel.

3 Regularization and SMO for the Kernel S-

SVM

3.1 Regularization

If the kernel defines a dot product in a high dimensional feature space then we
face Case (2) from Section 2.1, where rk (X) = L. Eq. (18) shows that the
resulting classifier is perfect on the training data:

XT w = XT
(

XT
)∗

Y α = (37)

XT X
(

XT X
)−1

Y α = Y α = y.

The reason for this perfect solution is that sphering data in a space, where the
dimension is equal or higher than the number of data points, results in a trivial
problem. Each data point is orthogonal to all other data points after sphering.
If we set w =

∑

i βiyix̃
i with βi > 0 (x̃i is xi after sphering), then we obtain

(

x̃i
)T

w = βiyi and we classify all data points correctly.
However overfitting, i.e. high variance in model selection, is very probable.

Overfitting results from the fact that our approach is equivalent to sphering
and SVM model selection thereafter as shown in Appendix B. Sphering in high
dimensional space has high complexity and the resulting SVM problem is trivial.
That means overfitting results from the complexity hidden in sphering which
also amplifies data directions which contain only noise.

Therefore regularization should not be focused on the model selection part
but on the implicit sphering. The idea of regularizing sphering is that directions
of the data which are produced through noise should not be scaled to have
variance 1 as is done by sphering (weightening). Sphering is based on the
inverse of the covariance matrix C = X XT where the small eigenvalues
indicate directions of low data variance which are assumed to stem from noise.
We use the fact – as is already known form Kernel PCA Schölkopf and Smola
(2002) – that X XT and K = XT X have the same non-zero eigenvalues.

One approach to regularization would be to set the p smallest eigenvalues
of K to zero. In order to be independent against scaling of the whole space



the largest eigenvalue should be normalized to 1. That means the condition
(largest eigenvalue divided through the smallest eigenvalue) of the covariance
matrix cond(C) should be small. However this approach has disadvantages.
First the regularization hyperparameter is discrete and therefore more sensibel
than continuous parameters if the optimal values are estimated, e.g. by cross-
validation. Onother, more serious, disadvantage is that a fast solver large kernel
matrices is not available.

We regularize the eigenvalues by

νnew = (1− λ) νold + λ , (38)

where for λ = 0 we obtain the orginal eigenvalue and for λ = 1 we obtain as
eigenvalue 1. Because of ∂νnew

∂λ = 1 − νold, eigenvalues larger than 1 decrease
towards 1 and eigenvalues smaller increase towards 1 if λ is increased from 0 to
1. The condition of the new covariance matrix C is

cond(C)new =
νmax
new

νmin
new

=
(1− λ) νmax

old + λ

(1− λ) νmin
old + λ

= (39)

cond(C)old + λ
(1−λ) νmin

old

1 + λ
(1−λ) νmin

old

.

For small νmin
old we can approximate cond(C)new by

cond(C)new ≈ 1 +
1 − λ

λ
νmin
old cond(C)old . (40)

It can be seen that the condition number can be much smaller and overfitting
less problable.

The eigenvalues of a positive semidefinite matrix can be increased by λ if λI

is added to it. That can be seen because I = UT I U holds for an orthogonal
matrix U which is obtained from the eigenvalue decomposition of the positiv
semidefinite matrix. To lift all eigenvalues of X XT by λ we choose as new
objective function

wT
(

(1 − λ) X XT + λ IN

)

w , (41)

where IN is the identity in R
N×N . Note that this regularization is similar to

(Schölkopf et al., 1998) and (Chapelle and Schölkopf, 2002) but the regulariza-
tion terms and the terms to minimimze are exchanged.

The primal formulation with slack variables is

min
w,b,ξ

1 − λ

2
‖XT w‖2

2 +
λ

2
‖w‖2

2 + M 1T ξ (42)

s.t. Y
(

XT w + b1
)

− 1 + ξ ≥ 0 ,

ξ ≥ 0 .

With the kernel matrix K = XT X, we derive in Appendix A as dual

min
α

1

2
αT Y ((1 − λ) K + λ I)

−1
K Y α − 1T α (43)

s.t. 1T Y α = 0 , 0 ≤ α ≤ M 1 ,



where I is the identity in R
L×L.

In Appendix A also the expression

w =
(

(1 − λ) X XT + λ IN

)−1
XY α . (44)

for the weight vector w and the classifier

f(o) = k(O, o) ((1 − λ) K + λI)
−1

Y α + b . (45)

are derived. Here k(O, o) is the vector with components k(O, o)i = k
(

oi, o
)

.
Again, the value b is computed from non-bound αi:

M > αi > 0 : b = yi −
(

xi
)T

w = (46)

yi − k(O, oi) ((1 − λ) K + λI)−1
Y α .

3.2 Incremental S-SVM with SMO

For large data sets the matrix inversion ((1 − λ) K + λI)
−1

is too expen-
sive. The inversion is also needed, if the sequential minimal optimization (SMO,
Platt, 1999) technique should be applied. In the objective we observe the ma-

trix ((1 − λ)K + λI)−1
K which can be computed incrementally. With

“incrementally” is meant that the expression for n data points can be com-
puted efficiently if the expression for (n− 1) data points is known. The efficent
computation results from the fact that adding one point adds one row and one
column to the Gram matrix K.

Therefore we suggest an incremental version of the S-SVM which starts
with a working set of two data points and adds step by step one training
point to the working set. For each working set of size n the quadratic part
((1 − λ)Kn + λIn)−1

Kn is computed from the corresponding expressions

((1 − λ)Kn−1 + λIn)
−1

Kn−1 of the previous working set of size (n − 1).
The data point which is added has the largest error on the currently selected
classifier, i.e. the actual solution. The actual solution is obtained by performing
SMO on the working set. The SMO impoves the actual solution such that a
new point can be more reliable chosen. In the ideal case the procedure choses
only data points which would have been support vectors (α > 0) in the original
solution and, therefore, the quadratic part is not not the number of data points
squared but the number of support vectors squared.

We define

Q := λI + (1 − λ) K . (47)

Q is a positive definite matrix with eigenvalues ≥ λ, because from K =
V T DT D V it follows that Q = V T

(

λI + (1 − λ) DT D
)

V .
Adding one training point on to Kn−1 gives

Kn =

(

Kn−1 , k (On−1, o
n)

k (On−1, o
n)

T
, k(on, on)

)

and (48)

Qn =

(

Qn−1 , (1 − λ) k (On−1, o
n)

(1 − λ) k (On−1, o
n)

T
, (1 − λ) k(on, on) + λ

)

.



If λ > 0 and if we define

ρ := (1 − λ) k(on, on) + λ − (49)

(1 − λ)2 k (On−1, o
n)T

Q−1
n−1k (On−1, o

n)

then we obtain from the positive definitness of Qn

0 < det (Qn) = det (Qn−1) ρ , (50)

(see Lütkepohl, 1996 (page 50 equation (6a)). It follows that ρ > 0. Therefore
the inverse of Qn can be computed according to (Lütkepohl, 1996) (page 29/30
equation (1)) through

Q−1
n = (51)

(

Q−1
n−1 + 1

ρ (1 − λ)
2

Q−1
n−1k (On−1, o

n) k (On−1, o
n)

T
Q−1

n−1 ,

− 1
ρ (1 − λ) k (On−1, o

n)
T

Q−1
n−1 ,

− 1
ρ (1 − λ) Q−1

n−1k (On−1, o
n)

1
ρ

)

.

We define

k
(

On, oi
)T

:=
(

k
(

On−1, o
i
)T

, k
(

on, oi
)

)

and (52)

αT
n :=

(

αT
n−1, αn

)

then we can compute

k
(

On, oi
)T

Q−1
n = (53)

(

k
(

On−1, o
i
)T

Q−1
n−1 +

(1 − λ)2

ρ
k
(

On−1, o
i
)T

Q−1
n−1k (On−1, o

n) k (On−1, o
n)

T
Q−1

n−1 −

1 − λ

ρ
k
(

on, oi
)

k (On−1, o
n)

T
Q−1

n−1 ,

−
1 − λ

ρ
k
(

On−1, o
i
)T

Q−1
n−1k (On−1, o

n) +
1

ρ
k
(

on, oi
)

)

and express the new function values according to eq. (27) by

fn

(

oi
)

= k
(

On, oi
)T

Q−1
n Ynαn + bn . (54)

The function values fn

(

oi
)

can be expressed as

fn

(

oi
)

=

n
∑

j=1

yj αj rij + bn , (55)

where rij =
[

k
(

On, oi
)T

Q−1
n

]

j
.



If we set

Fi = yi fn

(

oi
)

− 1 (56)

we obtain for the Karush-Kuhn-Tucker conditions

αi (Fi + ξi) = 0 and (57)

µi ξi = 0 .

Now we can apply the sequential minimal optimization technique (SMO,
Platt, 1999) to optimize or improve the actual solution for the problem with n
data points. The first choice for α will be αn. After some SMO updates we
check the KKT conditions of new data points and choose a data point with
largest Fi as next point to add.

The computation of Q−1
n k

(

On, oi
)

(note that k
(

On, oi
)T

Q−1
n =

(

Q−1
n k

(

On, oi
))T

)

can be done in O(n) time if the old values Q−1
n−1k

(

On−1, o
i
)

are stored. Be-

cause for all 1 ≤ i ≤ L the fn

(

xi
)

must be updated, adding a new point to
n training points has complexity of O(Ln) ≈ O(L2). Note, that the vector
Q−1

n−1k (On−1, o
n) must be computed only once.

The values Q−1
n k

(

On, oi
)

can be used to efficiently describe the classifier
eq. (27). For λ > 0, we obtain from

− (1 − λ) Q−1K + I = Q−1 (Q − (1 − λ)K) = λQ−1 (58)

the identity

Q−1K =
1

1 − λ
I −

λ

1 − λ
Q−1 . (59)

4 New Bound through the Objective

The new objective upper bounds a bound on the generalization error which
is more general than the known bounds (Vapnik, 1995, 1998). These bounds
use as input domain a sphere containing the training data which allows for
bounding the output range of a function class with bounded ‖w‖ and, therefore,
for bounding the generalization error (Vapnik, 1998; Schölkopf and Smola, 2002).
Improved bounds assume a given output range in order to define the function
class and implicitely assume an input domain (Shawe-Taylor and Cristianini,
2000).

Here we relax these assumptions on the input domain or output range by
estimating how often for a given function the output range is exceeded, rejecting
those points, and taking the rejection error into account for the bound.

We consider the function calssF , the set of linear functions {f | f(x) = 〈w, x〉 , x ∈ X}
that map from X to R. The standard function class F0 is the set of linear func-
tions that map from X to [0, 1].

We define the empirical output range of f on X as

m(f, X) := max
i

∣

∣〈ŵ, xi〉
∣

∣ , (60)



where ŵ := w
‖w‖ . We assume that the data is centered around the origin to

obtain an thight interval [−a, a] (see Appendix C for how to performe centering).
Let

E (N (ǫ,F , L)) := E (N (ǫ,F , X)) (61)

be the expected ǫ-covering number of the function class F of L examples with
underlying probability P on X (Shawe-Taylor et al., 1996).

Theorem 1 (Range Bound) Consider any distribution P on X from which
X =

(

x1, . . . , xL
)

are generated i.i.d. Then with probability 1 − δ over such
a L-sample, for any linear classifier f which classifies x1, . . . , xL correctly with
margin γ the generalization error is bounded by

B(L,
m(f, X)

γ
, δ) = (62)

4

L

(

log2

(

EN

(

γ

2 m(f, X) + 4 γ
,F0, 2L

))

+

log2

((

m(f, X)

γ
+ 2

)

8 L

δ

))

.

Proof.
The idea of the proof is, firstly, Step 1, to give a bound for function class

with output range a and, secondly, Step 2, compute the probability that a
new data point exceeds the output range. The second probability is related
to the estimation of the support of the distribution P . Finally, Step 3, both
probabilities have to be combined.

Step 1: Bound on the generalization error for bounded output range.

We define another function class Fa as the set of linear functions from X
to [−a, a]. Proposition 19 in (Shawe-Taylor et al., 1996) or Theorem 7.14 in
(Shawe-Taylor and Cristianini, 2000) shows that

E (N (ǫ,Fa, L)) = E
(

N
( ǫ

2a
,F0, L

))

. (63)

Using Theorem 7.7 in (Shawe-Taylor and Cristianini, 2000), Theorem 3.9 in
(Shawe-Taylor et al., 1998), and Proposition 19 in (Shawe-Taylor et al., 1996),
the generalization error of f ∈ F⊣ can be bounded from above with probability
1 − δ by

B1(L,
a

γ
, δ) =

2

L

(

log2

(

EN
( γ

2 a
,F0, 2L

))

+ log2

(

4 L a

δ γ

))

,(64)

provided that the training classification error is zero and all x drawn i.i.d. from
the (unknown) distribution PX .



Step 2: Bound on the probability to reject a data point because the output
range is exceeded.

The function classes Fa is sturdy (Shawe-Taylor and Cristianini, 2000),
therefore he support bounds in (Schölkopf et al., 1999, 2001) apply. The prob-
ability of observing an outlier which is rejected can be bounded:

P{|〈w, x〉| ≥ m + 2 ǫ} ≤ B2(L, ǫ, δ) = (65)

4

L

(

log2 EN (ǫ,Fa, 2L) + log2

L

δ

)

≤

4

L

(

log2 EN
( ǫ

2a
,F0, 2L

)

+ log2

L

δ

)

.

The factor 4 appears because of the absolute value in the bound.
Note, that not all outliers are misclassified, and the trivial random classifier

produces 50 % correctly classified examples.

Step 3: Combining both the bound eq. (64) and eq. (65).

We first equalize the the covering numbers of both bounds and then have to
compute the confidence that both bounds hold at the same time.

The output range have to be set to a = m + 2 ǫ because of the support
bound in Step 2. Next, we equalize the ǫ-radius of the balls of the covering
numbers from Step 1 and Step 2 and obtain

ǫ = γ , thus
γ

2 a
=

γ

2 m + 4 γ
(66)

and

a

γ
=

m + 2 γ

γ
=

m

γ
+ 2 . (67)

For both steps we get the common expression for the bounds eq. (64) and
eq. (65) using

B1/2(L,
a

γ
, δ) = (68)

2

L

(

log2

(

EN

(

γ

2 m + 4 γ
,F0, 2L

))

+ log2

((

m

γ
+ 2

)

4 L

δ

))

,

where we use as bound in eq. (64) B1/2(L, a
γ , δ) and in eq. (65) 2 B1/2(L, a

γ , δ).
We want to compute the confidence that both bounds hold at the same time.

However, we must make the assumpution that the confidences in both bounds
are independent. The independence assumption is in general wrong because
both bounds have the same underlying distribution. However the case that if
we have confidence in on bound then we cannot have confidence in the other
bound seems not to be very likely.



The probability that both bounds from Step 1 and Step 2 hold simultane-
ously is

(1 − δ) (1 − δ) = 1 − 2 δ + δ2 > 1 − 2 δ . (69)

That means we have to replace the δ in the bounds eq. (64) and eq. (65) by 1
2 δ.

The probability of misclassification is now bounded by the sum of two prod-
ucts. The first product is 1 minus the probability of observing an outlier mul-
tiplied by the bound on the misclassification. The second product is the trivial
misclassification rate of 0.5 multiplied by the bound on observing an outlier:

(1 − P{|〈w, x〉| ≥ m}) B1/2

(

L,
a

γ
,
δ

2

)

+ 0.5 2 B1/2

(

L,
a

γ
,
δ

2

)

≤ 2 B1/2

(

L,
a

γ
,
δ

2

)

, (70)

where the inequality results from setting P{|〈w, x〉| ≥ m} = 0.
This completes the proof.
�

We obtain our objective if we upper bound our new bound:

m/γ = ‖w‖2 max
i

|〈ŵ, xi〉| ≤

√

∑

i

(〈w, xi〉)2 = ‖XT w‖2 .(71)

Our objective is also related to a bound in (Schölkopf and Smola, 2002),
where the norm ‖V ‖ of the evaluation operator VX(w) = XT w is used to
prove the bound based on entropy numbers. ‖V ‖ can decreased by restricting
the possible w to ‖VX(w)‖2

2 ≤ R2 and, therefore, ‖V ‖ ≤ R.

5 Experiments

Benchmark experiments on data sets from the UCI benchmark repository which
were preprocessed as described in (Rätsch et al., 2001) are documented here.
The data sets include “heart” (13 features, 50 training and 100 test points),
“flare-solar” (9 features, 100 training and 400 test points), “german” (20 fea-
tures, 100 training and 300 test points), “image” (18 features, 100 training
and 1010 test points), “diabetis” (8 features, 100 training and 300 test points),
“splice” (60 features, 100 training and 2175 test points), “thyroid” (5 features,
100 training and 75 test points), and “breast-cancer” (9 features, 100 train-
ing and 77 test points). We restricted the training set size to 100 data point
in order to obtain larger differences in the results for the compared methods.
The data sets were divided into 100 (20 for splice and image) training/test set
pairs, where data sets are constructed through resampling where data points
were randomly selected for the training set and the remaining data was used
for the test set. We downloaded the original 100 training/test set pairs from
http://ida.first.fraunhofer.de/projects/bench/.



For the S-SVM we fixed the hyperparameter C (the upper bound on the La-
grange multipliers α) to 100 – other values for C as long as they were larger than
2 did not change the results. The other hyperparameters (λ for the S-SVM and
ν for the ν-SVM) and the kernel parameter σ (we only tested Gaussian kernels)
were chosen with exactly the same procedure for S-SVM and ν-SVM. The same
hyperparameter selection procedure was possible because both λ and ν are in
[0, 1]. The hyperparameters were selected by a 5–fold cross validation on the
corresponding training sets. All ν and λ values from {0.05, 0.1, 0.15, . . . , 0.95}
were tested. Only 5 σ values were tested. The sigma range was determined
by an initial 5-fold cross-validation on the first training set with an ν-SVM and
ν = 0.5. First we tested the σ values from {0.01, 0.1, 1.0, 10.0, 100.0, 1000.0} and
then we scaled the chosen sigma by {0.25, 0.5, 1.0, 2.0, 4.0, 8.0} to obtain a first
guess. For the 5–fold cross-validation procedure 5 equidistant values in an inter-
val around the first guess were tested for both S-SVM and ν-SVM. The intervals
were [50, 150] for heart, [20, 40] for flare-solar, [20, 40] for german, [20, 40] for
image, [10, 30] for diabetis, [60, 100] for splice, [0.3, 3.1] for thyroid, and [40, 60]
for breast-cancer.

experiment ν-SVM S-SVM
test error std test error test error std test error

heart 21.50 7.63 18.79 4.07
flare-solar 38.54 8.21 37.95 5.57
german 29.01 3.85 29.14 3.37
image 16.13 4.55 14.79 2.98

diabetis 28.39 6.98 26.03 2.92
splice 23.91 1.99 25.03 2.14

thyroid 6.29 2.33 6.99 3.78
breast-cancer 31.27 7.42 28.36 4.82

Table 1: Benchmark comparisons between the new S-SVM and the ν-SVM.
The columns describe: (1) the data set, (2) average test error for ν-SVM, (3)
standard deviation for the ν-SVM test error, (4) average test error for S-SVM,
(5) standard deviation for the S-SVM test error. The S-SVM lead in most cases
to a lower misclassification error, however the results have low significance as can
be seen from the standard deviations. The S-SVM test error standard deviation
was on average lower than the test error standard deviation of the ν-SVM.

Table 1 summarizes the results of our experiments on the UCI data sets. The
S-SVM yields lower misclassification rate in most cases. However, the results
have low significance. An other result is more reliable: the test error standard
deviation for the S-SVM is lower. In conclusion, the S-SVM has comparable
to slightly better performance on the UCI benchmark dataset but has solutions
which do vary less than the solution of the ν-SVM.

For Gaussian kernels the advantage of the S-SVM’s scale invariance is not as
visible because the feature vectors are implicitly normalized because for Gaus-



sian kernel k(x, x) = 1 holds. This equations means that the vectors have length
1. However, we applied the Gaussian kernel to obtain a fair comparison with
the ν-SVM.

6 Conclusion

We have introduced a scale invariant framework for the support vector machine
technique. We showed how to regularize the new approach and how to speed
up the optimization. On experiments the new approach yielded results which
are comparable or slightly better than those of the ν-SVM but the S-SVM
solutions vary less than those of the ν-SVM. We expect new applications for the
S-SVM if new kernels are developed because in this case the vectors may not
be normalized in feature space and normalization promised improvement.

A Derivative of the Dual Formulations

In this appendix we will derive the dual formulation and the expressions for w

for all the primal optimization problems in the main text.
The most general primal formulation is

min
w,b,ξ

1 − λ

2
‖XT w‖2

2 +
λ

2
‖w‖2

2 + M 1T ξ (72)

s.t. Y
(

XT w + b1
)

− 1 + ξ ≥ 0 ,

ξ ≥ 0 .

This primal comprises slack variables, kernels, and regularization. The slack
variables ξ can be removed through M → ∞ and pushing them to zero. λ = 0
skips the regularization. For the kernel trick we set xi = φ(oi).

Using the kernel matrix K = XT X we obtain as dual

min
α

1

2
αT Y ((1 − λ) K + λ I)

∗
K Y α − 1T α (73)

s.t. 1T Y α = 0 , 0 ≤ α ≤ M 1 ,

where I is the identity in R
L×L. For λ > 0 we have ((1 − λ)K + λ I)

∗
=

((1 − λ)K + λ I)−1. For λ = 0 we have ((1 − λ)K + λ I)∗ = K∗ and
obtain

K∗K =
(

XT X
)∗

XT X = X∗ (X∗)
T

XT X = X∗X , (74)

where we used X∗ (X∗)T
XT = X∗ (see page 35 equation (9).(f) in (Lütke-

pohl, 1996)).
The classifier is

f(o) = k(O, o) ((1 − λ) K + λI)
∗

Y α + b , (75)



where k(O, o) is the vector with components k(O, o)i = k
(

oi, o
)

. For λ > 0

we obtain ((1 − λ) K + λI)
∗

= ((1 − λ)K + λI)
−1

For λ = 0 we
obtain

f(o) = k(O, o)K∗ Y α + b , (76)

which is in the linear case

f(x) = xT
(

XT
)∗

Y α + b . (77)

The weight vector w can be expressed as

w =
(

(1 − λ) X XT + λ IN

)∗
XY α , (78)

where IN is the identity in R
N×N . For λ > 0 we obtain

(

(1 − λ)X XT + λ IN

)∗
=

(

(1 − λ) X XT + λ IN

)−1
. For λ = 0 we obtain

w =
(

XT
)∗

Y α , (79)

where we used (X∗)
T

X∗X =
(

XT
)∗

(see page 35 equation (9).(f) in (Lütke-
pohl, 1996)).

The value b is computed from non-bound αi:

M > αi > 0 : b = yi −
(

xi
)T

w = (80)

yi − k(O, oi) ((1 − λ) K + λI)
∗

Y α .

Now we want to derive these duals, these classifiers, and these equations for
w. The Lagrangian of the primal eqs. (72) is

L =
1

2
wT

(

(1 − λ) X XT + λIN

)

w + M 1T ξ − (81)

αT
(

Y
(

XT w + b1
)

− 1
)

− αT ξ − µT ξ ,

where α, µ ≥ 0 are the Lagrange multipliers.
For the optimal solution, the derivatives of the Lagrangian with respect to

the primal variables are zero:

∇wL =
(

(1 − λ) X XT + λ
)

w − XY α = 0 (82)

∂L

∂b
= yT α = 0

∇ξL = M1 − α − µ = 0 ,

Because µ ≥ 0 can be freely chosen, we obtain from the last equation αi ≤ M .



The Karush-Kuhn-Tucker (KKT) conditions are:

αi

(

yi

(

(

xi
)T

w + b
)

− 1 − ξi

)

= 0 and (83)

µi ξi = 0 .

If αi < M then µi > 0 (last equation in eqs. (82)) and, therefore, according
to the KKT conditions ξi = 0. From αi > 0 it follows from the KKT

conditions yi

(

(

xi
)T

w + b
)

− 1 − ξi = 0. Therefore, we obtain for

0 < αi < M :
(

xi
)T

w + b − yi = 0 which can be solved for b. Thus, the
value b is computed from non-bound αi by

M > αi > 0 : b = yi −
(

xi
)T

w = (84)

yi − k(O, oi) ((1 − λ) K + λI)
∗

Y α .

In the follwing we focus on the first equation of eqs. (82) and show that it
is fulfilled by

w =
(

(1 − λ) X XT + λ IN

)∗
XY α . (85)

A) λ = 0. We first consider the case λ = 0, where the first equation of eqs.
(82) reduces to

∇wL = X XT w − XY α = 0 . (86)

Using the expression for w in eq. (79) we obtain

X XT w = X XT
(

XT
)∗

Y α = X Y α (87)

=⇒ ∇wL = 0 ,

where we used XT X X∗ = XT .
The two equations w =

(

XT
)∗

Y α and X XT w = X Y α allow
to replace the primal variables in the Lagrangian. Then we can maximize the
Lagrangian with respect to the dual variables and obtain – after multiplication
with −1 and, therefore, mimization – the dual formulation

min
α

1

2
αT Y X∗X Y α − 1T α (88)

s.t. 1T Y α = 0 , 0 ≤ α ≤ M 1 ,

where (A∗)
T

=
(

AT
)∗

was used.
For kernels the dual can be expressed through the Gram (kernel) matrix

K = XT X, where Kij = k
(

oi, oj
)

and xi = φ
(

oi
)

.
Order to derive an expression based only on kernels we use the singular value

decompositions of X,
(

XT
)∗

, and K:

X = UT D V , (89)
(

XT
)∗

= UT (D∗)
T

V , and

K = V T DT D V .



Note that
(

DT D
)∗

= D∗
(

DT
)∗

and, therefore,

K∗ = V T D∗
(

DT
)∗

V . (90)

We obtain

X∗ = K∗ XT , (91)

where we used a property of the pseudo inverse: D∗
(

DT
)∗

DT = D∗ (see
page 35 equation (9).(f) in (Lütkepohl, 1996)). Note, that K∗ can be computed
through the eigenvalue decomposition of K. Using X∗X = K∗ XT X =
K∗K the dual eq. (88) is

min
α

1

2
αT Y K∗K Y α − 1T α (92)

s.t. 1T Y α = 0 , 0 ≤ α ≤ M 1 ,

where K∗K = V T IL|J V (J gives the number of nonzero eigenvalues of K).
The classifier is

f(o) = φ(o)T w + b = φ(o)T
(

XT
)∗

Y α + b = (93)

φ(o)T XK∗ Y α + b = k(O, o)K∗ Y α + b ,

where we applied eq. (91) and K∗ = (K∗)
T
.

For the linear case we have

f(x) = xT X
(

XT X
)∗

Y α + b = (94)

xT XX∗ (X∗)
T

Y α + b = xT (X∗)
T

Y α + b .

B) λ > 0. Next we consider the case λ > 0. For λ = 1 we obtain the
standard support vector formulation, where above expressions for the dual, w,
and the classifier are known to be true. Therefore, we assume λ < 1.

We need following identity:

(

λ IN + (1 − λ) X XT
)−1

= (95)

1

λ
IN −

1

λ2
X

(

1

1 − λ
IL +

1

λ
XT X

)−1

XT .

where we applied the matrix inversion lemma

(

A−1
1 + V A−1

2 V T
)−1

= (96)

A1 − A1 V
(

A2 + V T A1 V
)−1

V T A1

with V = X, A1 = 1
λ IN , and A2 = 1

1 − λ IL.
The first equation of eqs. (82) can be solved for w:

w =
(

(1 − λ) X XT + λ I
)−1

XY α . (97)



Using identity eq. (95) the normal vector can be now expressed as

w =
1

λ

(

IN − X

(

λ

1 − λ
I + XT X

)−1

XT

)

XY α = (98)

1

λ

(

X − X

(

λ

1 − λ
I + XT X

)−1

XT X

)

Y α =

X
1

λ

(

I −

(

λ

1 − λ
I + XT X

)−1

XT X

)

Y α =

X
1

λ

(

I −

(

λ

1 − λ
I + K

)−1

K

)

Y α =

X (λI + (1 − λ) K)
−1

Y α ,

where we used in the last equation

(1 − λ) (λI + (1 − λ)K)
−1

K = (99)

(1 − λ) (λI + (1 − λ)K)−1

(

K +
λ

1 − λ
I

)

−

(1 − λ)
λ

1 − λ
I (λI + (1 − λ)K)

−1
=

I − λ (λI + (1 − λ) K)−1 .

The first equation of eqs. (82) is
(

(1 − λ) X XT + λIN

)

w = XY α . (100)

Using this equation and the equation eq. (98) we obtain

wT
(

(1 − λ) X XT + λIN

)

w = αT Y XT w = (101)

αT Y ((1 − λ) K + λ I)
−1

K Y α ,

where we used

((1 − λ) K + λ I)−1
K = K ((1 − λ) K + λ I)−1 (102)

which follows from eq. (99) and

K (1 − λ) (λI + (1 − λ)K)−1 = (103)
(

K +
λ

1 − λ
I

)

(1 − λ) (λI + (1 − λ) K)
−1 −

(1 − λ)
λ

1 − λ
I (λI + (1 − λ)K)

−1
=

I − λ (λI + (1 − λ) K)
−1

.

Analog to the case λ = 0 we derive for the dual formulation

min
α

1

2
αT Y ((1 − λ) K + λ I)

−1
K Y α − 1T α (104)

s.t. 1T Y α = 0 , 0 ≤ α ≤ M 1 .



Note, that for λ = 1 we obtain the standard SVM dual. Because of eq. (102) we

know that ((1 − λ) K + λ I)−1
K is symmetric and positive semidefinite.

The classifier can be computed by applying eq. (98):

f(o) = φ(o)T w + b = xT w + b = (105)

xT X ((1 − λ) K + λI)
−1

Y α + b =

k(O, o) ((1 − λ)K + λI)
−1

Y α + b .

Again, we observe for λ = 1 the standard SVM classifier:

f(o) = k(O, o)Y α . (106)

B Sphering

We show that for the case that N ≤ L (i.e.
(

XXT
)−1

exists), the S-SVM clas-
sification is equal to sphering and applying the SVM thereafter. In (Schölkopf
et al., 1998) a similar property of the covariance matrix of tangent vectors was
shown.

For sphered data, i.e. X XT = I, we have ‖XT w‖2
2 = wT X XT w =

wT w = ‖w‖2
2. That means our objective is the classical SVM objective.

In the following we analyze the difference between our S-SVM and standard
SVM on sphered data. The covariance matrix C is approximated by the data

matrix X via C ≈ X XT . We assume that C−1 =
(

X XT
)−1

exists, thus

X∗ = XT
(

X XT
)−1

. We rescale the data in such a way that it has spherical

shape: X̃ = C− 1

2 X, where X̃ is the spherical data. The classical support
vector formulation applied to X̃ is

min
w,b

1

2
‖w‖2

2 (107)

s.t. Y
(

XT
(

X XT
)− 1

2 w + b1
)

− 1 ≥ 0 ,

where we used
(

X XT
)−T

=
(

X XT
)−1

.
We look at the derivative of the Lagrangian L with respect to w:

∇wL = w −
(

X XT
)− 1

2 X Y α = 0 . (108)

We obtain

‖w‖2
2 = wT w = αT Y XT

(

X XT
)−1

X Y α . (109)

and the dual formulation

min
α

1

2
αT Y X∗X Y α − 1T α (110)

s.t. 1T Y α = 0 , α ≥ 0

That is exactly the optimization formulation for the sphered SVM eqs. (11).



Comparing eq. (108) with eq. (13) we see that only how w is computed
distinguishes the S-SVM and sphering. We obtain

wS−SVM =
(

X XT
)− 1

2 wsphering = C− 1

2 wsphering . (111)

In Subsection 9.2.4 of (Smola, 1998) an approach (convex combination algo-
rithm) is presented where the normal vector points in the directions where the
the data is spread most. However, the S-SVM weight vector points in directions
where the data is spread least as can be seen in above equation.

The nonzero eigenvalues of the kernel matrix XT X and the nonzero eigen-
values of the covariance matrix X XT are equal which can easily seen through
the singular value decomposition. For ”kernel principal component analysis”
(Schölkopf and Smola, 2002) the same property is utilized.

C Centering at the Origin

In Appendix 4 the data was assumed to be centered around the origin 0. In
this section this assumption is justified by showning how to center the data and,
therefore, how to obtain a translation invariant dual formulation. The centering
is performed by multiplying the data X by the matrix B:

B := I −
1

L
1 1T (112)

B B = B (idempotent) , BT = B , B∗ = B .

We apply our method to the centered data X B.
Our method is now translation invariant. That can be seen for a translation

z of the data X which results in X + z 1T and
(

X + z 1T
)

B = (113)

X B +

(

z 1T −
1

L
z
(

1T 1
)

1T

)

= X B .

For the case that
(

XT X
)−1

exists, the dual does not change. That can be
shown by

(X B)
∗

(X B) =
(

B XT
) (

B XT
)∗

= B B∗ = B . (114)

For the second ”=” we used the fact that
(

XT X
)−1

exists and eq. (19). The
condition that

1T Y α = 0 (115)

proves that

B Y α =

(

I −
1

L
1 1T

)

Y α = Y α . (116)

Now we obtain for the quadratic part 1
2αT Y (XB)∗ (XB) Y α of the dual

the expression αT Y B Y α = αT α. Therefore, the solution of the dual
formulation (17) does not change if the data is centered. For kernels centering
can be performed via BKB as for kernel PCA (Schölkopf and Smola, 2002).
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