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Abstract

We describe a new technique for the analysis of data which is given
in matrix form. We consider two sets of objects, the “row” and the “col-
umn” objects, and we represent these objects by a matrix of numerical
values which describe their mutual relationships. We then introduce a
new technique, the “Potential Support Vector Machine” (P-SVM), as a
large-margin based method for the construction of classifiers and regres-
sion functions for the “column” objects. Contrary to standard support
vector machine (SVM) approaches, the P-SVM minimizes a scale-invariant
capacity measure under a new set of constraints. As a result, the P-SVM
can handle data matrices which are neither positive definite nor square,
and leads to a usually sparse expansion of the classification boundary or
the regression function in terms of the “row” rather than the “column”
objects. We introduce two complementary regularization schemes in or-
der to avoid overfitting for noisy data sets. The first scheme improves
generalization performance for classification and regression problems, the
second scheme leads to the selection of a small and informative set of
“row” objects and can be applied to feature selection. A fast optimiza-
tion algorithm based on the “Sequential Minimal Optimization” (SMO)
technique is provided.

We first apply the new method to so-called pairwise data, i.e. “row”
and “column” objects are from the same set. Pairwise data can be rep-
resented in two ways. The first representation uses vectorial data and
constructs a Gram matrix from feature vectors using a kernel function.
Benchmark results show, that the P-SVM method provides superior clas-
sification and regression results and has the additional advantages that
kernel functions are no longer restricted to be positive definite. The sec-
ond representation uses a measured matrix of mutual relations between
objects rather than vectorial data. The new classification and regression
method performs very well compared to standard techniques on bench-
mark data sets. More importantly, however, experiments show that the
P-SVM can be very effectively used for feature selection. Then we apply
the P-SVM to genuine matrix data, where “row” and “column” objects

1



are from different sets, and, again, the data matrix is either constructed
via a kernel function combining “row” and “column” objects or obtained
by measurements. On various benchmark data sets we demonstrate the
new method’s excellent performance for classification, regression, and fea-
ture selection problems. For both pairwise and matrix data benchmarks
are performed not only with toy data, but also with several real world
data sets including data from the UCI repository, protein classification,
web-page classification, and DNA microarray data.

1 Introduction

Learning from examples in order to predict is one of the standard tasks in
machine learning. Many techniques have been developed to solve what statisti-
cians call classification and regression problems, but by far most of them were
specifically designed for vectorial data. Vectorial data, where data objects are
described by vectors of numbers and where these data vectors are treated as
elements of a vector space, are very convenient, because of the structure im-
posed by the typically chosen Euclidean metric. However, for many datasets a
vector-based description is inconvenient or simply wrong, and other represen-
tations like matrices, trees, or graphs, which take relationships between objects
into account, are often more appropriate.
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Figure 1: Pairwise data (a) and matrix data (b). For explanation see text.

In the following we will study representations of data objects which are
based on matrices. The description consists of two sets of objects: “column”
objects and “row” objects (Fig. 1b). “Column” objects are the objects to be



described, while “row” objects are the objects which serve for their description.
Every row-column pair is described by a number. The whole dataset can thus
be represented using a rectangular matrix, like in an Excel sheet, whose entries
denote the relationships between the “row” and the “column” objects. In the
following we will call representations of this form matrix data. A special case
occurs if “row” and “column” objects are from the same set (Fig. 1a). In this
case we will call the representation pairwise data, and the entries of the matrix
can often be interpreted as the degree of similarity (or dissimilarity) between
pairs of objects.

Matrix-based descriptions are more powerful and more flexible than vector-
based descriptions, but vectorial data can always be brought into matrix form,
when required. This is usually done in the context of kernel-based classifiers
or regression functions (Schölkopf and Smola, 2002; Vapnik, 1998), for exam-
ple when using the support vector machine technique. Before the predictor is
learned from examples, a Gram matrix of mutual similarities is calculated by
applying a kernel function to pairs of feature vectors. The result is a pairwise
data matrix (cf. Fig. 1a), which is then used for learning the predictor. A similar
procedure can also be used in the case where the “row” and “column” objects
are from different sets (cf. Fig. 1b). If both of them are described by feature
vectors, a matrix can be calculated by applying a kernel function to pairs of
feature vectors, one vector describing a “row” and the other vector describing a
“column” object. One example for this is the drug-gene matrix of Scherf et al.
(2000), which was constructed as the product of a measured drug-sample and a
measured sample-gene matrix and where the kernel function was a scalar prod-
uct. However, matrix-based descriptions are most useful if the matrix entries
are measured directly.

Pairwise data representation can be found in many datasets which are gen-
erated by determining how similar objects from one set are. Examples from
the bioinformatics domain include similarities of protein sequences (Lipman
and Pearson, 1985), biophysically defined similarities between proteins (Sigrist
et al., 2002; Falquet et al., 2002), gene similarity measure based on their chro-
mosome location (Cremer et al., 1993; Lu et al., 1994), or co-expression data
for genes (Heyer et al., 1999). Other application areas are document processing
and web-mining, where pairwise data arise for example in the form of co-citation
matrices for text documents (White and McCain; Bayer et al.; Ahlgren et al.),
or binary connectivity matrices which summarize the presence and absence of
hyperlinks between web-pages (Kleinberg, 1999). In general, however, measured
matrices are symmetric but may no longer be positive definite, and even if they
are for the training set, they may not remain positive definite if new examples
are included.

Genuine matrix data — in contrast to previous examples for pairwise data
— are observed in many datasets, where two sets of objects are related by pair-
wise measurements. One prominent example from the bioinformatics domain
are DNA microarray data (Southern, 1988; Lysov et al., 1988; Drmanac et al.,
1989; Bains and Smith, 1988). Here the “column” objects are tissue or cell-line
samples which are described by a set of “row” objects, the genes. For every



sample-gene pair a number is measured, which is related to the expression level
of this particular gene in this particular sample. These values are then summa-
rized in a matrix. Another example are web-documents, where the “column”
objects are web-pages which are described by whether other web-pages, the
“row” objects, contain a hyperlink reference. Every pair of column and row
web page is then characterized by the number of directed hyperlinks from row
to column, which gives rise to a rectangular matrix of ordinal values1. There
are many further examples for matrix data. Images (“column” objects) can be
described by the scalar values (matrix elements) obtained from average linear
or non-linear filter responses (“row” objects) to an image. Similarly, time-series
can be described by scalar values which may be the components of their short
term power spectra, wavelet coefficients, or components of the autocorrelation
functions. Customers of a company can be described by their product prefer-
ences or by their transaction data, documents in a database can be described by
word-frequencies, and molecules can be described by transferable atom equiv-
alent (TAE) descriptors (Mazza et al., 2001), for the purpose of drug design.
Traditionally, “row” objects have been called “features” and “column” vectors
of the data matrix have mostly been treated as “feature vectors” which live
in a vector space. Difficulties, however, arise when the features are heteroge-
neous, and apples and oranges must be compared. Even more difficulties arise
for the special case of pairwise data discussed before, for which descriptive and
described objects are actually the same and for which it is hard to justify any
differentiation between objects and features.

Classification and regression problems on matrix data, i.e. the task to learn
predictors for attributes of the “column” objects, have been mostly addressed
within the feature vector framework — despite abovementioned problems, e.g.
despite the fact that the distinction between features and objects is blurred
for pairwise data (Graepel et al., 1999; Mangasarian, 1998). An approach to
pairwise data which does not use vectorial representations is to interpret the
pairwise relation data matrix as a Gram matrix and to apply support vector
machines (SVM) for classification and regression if the data matrix is positive
semidefinite (Graepel et al., 1999). For indefinite (but symmetric) matrices two
non-vectorial approaches have been suggested (Graepel et al., 1999). In the
first approach, the data matrix is made positive definite by projecting into the
subspace spanned by the eigenvectors with positive eigenvalues. Clearly, this
is an approximation and one would expect it to give good results only, if the
absolute values of the negative eigenvalues are small compared to the dominant
positive ones. The other approach is also based on an eigenvalue decomposi-
tion and treats directions of negative eigenvalues by just flipping the sign of
these eigenvalues. This approach, however, lacks a theoretical foundation. All
these non-vectorial approaches are restricted to pairwise data and lead to a ma-
trix of object relations which is positive semidefinite, but they do not ensure
that positive semidefiniteness still holds, if a new test object must be included.

1Note, that in previous paragraph for pairwise data examples the linking matrix was sym-
metric because links were considered bidirectional. Here the links are undirectional and the
data is no longer pairwise because it is not symmetric.



Therefore they may fail in the test phase. Another embedding approach was
suggested by Herbrich et al. (1998) for antisymmetric matrices, but this was
specifically designed for data sets, where the matrix entries denote preference
relations between objects, for example with respect to the difference in rele-
vance of two documents to a particular user of a document database. So far, no
general method exists for learning classifiers or regression functions from data
represented in matrix form.

In this contribution we argue that — in order to avoid abovementioned
shortcomings — it is beneficial to consider “column” and “row” objects on equal
footing. With this we mean, that the construction of the data matrix or the
actual measurement of the matrix entries can be described by a kernel function,
which takes a “row” object, applies it to a “column” object, and outputs a
number. We will show that, under mild assumptions, pairwise measurements
are sufficient to create a vector space with dot product into which the “row” and
“column” objects are mapped (cf. Section 2.6 and Appendix C for a theoretical
investigation). We then suggest to construct the classifier or the regression
function in analogy to the large margin based methods for learning perceptrons
for vectorial data in this vector space. Using an improved measure for model
complexity and a new set of constraints which ensure a good performance on the
training data we arrive at a generally applicable method for learning predictors
for matrix data. The new method, which we will call the potential support
vector machine (P-SVM), can handle rectangular matrices as well as pairwise
data whose matrices are not necessarily positive semidefinite. But even when
the P-SVM is applied to regular Gram matrices, it shows excellent results when
compared with standard methods. Due to the choice of constraints, the final
predictor is expanded into a usually sparse set of descriptive “row” objects. This
differs from standard support vector methods, where the predictor is expanded
in terms of “column” objects. Expansion into “row” objects, however, opens
up another important application domain: a sparse expansion is equivalent to
feature selection (see Guyon and Elisseeff, 2003; Hochreiter and Obermayer,
2004a; Kohavi and John, 1997; Blum and Langley, 1997 for recent reviews on
feature selection). In the following we will show, that the P-SVM can indeed
be used in a prediction and in a feature selection mode, depending on the
specific way the P-SVM is regularized. In the feature selection mode, the P-
SVM extracts a small set of “row” objects which are particular informative (but
not redundant) about the attributes which must be predicted. This improves the
generalization performance of a subsequent prediction step, helps to understand
the data generation process, and helps to identify the causes underlying the
observed attributes.

In the following subsections, we first briefly review the classical support vec-
tor machine (SVM). Then we introduce a new scale-invariant objective function
and present the new constraints which ensure a good performance on the train-
ing set. Then we suggest two different strategies for regularization in order to
avoid overfitting for noisy data. The first strategy should be adopted when the
P-SVM is used in prediction mode (classification and regression), the second
strategy should be used, when the goal is feature selection. The performance



of both regularization schemes are illustrated using several toy data sets. Fi-
nally, the performance of the P-SVM is assessed using benchmarks with several
real world data sets. The modified sequential minimal optimization procedure
needed for learning is described in the appendix.

2 The Potential Support Vector Machine

2.1 Preliminaries

Consider a set X =
{
xi | 1 ≤ i ≤ L

}
of L objects which are described by

feature vectors xi ∈ R
N . Consider for the moment a simple classification prob-

lem, where every object xi belongs to one of two classes. Class membership is
indicated by a binary label yi ∈ {+1,−1}, and the labels for all objects in the
training set are summarized by a label vector y. Consider the set {sign (f)} of
linear classifiers with

sign (f) = {(x, y) | y = sign (f(x)) = sign (〈w,x〉 + b)} (1)

which are parameterized by the weight vector w and the offset b, where 〈·, ·〉
denotes a dot product. The corresponding classification boundaries are given
by the hyperplanes f(x) = 0. The margin γ of a hyperplane with respect to
the training set X, i.e. the distance between the hyperplane and the closest data
point, is given by

γ =
minx∈X |〈w,x〉 + b|

‖w‖2
. (2)

If w and b are scaled, such that minx∈X |〈w,x〉 + b| = 1 holds, then the
hyperplane is in its “canonical form” (Vapnik, 1995) and we obtain γ = ‖w‖−1

2 .
Standard SVM-techniques select the hyperplane with the largest margin.

They minimize ‖w‖2
2 for all linear classifiers in their canonical form under the

constraint of correct classification on the training set:

min
w,b

1
2
‖w‖2 (3)

s.t. yi

(〈
w,xi

〉
+ b

) ≥ 1 .

Clearly, the optimization problem eqs. (3) can only be solved if the training
data are linearly separable. If not, a large margin has to be traded against a
small training error using a suitable regularization scheme.

The maximum margin objective is motivated by bounds on the generalization
error using the Vapnik-Chervonenkis (VC) dimension h as capacity measure
(e.g. Vapnik, 1998). For the set of all linear classifiers defined on X, for which
γ ≥ γmin holds, one obtains

h ≤ min
{[

R2

γ2
min

]
, N

}
+ 1 (4)



(see Vapnik, 1998; Schölkopf and Smola, 2002). [·] denotes the integer part,
and R is the radius of the smallest sphere in data space, which contains all
the training data. Minimizing model complexity h corresponds to maximizing
the margin γ. Capacity measures and bounds derived using the fat shattering
dimension (Shawe-Taylor et al., 1996, 1998; Schölkopf and Smola, 2002), and
bounds on the expected generalization error (cf. Vapnik, 1998; Schölkopf and
Smola, 2002) depend on R

γmin
in a similar manner.

2.2 A Scale Invariant Objective Function

Both the selection of a classifier using the maximum margin principle and the
values obtained for the bounds on the generalization error described in the
last section suffer from the problem that they are not invariant under linear
transformations. This problem is illustrated in Fig. 2. The figure shows a
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Figure 2: LEFT: data points from two classes (triangles and circles) are sepa-
rated by the hyperplane with the largest margin (solid line). The two support
vectors (black symbols) are separated by dx along the horizontal and by dy along

the vertical axis, from which we obtain γ = 1
2

√
d2

x + d2
y and R2

γ2 = 4 R2

d2
x + d2

y
.

The dashed line indicates the classification boundary of the classifier shown on
the right, scaled along the vertical axis by the factor 1

s . RIGHT: the same data
but scaled along the vertical axis by the factor s. The data points still lie within
the sphere of radius R. The solid line denotes the maximum margin hyperplane.
We obtain γ = 1

2

√
d2

x + s2 d2
y and R2

γ2 = 4 R2

d2
x + s2 d2

y
. For dy �= 0 both the

margin γ and the term R2

γ2 depend on s.

two dimensional classification problem, where the data points from the two
classes are indicated by triangles and circles. In the left figure, both classes are
separated by the hyperplane with the largest margin (solid line). In the right
figure, the same classification problem is shown, but scaled along the vertical
axis by a factor s. Again, the solid line denotes the support vector solution,



but when the classifier is scaled back to s = 1 (dashed line in the left figure) it
does no longer coincide with the original SVM solution. Therefore, the optimal
hyperplane is not scale invariant and predictions of class labels may change if
the data is rescaled before learning. In the legend of Fig. 2 it is shown that the
ratio R2

γ2 , which bounds the VC dimension (see eq. (4)), also depends on the
scale factor. Therefore, the question arises, which scale factors should be used
for classifier selection.

Here we suggest to scale the training data such that the margin γ remains
constant while the radius R of the sphere containing all training data becomes
as small as possible. The result is a new sphere with radius R̃ which still
contains all training data but which leads to a tighter margin-based bound for
the generalization error. Optimality is achieved when all directions orthogonal
the normal vector w of the hyperplane with maximal margin γ are scaled to zero
and R̃ = mint∈R maxi |

〈
ŵ,xi

〉
+ t| ≤ maxi |

〈
ŵ,xi

〉 |, where ŵ := w
‖w‖ .

If the absolute value of t is small compared to the absolute values of
〈
ŵ,xi

〉
,

e.g. if the data is centered around the origin, t can be neglected through above
inequality. Unfortunately, above formulation does not lead to an optimization
problem which is easy to implement. Therefore, we suggest to minimize the
upper bound:

R̃2

γ2
= R̃2 ‖w‖2 (5)

≤ max
i

〈
w,xi

〉2 ≤
∑

i

〈
w,xi

〉2
=
∥∥X� w

∥∥2
,

where we summarized training vectors xi by the matrix X :=
(
x1,x2, . . . ,xL

)
.

It can be shown that replacing the objective function ‖w‖2 in eqs. (3) by
the upper bound

w�X X�w =
∥∥X�w

∥∥2
(6)

on R̃2

γ2 , eq. (5), corresponds to the integration of sphering (whitening) and SVM
learning if the data have zero mean. Minimizing the new objective leads to
normal vectors which tend to point in directions of low variance of the data.
The new objective is well defined also for cases where X X� or/and X� X is
singular, and the kernel trick carries over to the new technique. If the data has
already been sphered, then the covariance matrix is given by X X� = I and
we recover the classical SVM2.

The new objective function, eq. (6), leads to separating hyperplanes which
are invariant under linear transformations of the data. As a consequence, neither
the bounds nor the performance of the derived classifier depends on how the
training data was scaled. But is the new objective function also related to a

2In general, however, sphering as a preprocessing step does not simplify the problem be-
cause it must be based on kernel PCA if a kernel is used. Another disadvantage is that
a tradeoff between sphering and low training error as discussed in Section 2.4 is no longer
possible.



capacity measure for the model class like the margin is? It is, and in (Hochreiter
and Obermayer, 2004b) it has been shown, that the capacity measure, eq. (6),
emerges when a bound for the generalization error is constructed using the
technique of covering numbers.

The new objective function of eq. (6) was motivated for a classification prob-
lem but it can also be used to find an optimal regression function in a regression
problem. In regression the term

∥∥X� w
∥∥2 =

∥∥X� ŵ
∥∥2 ‖w‖2, ŵ := w

‖w‖ ,
is the product of a term which expresses the deviation of the data from the
regression function and a term which corresponds to the smoothness of the re-
gressor. If the regression function intersects the origin, which can be enforced by
normalizing data vectors x to have zero mean (see eq. (23)) and by normalizing
the attributes yi such that b = 0 (see eq. (26)), then X� ŵ is the vector of
distances between the data and the regression function. The smoothness of the
regression function is determined by the norm of the weight vector w. For a sim-
ple linear function, ‖w‖2 just determines the slope, but if nonlinear kernels are
applied, the absolute values of the partial derivatives of the regression function
are proportional to ‖w‖2. Therefore, ‖w‖2 determines the smoothness of the
regression function. Let us assume that the nonlinear kernel k expresses a dot
product in some feature space (see Section 2.6 and Appendix C for more details
on kernels and dot products). Then a mapping Φ : Φ(u) = (Φ1(u),Φ2(u), . . . )
into a feature space exists such that k

(
u1,u2

)
=
〈
Φ(u1),Φ(u2)

〉
. We obtain

for the regression function

f(u) = 〈w,Φ(u)〉 + b (7)

and for its gradient with respect to u:

∇uf(u) = (∇uΦ(u)) w , (8)

where ∇uΦ(u) is the matrix with the ∇uΦi(u) as row vectors. The derivatives
can be bounded using the Cauchy-Schwarz inequality:∥∥∥∥∂f(u)

∂uj

∥∥∥∥ =
∥∥∥∥
〈

w,
∂Φ(u)
∂uj

〉∥∥∥∥ ≤ ‖w‖
∥∥∥∥∂Φ(u)

∂uj

∥∥∥∥ , (9)

where ∂Φ(u)
∂uj

is the vector
(

∂Φ1(u)
∂uj

, ∂Φ2(u)
∂uj

, . . .
)
. A smaller value of ‖w‖ leads

to a smoother regression function. Minimizing eq. (6), therefore, leads to an
optimal tradeoff between minimizing the distances between the data points and
the regressor and maximizing the smoothness of the regression function. This
tradeoff is reflected by eq. (94) in Appendix C which shows that eq. (6) is the
L2-norm of the function f .

2.3 New Constraints through Complex Features

We now consider the case, that the feature vectors x are not fully known. In-
stead we assume that a measurement device allows us to determine the values
of a limited set of P complex features z. The complex features z are linear com-
binations of the elementary features xl, the components of the objects’ feature



vectors x, and they define directions in feature space. The value of a complex
feature zj for an object xi is then given by the dot product

Kij =
〈
xi,zj

〉
. (10)

Let us summarize the different kinds of measurements using the complex fea-
ture matrix Z :=

(
z1,z2, . . . ,zP

)
. Then we can summerize our (incomplete)

knowledge about the set of objects X using the data matrix K,

K = X� Z . (11)

In the case of DNA microarray data, for example, we could identify K with
the matrix of expression values obtained by a microarray experiment. For web
data we could identify K with the matrix of ingoing or outgoing hyperlinks.
For documents we could identify K with the matrix of word frequencies. Hence
we assume, that x and z live in a space of hidden causes which are responsible
for the different attributes of the objects. The complex features

{
zj
}

span
a subspace of the original feature space, but we do not require them to be
orthogonal, normalized, or linearly independent. If we set zj = ej (jth
Cartesian unit vector), that is Z = I, Kij = xi

j and P = N , the “new”
description, eq. (11), is fully equivalent to the “old” description using the original
feature vectors x.

We now turn to the task to define a quality measure for the performance
of the classifier or the regression function on the training set. We consider the
quadratic loss function

c(yi, f(xi)) =
1
2
r2
i , (12)

where

ri = f(xi) − yi =
〈
w,xi

〉
+ b − yi (13)

is the residual error for a data point xi, defined as the difference between its
attribute yi and the value predicted by the classification or regression function
f . The total residual error on the training set, the mean squared error, is

Remp [fw,b] =
1
L

L∑
i=1

c
(
yi, f(xi)

)
. (14)

We now require, that the selected classification or regression function minimizes
the total residual error, i.e. that

∇wRemp [fw,b] =
1
L

X
(
X�w + b1 − y

)
= 0 (15)

and

∂Remp[f ]
∂b

=
1
L

∑
i

ri = b +
1
L

∑
i

(〈
w,xi

〉 − yi

)
= 0 . (16)



Since the quadratic loss function is convex in w and b, only one minimum exists
if X X� has full rank. If X X� is singular, then all points of minimal value
correspond to a subspace of R

N . For the value of b we obtain from eq. (16)

b = − 1
L

L∑
i=1

(〈
w,xi

〉 − yi

)
= − 1

L

(
w�X − y�)1 . (17)

Condition eq. (15) implies, that the directional derivative should be zero
along any direction in feature space, including the directions of the complex
feature vectors z. We, therefore, obtain

dRemp

[
fw + t zj ,b

]
dt

=
(
zj
)� ∇wRemp [fw,b] (18)

=
1
L

(
zj
)�

X
(
X�w + b1 − y

)
= 0 ,

and, combining all complex features,
1
L

Z� X
(
X�w + b1 − y

)
=

1
L

K� (X�w + b1 − y
)

=
1
L

K�r = 0 . (19)

Hence we require, that for every complex feature zj the mixed moments σj

between the residual error ri and the measured values Kij should be zero:

σj =
1
L

L∑
i=1

〈
xi,zj

〉
ri =

1
L

[
K�r

]
j

(20)

=
dRemp

[
fw + t zj ,b

]
dt

= 0 .

2.4 The Potential Support Vector Machine (P-SVM)

We now combine both the new objective from eq. (6) and the new constraints
from eq. (19). The new procedure of selecting a classifier or a regression function
is then given by

min
w,b

1
2
‖X� w‖2 (21)

s.t. K� (
X� w + b1 − y

)
= 0 .

The number of constraints in this optimization problem is equal to the number
P of complex features, which can be larger or smaller than the number L of
data points or the dimension N of the original feature space. The constraints
guarantee minimal mean squared error with respect to the complex features
and can always be fulfilled because the minimum of the (convex) empirical
error function fulfills the constraints (zero derivatives)3. f is chosen from all

3This fact is reflected through the projection of the residual errors r = X� w + b1 − y
onto the span of X via K�r = Z� X r. Therefore, error components outside the span of
X vanish and components inside the span of X can be forced to be zero for appropriate w.



linear functions which are described by the P complex features and which have
minimal mean squared error according to the objective function which measures
f ’s capacity.

If K has at least rank L (number of training examples), then r = 0 is always
enforced. Consequently, if the measurements are noisy, overfitting occurs and
the solutions to eqs. (21) are characterized by a high value of the objective
function, eq. (6). Therefore, a regularization scheme is necessary, which allows
for the violation of the constraints if a penalty is added to the objective function.
In order to do so, the mixed moments σj must be normalized. The reason is, that
high values of σj may either be a result of a high variance of the values of Kij

or the result of a high correlation between the residual error ri and the values
of Kij . We are interested in the latter and want discard spurious correlations.
The most appropriate measure would be Pearson’s correlation coefficient

σ̂j =
∑L

i=1

(
Kij − K̄j

)
(ri − r)√∑L

i=1

(
Kij − K̄j

)2 √∑L
i=1 (ri − r)2

, (22)

where r = 1
L

∑L
i=1 ri is the mean residual and K̄j = 1

L

∑L
i=1 Kij is the

mean value of the jth complex feature. If the data vectors (K1j ,K2j , . . . ,KLj)
are normalized to zero mean and unit variance,

1
L

L∑
i=1

(
Kij − K̄j

)2 = 1 and K̄j =
1
L

L∑
i=1

Kij = 0 , (23)

we obtain

σj =
1
L

L∑
i=1

Kij ri = σ̂j
1√
L

‖r − r1‖2 . (24)

The mixed moments are now proportional to the correlation coefficient σ̂j with a
proportionality constant which is independent of the complex feature zj . Note,
that r = 0 is required by eq. (16). If eqs. (23) hold, σj can still be used instead
of σ̂j to formulate the constraints.

If the data vectors are normalized, the term K�1, which is is the factor in
front of b in the constraints of problem eqs. (21), vanishes and we obtain the
simplified optimization problem

min
w

1
2
‖X� w‖2 (25)

s.t. K� (
X� w − y

)
= 0 ,

where the offset b of the classification or regression function is given by eq. (17).
We will call this model selection procedure the Potential Support Vector
Machine (P-SVM), and we will always assume normalized data vectors in
the following. Because of the normalization, eqs. (23), the equation for b, eq.
(17), simplifies to

b =
1
L

L∑
i=1

yi . (26)



The proof for this equation is provided in Appendix A.
In the next sections we show how the generic form of the P-SVM must be

extended and that the regularization scheme essentially determines the appli-
cation domain of the P-SVM. If slack variables are used, we obtain a machine
which is useful for classification and regression. If a global threshold is used,
the P-SVM is tailored for feature selection.

2.4.1 The P-SVM for Classification

If the P-SVM is used for classification, we suggest a regularization scheme based
on slack variables ξ+ and ξ−. Slack variables allow for small violations of indi-
vidual constraints if changing w would lead to a large increase of the objective
function otherwise. We obtain

min
w,ξ+,ξ−

1
2
‖X� w‖2 + C1� (ξ+ + ξ−) (27)

s.t. K� (
X� w − y

)
+ ξ+ ≥ 0

K� (
X� w − y

) − ξ− ≤ 0

0 ≤ ξ+, ξ−

for the primal problem.
Above regularization scheme makes the optimization problem robust against

“outliers”. In general, a large value of the slack variables indicates, that the par-
ticular “row” object (complex feature) only weakly influences the direction of
the classification boundary, because it would otherwise considerably increase the
value of the complexity term. This happens in particular for high levels of mea-
surement noise which leads to large, spurious values of the mixed moments σj .
If the noise is large, the value of C must be small to “remove” the correspond-
ing constraints via the slack variables ξ. If the strength of the measurement
noise is known, the correct value of C can be determined a priori. Otherwise, it
takes the role of a hyperparameter and must be adapted using model selection
techniques.

In order to derive the dual optimization problem, we have to evaluate the
Lagrangian L,

L =
1
2

w� X X� w + C1� (ξ+ + ξ−) (28)

− (
α+
)� (

K� (X� w − y
)

+ ξ+
)

+
(
α−)� (

K� (X� w − y
) − ξ−)

− (
μ+
)�

ξ+ − (
μ−)� ξ− , (29)

where the vectors α+ ≥ 0, α− ≥ 0, μ+ ≥ 0, and μ− ≥ 0 are the Lagrange
multipliers for the constraints in eqs. (27). The optimality conditions (Schölkopf
and Smola, 2002) require that

∇wL = X X� w − X K α (30)
= X X� w − X X�Z α = 0 ,



where we used the abbreviation α = α+ − α− (αi = α+
i − α−

i ). In order to
ensure eq. (30) and its equivalent equation X X� w = X X�Z α, we set

w = Z α . (31)

In contrast to the standard SVM expansion of w into its support vectors x, the
weight vector w is now expanded into a set of complex features z which we will
call “support features” in the following. We then arrive at the dual optimization
problem:

min
α

1
2
α� K� K α − y� K α (32)

s.t. − C 1 ≤ α ≤ C1 .

The dual problem is solved by a Sequential Minimal Optimization (SMO) tech-
nique which is described in Appendix B. The SMO technique is essential if
many complex features are used, because in contrast to standard SVMs with a
linear kernel it is the N ×N correlation matrix X X� and not the L×L Gram
matrix X� X which enters the dual formulation. Note, that for the P × P
matrix K�K we obtain K�K = Z� X X�Z.

Finally, the classification function f has to be constructed using the optimal
values of the Lagrange parameters α. The value for b is given by eq. (26) and
we obtain the classification function

f(u) = 〈w,u〉 + b =
P∑

j=1

αj 〈u,zj〉 + b (33)

=
P∑

j=1

αj K(u)j + b ,

where the expansion eq. (31) has been used for the weight vector w.
The classifier based on eq. (33) depends on the weighting coefficients αj ,

which were determined during optimization, on b, which can be computed di-
rectly by eq. (26), and on the measured values

〈
u,zj

〉
for the new object u. The

weighting coefficients αj = α+
j − α−

j can be interpreted as class indicators,
because they separate the complex features into features which are relevant for
class 1 and class -1, according to the sign of αj . Note, that if we consider the
Lagrange parameters αj as parameters of the classifier, we find that

dRemp

[
fw + t zj , b

]
dt

= σj =
∂Remp[f ]

∂αj
. (34)

The directional derivatives of the empirical error Remp along the complex fea-
tures in the primal formulation correspond to its partial derivatives with respect
to the corresponding Lagrange parameter in the dual formulation.

One of the most crucial properties of the P-SVM model selection procedure
is, that the dual optimization problem only depends on K via K�K. Therefore,
K is neither required to be positive semidefinite nor to be square. This allows



not only the construction of SVM-based classifiers for matrices K of general
shape but also to extend the SVM-based approaches to the new class of indefinite
kernels operating on the objects’ feature vectors.

In the following we illustrate the application of the P-SVM approach to
indefinite kernels using two toy examples. The first toy problem considers matrix
data of the general form (see Fig. 1b). The data set consists of 34 “column”
objects which are described by 2-dimensional feature vectors x. 17 objects were
chosen from class 1 and 17 objects from class 2 (see solid and open circles in Fig.
3). 50 “row” objects (complex features) and their 2-dimensional feature vectors
z were chosen randomly according to an uniform distribution on the interval
[−2, 2]× [−2, 2]. We used three different types of kernels to calculate the matrix
elements Kij = k

(
xi,zj

)
: polynomial kernels, RBF-kernels, and the indefinite

sine-kernel

k
(
xi,zj

)
= sin

(
ω ‖xi − zj‖) .

The sine-kernel is indefinite, because its Gram matrix is zero in the main di-
agonal such that its trace vanishes. Since the trace of a matrix is the sum of
its eigenvalues we deduce that the Gram matrix has both negative and posi-
tive eigenvalues (or is the zero matrix). Fig. 3 shows the results of the P-SVM
method and demonstrates that good results can indeed be obtained with indef-
inite kernels.

The second toy problem considers pairwise data (see Fig. 1a). The data set
consists of 70 objects, 28 from class 1 and 42 from class 2, which are described
by two-dimensional feature vectors x (see open and solid circles in Fig. 4). A
pairwise data set was then generated by applying the (indefinite) sine-kernel
k
(
xi,xj

)
= sin

(
ω ‖xi − xj‖2

)
. In contrast to the previous example, we ex-

plicitly construct an indefinite Gram matrix using the non-Mercer sine-kernel.
Fig. 4 shows the classification result obtained with the P-SVM method in com-
parison to the result using the standard RBF-kernel. The sine-kernel is more
appropriate than the RBF-kernel for this data set which is indicated by the
smaller number of support vectors. Note, that a large value of ω leads to a
more “complex” set of classifiers (higher frequencies) and reduces the classifica-
tion error on the training set. The figure demonstrates, that indefinite kernels
cannot only be used to solve “standard” classification tasks, where objects are
described by their feature vectors, but may lead to superior classification re-
sults due to the particular structure of the classification boundaries they induce
(compare Fig. 4 left and right). The sine-kernel is clearly better adjusted to the
“oscillatory” regions of class membership than the RBF-kernel is. This extends
the range of kernels which are currently used and, therefore, opens up a new
direction of research for kernel design.

2.4.2 The P-SVM for Regression

We have already argued at the end of Section 2.2, that the objective function,
eq. (6), is also suitable for solving regression problems. The discussion in Section
2.3 and beginning of Section 2.4 also showed, that the constraints of vanishing
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Figure 3: Application of the P-SVM method to a toy classification problem
(matrix data). “Column” and “row” objects are described by two-dimensional
feature vectors x and z. 34 “column” objects, 17 from each class, were chosen
as shown in the figure (open and solid circles), and 50 “row” objects (complex
features) were generated randomly and uniformly from the interval [−2, 2] ×
[−2, 2]. The figures show the resulting P-SVM classifier for the polynomial
kernel k

(
xi,zj

)
=

(〈
xi,zj

〉
+ κ

)d (poly), the RBF kernel k
(
xi,zj

)
=

exp(− 1
σ2 ‖xi − zj‖2 (RBF), and the sine-kernel k

(
xi,zj

)
= sin(ω ‖xi − zj‖)

(sine). Gray and white regions indicate areas of class 1 and class 2 membership
as predicted by the selected classifiers and crosses indicate support features.
Parameters are given in the figure.

mixed moments carry over to regression problems with the only modification,
that the target values yi in eqs. (27) are real rather than binary (±1) numbers.
The constraints are even more “natural” for regression because the ri are indeed
the residuals a regression function should minimize. We, therefore, propose to
use the primal optimization problem, eqs. (27), and its corresponding dual, eqs.
(32), also for the regression setting.
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Figure 4: Application of the P-SVM method to a toy classification problem
(pairwise data). Objects are described by two-dimensional feature vectors x,
and 70 objects were generated of which 28 belong to class 1 (open circles) and
42 belong to class 2 (solid circles). A Gram matrix was constructed using the
positive definite RBF kernel (left) and the indefinite sine-kernel k

(
xi,xj

)
=

sin
(
ω ‖xi − xj‖) (right). White and gray indicate regions of class 1 and class

2 membership. Circled data indicate support vectors. Parameters are given in
the figure.

Fig. 5 shows the application of the P-SVM to a toy regression example
(pairwise data). 50 data points were randomly chosen from the true function
(dashed line) and i.i.d. Gaussian noise with mean 0 and standard deviation 0.2
were added to each y-component. One outlier was added by hand at x = 0. The
figure shows the P-SVM regression results (solid lines) for an RBF-kernel and
three different combinations of C and σ. It can be seen that the hyperparameter
C controls the sensitivity against outliers, hence the local smoothness of the
regressor. A smaller value of C reduces the height of the peak at x = 0 and the
effect of this particular data point. However, smaller values of C also lead to a
larger number of support vectors. The width σ of the RBF-kernel on the other
hand controls the overall smoothness of the regressor. It reduces the influence of
outliers without increasing the number of support vectors but at the expense of
a large training error, that is large bias. The effect of local vs. global smoothing
can be seen at x = −2 (cf. arrows in Fig. 5): σ-smoothing (upper left sub-
figure in Fig. 5) results in a regression function with an increased training error
contribution at x = −2 and no support vectors whereas C-smoothing (lower
sub-figure in Fig. 5) leads to a lower training error contribution at x = −2 but
more support vectors.
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Figure 5: Application of the P-SVM method to a toy regression problem (pair-
wise data). Objects (small dots), described by the x-coordinate, were generated
by randomly choosing points from the true function (dashed line) and adding
Gaussian noise with mean 0 and standard deviation 0.2 to the y-component of
each data point. One outlier was added by hand at x = 0. A Gram matrix was
then generated using an RBF-kernel with width σ. The solid lines show the
regression result. Circled dots indicate support vectors. Parameters are given
in the figure. The arrows in the figures mark x = −2, where the effect of local
vs. global smoothing can be seen (see text for explanation).

2.4.3 The P-SVM for Feature Selection

In this section we modify the P-SVM method for feature selection such that it
can serve as a data preprocessing method in order to improve the generalization
performance of subsequent classification or regression tasks (see also Hochreiter
and Obermayer, 2004a). Due to the property of the P-SVM method to expand
w into a sparse set of support features, it can be modified to optimally extract
a small set of “informative” features with respect to certain attributes of the
“column” objects (class labels or real valued attributes). The most important



modification is to adopt a different regularization scheme, which we will detail
below. The set of “support features” can then be identified with the set of
“selected” features, which may then be used as input to an arbitrary predictor,
e.g. a standard SVM or a K-nearest-neighbor classifier.

Noisy measurements can lead to spurious mixed moments, i.e. complex fea-
tures which contain no information about the objects’ attributes but still exhibit
finite values of σj . In order to prevent those features to affect the classification
boundary or the regression function, we introduce a “correlation threshold” ε
and modify the constraints in problem eqs. (25) according to

‖K� (
X� w − y

) ‖∞ ≤ ε , (35)

which can be written as

K� (
X� w − y

)− ε 1 ≤ 0 , (36)

K� (
X� w − y

)
+ ε 1 ≥ 0 .

This regularization scheme is analogous to the ε-insensitive loss (Schölkopf and
Smola, 2002). Absolute values of mixed moments smaller than ε are considered
to be spurious. Consequently, the influence of the corresponding features do not
influence the weight vector, because the constraints remain fulfilled.

Similar to the classification case, high levels of noise induce stronger spuri-
ous correlations and the value of ε must be increased. The measurement noise
directly correlates with ε, hence ε can be determined a priori if the level of
measurement noise is known. If the level of noise level is unknown, ε serves
as hyperparameter and its value can be determined using model selection tech-
niques. Note, that data vectors have to be normalized (cf. eqs. (23)) before
applying the P-SVM, because otherwise a global value of ε would not suffice.

Combining eq. (6) and eqs. (37) we then obtain the primal optimization
problem

min
w

1
2
‖X� w‖2 (37)

s.t. K� (
X� w − y

)
+ ε 1 ≥ 0

K� (
X� w − y

) − ε 1 ≤ 0

for P-SVM feature selection. In order to derive the dual formulation we have
to evaluate the Lagrangian:

L =
1
2

w� X X� w (38)

− (
α+
)� (

K� (X� w − y
)

+ ε 1
)

+
(
α−)� (

K� (X� w − y
) − ε 1

)
,

where we have used the notation from Section 2.4.1. The vector w is again
expressed through the complex features,

w = Z α , (39)



and we obtain the dual formulation of eq. (38):

min
α+,α−

1
2
(
α+ − α−)� K� K

(
α+ − α−) (40)

− y� K
(
α+ − α−) + ε 1� (α+ + α−)

s.t. 0 ≤ α+ , 0 ≤ α− .

The term ε 1� (α+ + α−) in this dual objective function enforces a sparse
expansion of the weight vector w in terms of the support features. This occurs,
because for large enough values of ε, this term forces all αj towards zero except
for the complex features which are most relevant for classification or regression.
If K� K is singular and w is not uniquely determined, ε enforces a unique solu-
tion, which is characterized by the most sparse representation through complex
features.

The dual problem is again solved by a Sequential Minimal Optimization
(SMO) technique (see Appendix B). A fast SMO technique is crucial because in
typical feature selection problems the number of features can be extremely large,
hence the optimization problem, which is quadratic in the number of complex
features, may become computationally very expensive.

Finally, let us address the relationship between the value of a Lagrange
multiplier αj and the “importance” of the corresponding complex feature zj

for prediction. The change of the empirical error under a change of the weight
vectors by an amount β along the direction of a complex feature zj is given by

Remp

[
fw + β zj , b

] − Remp [fw,b] (41)

= β σj +
β2

2 L

∑
i

K2
ij = β σj +

β2

2

≤ ε |β|
L

+
β2

2
,

because the constraints eq. (37) ensure that |σj | L ≤ ε. If a complex feature
zj is completely removed, then β = − αj and

Remp

[
fw − αj zj , b

] − Remp [fw,b] ≤ ε |αj |
L

+
α2

j

2
. (42)

The Lagrange parameter αj is directly related to the increase in the empirical
error. Therefore, α serve as importance measures for the complex features.

In the following, we illustrate the application of the P-SVM approach to
feature selection using two toy examples. The first toy example considers ma-
trix data in the general form (Fig. 1b) and a classification task. The data set
consists of 50 “column” objects, 25 from each class, which are described by
two-dimensional feature vectors x (open and solid circles in Fig. 6). 50 “row”
objects and their two-dimensional feature vectors z were chosen randomly ac-
cording to an uniform distribution on the interval [−1.2, 1.2] × [−1.2, 1.2]. The
data matrix K was generated using an RBF kernel with variance σ = 0.2. Fig.
6 shows the result of the P-SVM feature selection method with a correlation



threshold ε = 20. The selected features are indicated by crosses. The figure
shows, that every group of data points is described (and detected) by one or
two feature vectors.

The six features selected by the P-SVM method are sufficient to allow for an
almost perfect classification of new data points if they are chosen from the same
distribution. The number of selected features depends on σ, which determines
how the strength of correlation between complex features and objects decrease
with their distance. Note, that for the RBF-kernel we obtain

k
(
xi,zj

)
= Kφ

i,j =
〈
φ
(
xi
)
, φ
(
zj
)〉

= exp
(
− 1

2 σ2
‖xi − zj‖2

)

which means that smaller distances ‖xi − zj‖ in the input space indicate
higher dot product values Kφ

i,j in feature space. The threshold ε determines the
minimum value of non-spurious correlation. Smaller ε or larger σ would result
in more complex features assigned to every data group.
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Figure 6: Application of the P-SVM method to a toy feature selection prob-
lem for a classification task (matrix data). “Column” and “row” objects are
described by two-dimensional feature vectors x and z, respectively. 50 “col-
umn” objects, 25 from each class (open and solid circles), were generated by
randomly choosing a center from {(1, 1), (1,−1), (−1, 1), (−1,−1)} with equal
probability, then adding to each coordinate of the center a random value, which
stems from a Gaussian with mean 0 and standard deviation 0.1. 100 “row”
objects (complex features) were generated randomly and uniformly from the
interval [−1.2, 1.2] × [−1.2, 1.2]. An RBF-kernel exp

(− 1
2 σ2 ‖xi − zj‖2

)
with

width σ = 0.2 is applied to each pair
(
xi,zj

)
of “row” and “column” object in

order to construct the data matrix K. Black crosses indicate the location of
features selected by the P-SVM method.

The second toy problem considers feature selection for pairwise data (Fig. 1a)
in the context of a regression task. The data set consists of 100 data points which
are randomly chosen from the true function (dashed line) and for which Gaussian
noise with mean 0 and standard deviation 10 was added to the y-components. A



Gram matrix was constructed using an RBF-kernel with width σ = 2, and the
P-SVM method was applied for feature selection. Fig. 7 shows the regression
function (solid line) and the selected support features (circled dots) for different
values of the correlation threshold ε. The number of selected features decreases
with increasing values for ε as expected. Interestingly, the support vectors
indicate maxima and minima of the regression function (cf. bottom of Fig.
7), that means the support vectors mark the most interesting regions of the
regression function. A more detailed regression function is obtained by more
support vectors, however, they are broader distributed over the input space of
the regression function (cf. top left of Fig. 7).
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Figure 7: Application of the P-SVM to a toy feature selection problem for a
regression task (pairwise data). 100 data points are generated from the true
function (dashed line) by randomly and uniformly choosing data points from
the true function and adding Gaussian noise with mean 0 and standard deviation
10 to the function value. A Gram matrix was constructed using an RBF-kernel
with width σ = 2. The figure shows the P-SVM regression functions (solid
lines) and the selected support vectors (circled dots). Parameters are given in
the figure.



2.5 Duality Between the Two Regularization Schemes

We now directly compare the two regularization schemes proposed for classifica-
tion and regression (slack variables) and feature selection (correlation threshold).
The slack variables ξ can be eliminated from the optimization problem of eqs.
(27) and we obtain

min
w

1
2
‖X� w‖2 + C ‖K� (

X� w − y
) ‖1 (43)

for the primal and

min
α

1
2
α� K� K α − y� K α (44)

s.t. ‖α‖∞ ≤ C

for the dual formulation (cf. eqs. (32)). The slack variables can be eliminated
because (i) for each j, either ξ+

j = 0 or ξ−j = 0 and (ii) the remaining non-zero

ξ±j are equal to the absolute value
∣∣∣[K� (

X� w − y
)]

j

∣∣∣.
For the optimization problem of eqs. (38), the “correlation threshold” regu-

larization, we obtain

min
w

1
2
‖X� w‖2 (45)

s.t. ‖K� (
X� w − y

) ‖∞ ≤ ε .

This leads to the dual formulation

min
α

1
2
α� K� K α − y� K α + ε ‖α‖1 . (46)

This dual is derived from the feature selection dual eqs. (41), where either
α+

j = 0 or α−
j = 0. If this would not be the case the term ε 1� (α+ + α−)

can be decreased without changing the other terms in eqs. (41) by simply sub-
tracting min

{
α+

i , α−
i

}
from α+

i and α−
i . Thus, for α = α+ − α− we obtain

ε 1� (α+ + α−) = ε ‖α‖1 and above dual.
A direct comparison of the optimization problems shows that exchanging the

“slack variables” and the “correlation threshold” regularization schemes result
in simply exchanging the ∞-norm with the 1-norm for the dual variables α and
the primal constraints:

class./regression: ‖α‖∞ ≤ C , min ‖K� (
X� w − y

) ‖1

feature selection: min ‖α‖1 , ‖K� (
X� w − y

) ‖∞ ≤ ε .

According to the Karush-Kuhn-Tucker conditions either the dual variable or the
corresponding constraint must be zero. The two regularization schemes differ by
which of the two factors is pushed towards zero: For the “correlation threshold”
regularization the vector α is made sparse leading to an optimal small set of
support features while for the “slack variable” regularization scheme the vector
of constraints is made sparse leading to low classification or regression costs



on the training set. This explains why the “slack variable” and “correlation
threshold” schemes are particularly well suited for classification / regression
and feature selection tasks, respectively.

Note that only the problem eq. (47) always yields a unique solution, i.e. the
SMO algorithm for feature selection has a well defined convergence criterion.
For all other optimization problems the solutions w (α) can have arbitrary parts
in the subspace of matrix X (K), which is mapped to zero. Therefore, we used
for practical reasons also for classification and regression experiments (“slack
variable” scheme) a small ε to enforce a stable solution of the dual optimization
problem.

2.6 Matrix and Pairwise Data as Dot Product

In the derivation of the P-SVM method we have used the fact that the matrix
K is a dot product matrix whose elements denote a scalar product between the
feature vectors which describe the “row” and the “column” objects. If K, how-
ever, is a matrix of measured values the question arises under which conditions
such a matrix can be interpreted as a dot product matrix.

There is no full answer to this question from a theoretical viewpoint, practical
applications have to confirm (or disprove) the chosen ansatz and data model.
However, the question whether it is possible to describe a measurement operator
which takes a “row” and a “column” object and outputs a number by a dot
product can be replaced by the question whether or not the following three
conditions hold:

(1) “Column” objects (“samples”) x are from a set X which can be completed
to a measure space.

(2) “Row” objects (“complex features”) z are from a set Z which can be
completed to a measure space.

(3) The measurement process can be expressed via the evaluation of a mea-
surable kernel k (x,z) which is from L2(X ,Z).

In general, conditions (1) and (2) can easily fulfilled by defining a suited σ-
algebra on the sets. Condition (3) holds for bounded k and compact sets X and
Z, i.e. for measurements where the measured value is bounded. These are mild
conditions on the measurement.

Condition (3) equates the evaluation of a kernel as known from standard
SVMs with physical measurements. As the kernel matrix is measured, no model
selection has to be performed w.r.t. the kernel. The physical characteristics of
the measurement device determines the properties of the kernel, e.g. bounded-
ness and continuity. The theoretical analysis for the connection between kernels
and dot products is provided in Appendix C, where we also show that indefinite
kernels in the context of pairwise data correspond to dot products in Minkowski
spaces, i.e. in a linear space equipped with an indefinite norm. This analysis



for pairwise data is based on the fact that K and the underlying kernel is sym-
metric. The most important fact is that neither the set of “column” objects X
nor the set of “row” objects Z must be vector spaces. Therefore, objects can
be classified if they can be related to other objects even if they do not allow a
vectorial representation.

We derive additional interesting facts in Appendix C:

(1) The space in which the measurement kernel evaluates a dot product can
be identified with �2, the space of infinite vectors with finite Euclidean
length.

(2) For the discrete case we obtain ‖f‖2
L2 = α�K�K α = ‖X� w‖2

2.
Therefore the new objective eq. (6) is the L2 norm of the classifier. This
again suggests to use the new objective function eq. (6) as a capacity
measure.

3 Numerical Experiments and Applications

In this section we apply the P-SVM method to various kinds of real world data
sets and provide benchmark results with previously proposed methods when ap-
propriate. This section consists of three parts which cover classification, regres-
sion, and feature selection. In part one the P-SVM is first tested as a classifier on
data sets from the UCI Benchmark Repository and its performance is compared
with results obtained for the C- and the ν-SVMs for different kernels. Then we
apply the P-SVM to two measured (rather than constructed) pairwise data sets
(“cat cortex” and “protein”) and one measured matrix data set (“World Wide
Web”). In part two the P-SVM is applied to regression problems taken from the
UCI Benchmark Repository and compared to results obtained with C-Support
Vector Regression and Bayesian SVMs. Part three describes results obtained
for the P-SVM as a feature selection method for the “protein” and “World Wide
Web” data sets, for a challenging toy data set similar to (Weston et al., 2000),
and several real world data sets obtained using the DNA microarray technique
(Pomeroy et al., 2002; Shipp et al., 2002; van’t Veer et al., 2002). For the toy
data set the performance of the P-SVM is compared with several standard fea-
ture selection methods: Fisher statistics (Kendall and Stuart, 1977), Recursive
Feature Elimination (RFE) (Guyon et al., 2002), and R2W2 (Weston et al.,
2000). Since no ground truth is available for the indicative features in the real
world data sets, the feature selection methods are evaluated with respect to the
performance of an optimal classifier operating on the selected set. Benchmarks
are provided which compare the P-SVM / ν-SVM method and the methods
“known most important gene” / one gene classification SPLASH / likelihood
ratio classifier signal-to-noise-statistics / K-nearest neighbor, signal-to-noise-
statistics / weighted voting, Fisher statistics / weighted voting, and R2W2,
whose results are reported in the literature (Pomeroy et al., 2002; Shipp et al.,
2002; van’t Veer et al., 2002). SPLASH is a greedy subset selection method
(Califano et al., 1999), likelihood ratio classifier uses a density estimation for



each feature and class, and weighted voting is linear classifier which multiplies
the feature values by their statistical significance. All methods are described in
more detail in the according literature.

3.1 Application to Classification Problems

3.1.1 UCI Data Sets

In this section we report benchmark results for the data sets “thyroid” (5 fea-
tures), “heart” (13 features), “breast-cancer” (9 features), and “german” (20
features) from the UCI benchmark repository, and for the data set “banana”
(2 features) taken from (Rätsch et al., 2001). All data sets were preprocessed
as described in (Rätsch et al., 2001) and divided into 100 training/test set
pairs. Data sets were generated through resampling where data points were
randomly selected for the training set and the remaining data was used for
the test set. We downloaded the original 100 training/test set pairs from
http://ida.first.fraunhofer.de/projects/bench/. For every data set we
restricted the training set to the first 200 examples of the original training data
set because otherwise the classification problem was too simple and the results
did not differ significantly for the different methods. For testing we used the
original test sets. Pairwise datasets were generated by constructing the Gram
matrix for radial basis function (RBF), polynomial (POL), and Plummer (PLU,
see Hochreiter et al., 2003) kernels, and the Gram matrices were used as input
for C-, ν-, and P-SVM. Hyperparameters (C, ν, and kernel parameters) were
optimized using 5–fold cross validation on the corresponding training sets. To
ensure a fair comparison, the hyperparameter selection procedure was equal for
all methods, but the search for hyperparameter was not as exhaustive as in
(Rätsch et al., 2001).

Table 1 summarizes the percentage of misclassification averaged over 100
experiments. Despite the fact that C– and ν–SVMs are equivalent, results differ
because of different model selection with hyperparameters C and ν. Best and
second best results are indicated by bold and italic numbers, and a total score
was calculated for every method by adding 2 points if it has won and 1 point if
it was second best. The C-SVM was one times best and one times second best,
the ν-SVM was two times best, and the P-SVM was three times best and four
times second best. Therefore the score is 3 points for the C-SVM, 4 points for
the ν-SVM, and 10 points for the P-SVM. The results show that the P-SVM
method achieves the best result.

3.1.2 Cat Cortex Data Set

The “cat cortex” data set was taken from (Scannell et al., 1995) and describes
the connectivity pattern between 65 areas of the cat’s cerebral cortex. For every
pair of cortical areas, the connection strength is set to three if connections are
strong or dense, two for the intermediate case, one if connections are weak or
sparse, and zero if connections are absent or if no data had been reported. The



C ν P C ν P
thyroid heart

RBF 6.4 9.4 5.4 21.4 19.1 22.4
POL 22.8 12.6 13.3 20.4 20.4 23.0
PLU 6.1 6.2 5.7 16.3 16.3 17.4

breast cancer banana
RBF 33.6 31.6 32.4 13.2 36.7 11.6
POL 36.0 25.7 27.1 35.3 35.0 22.4
PLU 33.4 33.1 30.6 15.7 15.7 21.9

german
RBF 28.7 29.3 27.8
POL 33.7 29.6 31.8
PLU 28.8 28.5 27.1

Table 1: Average percentage of misclassification for the UCI and the “banana”
data sets. The table compares results obtained with the C-, ν-, and P-SVM for
the Radial Basis Function (RBF), exp(− 1

2 σ2 ‖xi − xj‖2, polynomial (POL),(〈
xi,xj

〉
+ η

)δ, and Plummer (PLU), 1
(‖xi − xj‖ + ρ)ζ , kernels. Results were

averaged over 100 experiments with separate training and test sets. For each
data set numbers in bold and italic highlight the best and the second best
result. The parameters C and ν for the SVM as well as the kernel parameters
were determined using 5–fold cross validation on the training set then the SVM
was trained on the training set and tested on the test set. The parameters are
different for the individual experiments.

values are summarized by a connectivity matrix, whose diagonal was set to four
for “self-connections”. All areas are labeled according to whether they belong to
the auditory (“A”), visual (“V”), somatosensory (“SS”), or frontolimbic (“FL”)
systems.

Fig. 8 shows a scree plot of the eigenvalues of the connectivity matrix. It
is not positive definite because it contains negative eigenvalues, and cannot
be directly used as a Gram matrix in standard SVM methods. Table 2 sum-
marizes classification results which were obtained with the generalized SVM
(G-SVM, Graepel et al., 1999; Mangasarian, 1998) and the P-SVM method.
While the P-SVM operates on the indefinite Gram matrix, the G-SVM inter-
prets the “column” vectors of the Gram matrix as feature vectors. The table
shows the percentage of misclassification for the four two-class classification
problems “one class against the rest”. The P-SVM yields slightly better clas-
sification results compared to the G-SVM but with considerably fewer support
vectors. Therefore, the number of measurements needed in order to be able
to classify a new data point (the number of support vectors) is much lower
on average: 28 (classification task “V”), 19 (classification task “A”), and 33
(classification task “SS”), and 35 (classification task “FL”) compared to the 65
measurements always needed when using the G-SVM.



cat cortex
Reg. V A SS FL

Size — 18 10 18 19
G-SVM 0.05 4.6 3.1 3.1 1.5
G-SVM 0.1 4.6 3.1 6.1 1.5
G-SVM 0.2 6.1 1.5 3.1 3.1
P-SVM 0.6 3.1 1.5 6.1 3.1
P-SVM 0.7 3.1 3.1 4.6 1.5
P-SVM 0.8 3.1 3.1 4.6 1.5
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Table 2 (left): Percentage of misclassification for the “cat cortex” data set for
classifiers obtained with the P-SVM and G-SVM methods. Column “Reg.” lists
the value of the regularization parameter (ν for G-SVM and C for P-SVM).
Columns “V” to “FL” provide the results for the four classification problems
“one class against the rest”. The percentage of misclassification was computed
using leave-one-out cross validation. The best classification results for each
problem are shown in bold. Figure 8 (right): Scree plot of the eigenvalues
of the “cat cortex” data set. The positive eigenvalues are more prominent
than the negative one’s so that projection into the subspace spanned by the
positive eigenvalues or flipping the sign of the negative eigenvalues also leads to
acceptable classification results (Graepel et al., 1999).

3.1.3 Protein Data Set

The “protein” data set (cf. Hofmann and Buhmann, 1997) was provided by
M. Vingron and consists of 226 proteins from the globin families. Pairs of
proteins are characterized by their evolutionary distance, which is defined as
the probability of transforming one amino acid sequence into the other via point
mutations. Class labels are provided, which denote membership in one of the
four families: hemoglobin-α (“H-α”), hemoglobin-β (“H-β”), myoglobin (“M”),
and heterogenous globins (“GH”).

Table 3 summarizes the classification results, which were obtained with the
G-SVM and the P-SVM methods (see Section 3.1.2). The table shows the
percentage of misclassification for the four two-class classification problems “one
class against the rest”. Again, the P-SVM yields better classification results
using on average 180 proteins (support vectors) compared to 203 protein used
by the G-SVM (note that for 10–fold cross validation 203 is the average training
size). Here small number of support vectors is highly desirable, because it
reduces the computational costs of sequence alignments which are necessary for
the classification of new examples.

3.1.4 World Wide Web Data Set

The “World Wide Web” data sets consist of 8,282 WWW-pages collected dur-
ing the Web−→Kb project at Carnegie Mellon University in January 1997 from



protein data
Reg. H-α H-β M GH

Size — 72 72 39 30
G-SVM 0.05 1.3 4.0 0.5 0.5
G-SVM 0.1 1.8 4.5 0.5 0.9
G-SVM 0.2 2.2 8.9 0.5 0.9
P-SVM 300 0.4 3.5 0.0 0.4
P-SVM 400 0.4 3.1 0.0 0.9
P-SVM 500 0.4 3.5 0.0 1.3

Table 3: Percentage of misclassification for the “protein” data set. The entries
are as in Table 2 except that the generalization error is now measured by 10–fold
cross validation.

the web sites of the computer science departments of the four universities Cor-
nell University (“Cornell”), Texas University (“Texas”), Washington Univer-
sity (“Washington”), and Wisconsin University (“Wisconsin”). The pages were
manually classified into the categories “student”, “faculty”, “staff”, “depart-
ment”, “course”, “project”, and “other”.

Every pair (i, j) of pages is characterized by whether page i contains a hy-
perlink to page j and vice versa. The data is summarized using two binary
matrices and a ternary matrix. The first matrix K (“out”) contains a one for
at least one outgoing link (i → j) and a zero if no outgoing link exists, the
second matrix K� (“in”) contains a one for at least one ingoing link (j → i)
and a zero otherwise, and the third, ternary matrix 1

2

(
K + K�) (“sym”)

contains a zero, if no link exists, a value of 0.5, if only one unidirectional link
exists, and a value of 1, if links exists in both directions.

For the following experiments, we restricted the data set to pages from first
six classes which had more than one in- or outgoing link. The data set thus
consists of the four subsets “Cornell” (350 pages), “Texas” (286 pages), “Wis-
consin” (300 pages), and “Washington” (433 pages).

Table 4 summarizes the classification results for the G- and P-SVM methods.
The parameter C for both SVMs was optimized for each cross validation trial
using another 4–fold cross validation on the training set. Again, the P-SVM
provides better results with fewer support vectors. Interestingly, classification
results are better for the asymmetric matrices “in” and “out” than for the sym-
metric matrix “sym”. The reason for the better performance of asymmetric
matrices is that in some cases very indicative pages (hubs) exist which are con-
nected to one particular class of pages by either in- or outgoing links. At Cornell
university, for example, the project pages have indicative outgoing links and the
Texas university contains web pages which are indicative for the student pages
by linking only them. The symmetric case blurs the contribution of the indica-
tive pages because ingoing and outgoing links can no longer be distinguished
which leads to poorer performance. Because the P-SVM yields fewer support



Course Faculty Project Student
Cornell University

Size 57 60 52 143
G-SVM (sym) 24 43 46 44
P-SVM (sym) 17 25 16 32
P-SVM (out) 14 23 13 28
P-SVM (in) 15 21 28 27

Texas University
Size 52 35 29 129

G-SVM (sym) 28 35 34 59
P-SVM (sym) 16 14 12 26
P-SVM (out) 8 10 10 21
P-SVM (in) 12 10 9 13

Wisconsin University
Size 77 36 22 117

G-SVM (sym) 37 37 19 54
P-SVM (sym) 19 15 10 34
P-SVM (out) 12 11 8 24
P-SVM (in) 13 9 6 13

Washington University
Size 169 44 39 151

G-SVM (sym) 19 27 22 37
P-SVM (sym) 17 13 9 20
P-SVM (out) 11 13 7 17
P-SVM (in) 12 9 7 14

Table 4: Percentage of misclassification for the World Wide Web data sets for
classifiers obtained with the P-SVM and G-SVM methods. The percentage of
misclassification was measured using 10–fold cross-validation. The best results
for each data set and classification task are indicated in bold. Values for the
hyperparameter C varied because we chose them for each cross validation trial
through another 4–fold cross validation on the training set. For details see text.

vectors, online classification is faster than for the G-SVM: Fewer “row” support
vector pages have to be analyzed in order to classify a new page. Another ad-
vantage is that if web pages cease to exist, the P-SVM is more likely not to be
affected because only “support” web pages matter which are assumed to exist
longer.

Table 5 provides a more detailed analysis of the classification results for the
problem “student pages vs. the rest”. The false positive rate for the matrix
“out” is higher than the matrix “in”. This means that the most indicative
pages, which are referred by “student” pages, are not as discriminative as pages
indexing student pages.



student P-SVM P-SVM P-SVM G-SVM
pages pages “in” “out” “sym” “sym”

Cornell 350 143 27 28 32 44
+21/-32 +22/-33 +42/-25 +51/-40

Texas 286 129 13 21 26 59
+10/-15 +35/-9 +33/-20 +48/-68

Wisconsin 300 117 13 24 34 54
+14/-13 +32/-19 +42/-29 +51/-56

Washington 433 151 14 17 20 37
+18/-12 +36/-7 +30/-15 +36/-38

Table 5: Classification results for the problem “student pages vs. the rest” for
the “world wide web” data set. The percentage of misclassifications is analyzed
with respect to the false positive rate (“+”) and the false negative rate (“-”).
Unsigned numbers in the rightmost four columns denote the total percentage of
errors.

3.2 Application to Regression Problems

In this section we report results for the data sets “robot arm” (2 features),
“boston housing” (13 features), “computer activity” (21 features), and “abalone”
(10 features) data sets from the UCI benchmark repository. The data prepro-
cessing is described in (Chu et al., 2004), and the data sets are available as train-
ing / test set pairs at http://guppy.mpe.nus.edu.sg/~chuwei/data. The size
of the data sets were (training set / test set): “robot arm”: 200 / 200, 1 set;
“boston housing”: 481 / 25, 100 sets; “computer activity”: 1000 / 6192, 10 sets;
“abalone”: 3000 / 1177, 10 sets.

Pairwise data sets were generated by constructing the Gram matrices for
Radial Basis Function kernels of different widths σ, and the Gram matrices were
used as input for the classification methods: C-support vector regression (SVR)
(Schölkopf and Smola, 2002), Bayesian support vector regression (BSVR) (Chu
et al., 2004), and the P-SVM. Hyperparameters (C and σ) were optimized using
n-fold cross-validation (n = 50 for “robot arm”, n = 20 for “boston housing”;
n = 4 for “computer activity” and n = 4 for “abalone”). Parameters were first
optimized on a coarse 4×4 grid and later refined on a 7×7 fine grid around the
values for C and σ selected in the first step (65 tests per parameter selection).

Table 6 shows regression results. It shows the mean squared error and its
standard deviation for the various combinations of training and test set. Except
for the “robot arm” data set, the P-SVM method provides the best regression
results, and even in the robot arm case the P-SVM result is only insignificantly
worse than the result obtained with the other methods. Note, that the P-SVM
results also have lower variance of the prediction error. These results show that
the P-SVM is competitive to and in many cases better than state-of-the-art
regression methods.



SVR BSVR P-SVM
robot arm (10−3) 5.84 5.89 5.88
boston housing 10.27±7.21 12.34±9.20 9.42±4.96

computer activity 13.80±0.93 17.59±0.98 10.28±0.44
abalone 0.441±0.021 0.438±0.024 0.424±0.017

Table 6: Regression results for the UCI data sets. The table shows the mean
squared error ± standard deviation. Best results for each data set are shown in
bold. Note, that for robot arm only one data set was available and, therefore,
no standard deviation is given. For details see text.

3.3 Application to Feature Selection Problems

In this section we apply the P-SVM to feature selection problems of various
kinds, using the “correlation threshold” regularization scheme (Section 2.4.3).
This section consists of three parts. In the first part, we reanalyze the “protein”
and “world wide web” data sets of sections 3.1.4 and 3.1.3. However both regu-
larization schemes are now used simultaneously. In the second and third part we
specifically apply the P-SVM to data sets from DNA microarray experiments.
These kinds of data sets provide a challenge to classification, regression, and
feature selection techniques, because they are characterized by a small number
of samples a high level of measurement noise, and an extremely high number
of features (genes), from which only a small number of features are actually
indicative of the samples attributes. In Section 3.3.2 we construct a DNA mi-
croarray toy data set based on ideas from (Weston et al., 2000) in order to
asses the performance of the P-SVM in comparison to several statistical and
kernel-based methods. Artificial data allows us to interpret the success of the
different methods by comparing the selected features to the features which were
indeed indicative of the sample class. In Section 3.3.3, finally, three real-world
microarray data sets are considered, and the P-SVM feature selection method is
judged by how well a standard classification technique performs using the set of
selected features as the object’s description. Details with respect to the P-SVM
as a feature selection method and more information concerning data sets and
numerical experiments can be found in (Hochreiter and Obermayer, 2004a).

3.3.1 Protein and World Wide Web Data Sets

In this section we again apply the P-SVM to the “protein” and “world wide
web” data sets of sections 3.1.4 and 3.1.3. Using both regularization schemes
simultaneously leads to a trade-off between a small number of features (a small
number of measurements) and a good classification result. Reducing the num-
ber of features is beneficial if measurements are costly and a small increase in
prediction error can be tolerated.

Table 7 shows the results for the “protein” data sets for various values of
the regularization parameter ε. C was set to 100, because it gave good results



protein data
ε H-α H-β M GH

0.2 1.3 4.9 0.9 1.3
(203) (203) (203) (203)

1 2.6 5.3 1.3 4.4
(41 ) (110) (28) (41)

10 3.5 8.8 1.8 13.3
(10) (26) (5) (7)

20 3.5 8.4 4.0 13.3
(5) (12) (4) (5)

Table 7: Percentage of misclassification and the number of support features (in
brackets) for the “protein” data set for the P-SVM method. The maximum
number of features is 226. The value for ε is provided in the first column (C was
100). The four columns to the right show the results for the four classification
problems “one class against the rest” using 10–fold cross-validation.

for a wide range of ε values. We chose a minimal ε = 0.2 because it resulted in
a classifier, where all complex features were support vectors (for 10–fold cross
validation 203 is the training set size). Note, that C was smaller than in the
experiments in Section 3.1.3 because large ε values pushed the dual variables α
towards zero and, therefore, large C values have no influence. The table shows
that classification performance drops if less features are considered, but that 5
% of the features suffice to obtain a performance which lead only to about 5 %
misclassification compared to about 2 % at the optimum. Since every feature
value has to be determined via a sequence alignment, this saving in computation
time might is essential for large data bases like the Swiss-Prot data base (130,000
proteins), where supplying all pairwise relations is currently impossible.

Table 8 shows the corresponding results (10–fold cross validation) for the
P-SVM applied to the “world wide web” data set “Cornell” and for the classi-
fication problem “student pages vs. the rest”. Only ingoing links (matrix K�

of Section 3.1.4) were used. P-SVM hyperparameters C were optimized using
3–fold cross validation on the corresponding training sets for each of the 10–fold
cross validation runs. By increasing the regularization parameter ε the number
of web pages which have to be considered in order to classify a new page (the
number of support vectors) decreases from 135 to 8. At the same time the
percentage of pages which can no longer be classified because they receive no
ingoing link from one of the “support vector page” increases. The percentage
of misclassification, however, is reduces from 14 % for ε = 0.1 to 0.6 % for
ε = 2.0. With only 8 pages providing ingoing links more than 50 % of the
pages could be classified with only 0.6 % misclassification rate.



“Cornell” data set, student pages
ε % classified % incorrect # (%) SVs

0.1 84 14 135 (38.6)
0.2 81 12 115 (32.8)
0.3 79 9.7 99 (28.3)
0.4 75 6.9 72 (20.6)
0.5 73 5.5 58 (16.6)
0.6 71 4.8 48 (13.7)
0.7 66 3.9 38 (10.9)
0.8 65 3.1 34 (9.7)
0.9 64 2.7 32 (9.1)
1.0 61 1.4 27 (7.7)
1.1 59 1.0 21 (6.0)
1.4 56 1.0 12 (3.4)
1.6 55 1.0 10 (2.8)
2.0 51 0.6 8 (2.3)

Table 8: Feature selection and classification results of 10–fold cross validation
for the P-SVM method for “world wide web” data set “Cornell” and the classi-
fication problem “student pages against the rest”. The first column shows the
chosen ε for the P-SVM (C was optimized through a 3–fold cross validation on
the corresponding training set). Columns three to five show the percentage of
classified pages, the percentage of misclassifications and the number (percent-
age) of support vectors.

3.3.2 Weston Data Set

In this section we consider one toy data set similar to, but more difficult than
the data set used in the feature selection study of Weston et al. (2000). The
data set is generated in order to provide a model for the data recorded in typical
DNA microarray experiments.

Feature selection is performed in the context of a binary classification task,
where “column” objects fall into one of two classes. Every object is described by
its relationship with a large number of “row” objects or features (the “genes”).
For the following numerical experiments we choose 600 “column” objects, 300
objects from each class. 100 “column” objects were used for feature and model
selection and the remaining 500 “column” objects are the test set. Every “col-
umn” object was characterized by its relationship to 2000 “row” objects or
“complex features”. Four out of the first 20 features were indicators of the class
membership, all remaining 1980 features were not correlated with the class of
the “column” objects. The first 20 features were grouped into the five modes 1–4
(l = 0), 5–8 (l = 4), 9–12 (l = 8), 13–16 (l = 12), 17–20 (l = 16). For every “col-
umn object” xi (sample) a label yi ∈ {+1,−1} was chosen with probability 0.5
for +1 and probability 0.5 for −1, then one mode l ∈ {0, 4, 8, 12, 16} was chosen



no. of features 5 10 15 20 30
Fisher 0.31 0.28 0.26 0.25 0.26
RFE 0.33 0.32 0.32 0.31 0.32

R2W2 0.29 0.28 0.28 0.27 0.27
P-SVM 0.28 0.23 0.24 0.24 0.26

Table 9: Classification performance for the “Weston” data set described in
the text. The values are the fractions of misclassification averaged over 10
runs on different test sets for classifiers trained on the selected features. The
table shows the results using the top ranked 5, 10, 15, 20, and 30 features for
the methods: Fisher statistics (Kendall and Stuart, 1977), Recursive Feature
Elimination (RFE), R2W2, and the P-SVM.

with probability 0.2 for each value of l. Then the values of the four associated
features xi

l+τ , 1 ≤ τ ≤ 4, were chosen according to xi
l+τ ∼ yi ·N(2, 0.5 τ). The

remaining features from 1 to 20 (that is excluding the features xi
l+τ , 1 ≤ τ ≤ 4)

were chosen according to xi
j ∼ N(0, 1), 1 ≤ j ≤ 20, j �= l + τ . Finally, the

remaining 1980 features which were never indicative of class membership were
chosen according to xi

j ∼ N(0, 20) , 21 ≤ j ≤ 2000.
This data set has the typical structure of DNA microarray data: many fea-

tures (2000), few indicative features (20), and few training examples (100). The
data set was then analyzed by a two-stage procedure. In the first stage, four
feature selection methods were applied in order to separate potential indicative
features from the irrelevant ones. These methods were the P-SVM (Section
2.4.3), the Fisher statistics (Kendall and Stuart, 1977), Recursive Feature Elim-
ination (RFE) method of Guyon et al. (2002), and the R2W2 method (Weston
et al., 2000). All methods rank the importance of features, where ranking is
based on the support vector weights for the P-SVM method, the class discrimi-
nant value for Fisher statistics, on multiple runs for RFE (Guyon et al., 2002),
and on the feature scaling factors for R2W2 (Weston et al., 2000). In the sec-
ond step, we treated the columns of the data matrix as feature vectors and used
these feature vectors — which included only the top ranked 5, 10, 15, 20, and
30 features selected in step 1 — as input into a standard C-SVM. The hyper-
parameter C was selected through 5-fold cross-validation on the training set
from the set {0.01, 0.1, 1, 10, 100} for all methods (C = 0.1 was chosen in most
cases). The table shows that the P-SVM method performed best.

The success of feature selection depends on how many irrelevant features
are wrongly selected because of noise and whether all modes which influence
classification performance are represented sufficiently well. It is instructive to
compare the results of Table 9 with the prediction quality of a classifier trained
using the 20 relevant features (perfect selection), which leads to a fractional
error of 0.10, and using all 2000 features (no selection), which leads to a frac-
tional error of 0.38. Feature selection improves the classification result but does
not quite reach the performance of the “perfect selection” case because not all



P-SVM: 7 837 2 18 1248 5 6 12
20 14 1562 980 664 1110 11 1404

1822 668 525 9 80 1205 997 1228
1331 289 1605 621 1277 1987

R2W2: 837 2 980 7 20 11 1277 6
45 5 18 1822 12 621 398 664
289 14 1110 587 1605 1833 1331 1248
1752 525 1060 1443 820 997

Fisher: 980 7 5 837 6 18 1562 12
2 837 20 1248 8 1404 14 1110
11 1228 80 664 1987 1275 1331 668
263 640 621 1954 1774 1605

RFE: 837 7 1987 1277 2 753 20 1110
1774 997 219 1636 12 398 6 1472
536 820 18 314 974 525 14 877
621 1516 540 654 1331 664

Table 10: Numbers of the top 30 selected features for a typical single trial, listed
according to their rank. Indicative features, i.e. features from the set 1 to 20,
are printed in boldface.

relevant features were selected. R2W2 with the weighting coefficients instead of
selecting features has an error of 0.26, that means R2W2 in the non-selection
mode is better than in the selection mode.

Table 10 shows the numbers of the top 30 selected features for a typical
single trial, listed according to their rank. P-SVM found 11, R2W2 9, Fisher
statistics 10, and RFE 7 relevant features (numbers printed in boldface). All
other features are spurious and were selected because the high level of noise
and the small number of samples led to spurious correlations between values
of these features and the residual error. All five modes were detected by P-
SVM, R2W2, Fisher statistics, and RFE using the 10, 18, 15, and 23 most
highly ranked features. P-SVM detected indicator features corresponding to all
five modes using the smallest features set from all the methods tested. This
explains the better performance of classifiers based on the P-SVM feature set.

3.3.3 Microarray Data Sets

In this subsection we apply the P-SVM to real DNA microarray data. The data
was taken from Pomeroy et al. (2002), Shipp et al. (2002), and van’t Veer et al.
(2002). The P-SVM results are taken from (Hochreiter and Obermayer, 2004a)
where the details concerning the data sets and the gene selection procedure
based on the P-SVM can be found. The data sets were:

1. Brain tumor data set (Pomeroy et al., 2002). The data consists of 60 tissue
samples of human brain tumors which were characterized by the expres-



sion values of 7129 genes4. Samples were labeled according to whether
the particular tumor responded favorably or unfavorably to a particular
treatment.

2. Lymphoma data set (Shipp et al., 2002). The data set consists of 58
samples from human lymphoma tumors characterized by the expression
values of 7129 genes. The samples were labeled according to the treatment
outcome.

3. Breast cancer data set (van’t Veer et al., 2002). The data set consists of
78 tissue samples of human breast cancer characterized by the expression
values of 24481 genes. The tissue samples were labeled according to the
treatment outcome.

We used the gene selection protocol from (Hochreiter and Obermayer, 2004a)
which is based on multiple runs of the P-SVM to obtain stable results. Details
of the gene selection protocol can be found there. After feature selection a
linear ν-SVM (Schölkopf and Smola, 2002) with offset b = 0 was used for
selecting a classifier in order to predict the outcome of the medical treatment.
The hyperparameter ν from the set {0.2, 0.3, 0.4, 0.5} was optimized with cross
validation on the training set according to the gene selection protocol. The
methods chosen for the benchmark were:

selection method classification method
(1) expression value of the TrkC gene one gene classification
(2) SPLASH (Califano et al., 1999) likelihood ratio classifier (LRC)
(3) signal-to-noise-statistics (STN) K-nearest neighbor (KNN)
(4) signal-to-noise-statistics (STN) weighted voting (voting)
(5) Fisher statistics (Fisher) weighted voting (voting)
(6) R2W2 R2W2
(7) P-SVM ν-SVM

references
(1) Pomeroy et al., 2002
(2) Pomeroy et al., 2002
(3) Pomeroy et al., 2002; Shipp et al., 2002
(4) Pomeroy et al., 2002; Shipp et al., 2002
(5) van’t Veer et al., 2002
(6) Pomeroy et al., 2002; Shipp et al., 2002
(7) Hochreiter and Obermayer, 2004a

The results which are taken from the corresponding literature are summarized
in Table 11. The P-SVM method identified a smaller number of genes except for
the “lymphoma” data set. The final classification results show that the P-SVM

4Actually, the microarray chip contains 7129 probes which do not allow a one-to-one map-
ping to genes. Probes may indicate the expression of more than one gene, serve control
purposes, or one gene is indicated by more than one probe. For simplicity we associate one
probe with one gene and its expression value.



Brain Tumor

Feature Selection / # #
Classification F E

TrkC (one gene) 1 33
SPLASH / LRC – 25

R2W2 * 25
STN / voting – 23
STN / KNN 8 22

TrkC & SVM & KNN – 20
P-SVM / ν-SVM 45 7

Lymphoma

Feature Selection / # #
Classification F E
STN / KNN 8 28
STN / voting 13 24

R2W2 * 22
P-SVM / ν-SVM 18 21

Breast Cancer

Feature Selection / # # ROC
Classification F E area

Fisher / voting 70 26 0.88
P-SVM / ν-SVM 30 15 0.77

Table 11: Feature selection and classification results for the “brain tumor”,
“lymphoma”, and “breast cancer” data sets. The table shows the leave-one-out
error E (% misclassifications) and the number F of features. For breast cancer
“E” gives the minimal leave-one-out error over different threshold values (in
van’t Veer et al., 2002, only this error is given for comparison). Therefore, the
area under a receiver operating curve (ROC) is provided which was calculated
by varying the threshold b of the classifier (Hochreiter and Obermayer, 2004a).
For R2W2 “*” means that there is no “number of features” because R2W2
scales features rather than selecting them. The hyperparameter ν for P-SVM
/ ν-SVM was chosen through cross validation on the training set according to
the gene selection protocol (Hochreiter and Obermayer, 2004a). For further
explanation see text.

method clearly outperforms standard methods — for the “brain tumor” data
set the number of misclassifications is down by a factor of 3.

4 Summary

In this contribution we have described the Potential Support Vector Machine
(P-SVM) as new method for classification, regression, and feature selection.
The P-SVM selects models using the principle of structural risk minimization.
In contrast to standard SVM approaches, however, the P-SVM is based on a
new objective function and a new set of constraints which lead to an expansion
of the classification or regression function in terms of “support features”. The



combination of the new objective with the new constraints results in a quadratic
problem which is always well defined, suited for data in matrix form, and neither
requires square nor positive definite Gram matrices. Therefore, the method can
also be used with matrices which are measured rather than being constructed
using a vectorial representation and a kernel function. In feature selection mode
the P-SVM allows to select and rank the features through the support vector
weights of its sparse set of support vectors. The sparseness constraint avoids
the construction of sets for features, which are redundant. In a classification
or regression setting this is a clear advantage over statistical methods where
redundant features are often kept as long as they provide information about the
objects’ attributes. Because the dual formulation of the optimization problem
can be solved by a fast sequential minimal optimization technique, the new
P-SVM can be applied to data sets with many features. Compared to state-
of-the-art classification, regression and feature selection methods, the P-SVM
provided the best results.

Finally, we have suggested a new interpretation of data in matrix form. Ob-
jects in real world are no longer described by vectorial representations. Struc-
tures like dot products or norms are induced directly through measurements of
object pairs, i.e. through relations between objects. This opens up a new field
of research where relations between real world objects determine mathematical
structures.

Acknowledgments

We thank Merlyn Albery-Speyer, Christoph Büscher, Cyril Minoux, Raman
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A Proof of the Simplified Expression for b

In this appendix we prove the simplified expression for b, eq. (26):

b =
1
L

L∑
i=1

yi . (47)

Proof.
If for the optimal w follows that w� X 1 = 0 then inserting this equality into
eq. (17) gives eq. (48). To prove w� X 1 = 0, we need two properties of the
pseudo inverse (Moore-Penrose inverse) X∗ of the matrix X (Lütkepohl, 1996):

X = X X� (X�)∗ and (48)

X� = X∗ X X� . (49)

We assume that w is the solution of problem eqs. (25) and that w� X 1 �= 0.
A value ζ can be chosen such that

ζ > 1�X� (X�)∗ 1 = 1�X∗ X X� (X�)∗ 1 (50)

=
(
(X∗X)� 1

)� (
(X∗X)� 1

)
≥ 0 ,

where we applied eq. (50) and
(
X�)∗ = (X∗)�. From w� X 1 �= 0 follows

that X 1 �= 0 and, because of X 1 = X X� (X�)∗ 1 (cf. eq. (49)), also(
X�)∗ 1 �= 0. Now, we define a vector u �= w as

u := w − w� X 1
ζ

(
X�)∗ 1 (51)

and obtain

K� (
X� u − y

)
= K� (

X� w − y
) − w� X 1

ζ
K� X� (X�)∗ 1

= 0 − w� X 1
ζ

Z� X X� (X�)∗ 1 = − w� X 1
ζ

Z� X 1

= − w� X 1
ζ

K� 1 = 0 ,

where we used the fact that w fulfills the constraints, K� 1 = 0 (cf. eqs. (23)),



and eq. (49). We also obtain

‖X� u‖2 = ‖X� w − w� X 1
ζ

X� (X�)∗ 1‖2 (52)

= ‖X� w‖2 − w� X 1
ζ

w� X X� (X�)∗ 1 −
w� X 1

ζ
1� X∗ X XT w

+
(

w� X 1
ζ

)2

1� X∗ X XT
(
X�)∗ 1

= ‖X� w‖2 − 2

(
w� X 1

)2
ζ

+

(
w� X 1

)2
ζ

1� X� (
X�)∗ 1

ζ

≤ ‖X� w‖2 −
(
w� X 1

)2
ζ

< ‖X� w‖2 ,

where we applied both eq. (49) and eq. (50) as well as eq. (51). We constructed a
vector u which fulfills the constraints but leads to a smaller value of the objective
function than w, in contradiction to the assumption that w was the solution of
the optimization problem eqs. (25). Therefore, we showed that w� X 1 = 0
holds for the solution w of problem eqs. (25).
�

B The Sequential Minimal Optimization (SMO)
Technique for the P-SVM Method

The Sequential Minimal Optimization (SMO) algorithm was introduced by
(Platt, 1999) as a fast method for solving the dual optimization problem of
support vector machines. Here we describe a modified version of the SMO
which can be applied to the general P-SVM optimization problem given by the
primal

min
w,ξ+,ξ−

1
2
‖X� w‖2 + C1� (ξ+ + ξ−) (53)

s.t. K� (
X� w − y

)
+ ξ+ + ε ≥ 0

K� (
X� w − y

) − ξ− − ε ≤ 0

0 ≤ ξ+, ξ−

and the dual

min
α+,α−

1
2
(
α+ − α−)� K� K

(
α+ − α−) (54)

− y� K
(
α+ − α−) + ε 1� (α+ + α−)

s.t. 0 ≤ α+,α− ≤ C1 .



We will use the following notation:

Qi,j =
L∑

l=1

Kl,i Kl,j , Q = K�K , (55)

lj =
L∑

l=1

Kl,j yl , l = K�y ,

Fj := [Qα]j − lj ,

F+
j := Fj + ε,

F−
j := −Fj + ε,

where Fj is the error of the jth constraint.
The Karush-Kuhn-Tucker (KKT) conditions state that the product between

dual variables and the primal constraints is zero for the optimal solution. Using

K� (X�w − y
)

+ ξ+ + ε 1 = F + + ξ+ and (56)

K� (X�w − y
) − ξ− − ε 1 = − (

F− + ξ−) ,

we obtain for the KKT conditions

α+
j

(
F+

j + ξ+
j

)
= 0 , (57)

− α−
j

(
F−

j + ξ−j
)

= 0 ,

μ+
j ξ+

j = 0 , and

μ−
j ξ−j = 0 .

The α+ and α− are the Lagrange multipliers for the residual error constraints
(the mixed moments), and μ+ and μ− are the Lagrange multipliers for the slack
variable constraints (ξ+ ≥ 0 and ξ− ≥ 0). The derivative of the Lagrangian
with respect to ξ+ and ξ− is zero for the solutions of eqs. (55) and (54), i.e.:

C1 − α+ − μ+ = 0 and (58)
C1 − α− − μ− = 0 .

Note that for 0 < α+
j , it follows from the KKT conditions that[

K� (X�w − y
)]

j
+ ξ+

j + ε = [Qα]j − lj + ξ+
j + ε

= F+
j + ξ+

j = 0 . (59)

Because F+
j + F−

j = 2ε we have F−
j = 2ε + ξ+

j at for the solution.
That implies F−

j > 0, and, therefore, α−
j = 0. Analogously, we deduce

from 0 < α−
j that α+

j = 0. Hence, for the solutions of eqs. (55) and (54)
α+

j · α−
j = 0 is always fulfilled.

In the following, we first describe the SMO optimization (sections B.1 and
B.2) and then the SMO variable selection step (Section B.3). In Section B.1 we
treat the case that only the slack variables are used for regularization (ε = 0)



whereas Section B.2 considers the case when correlation threshold regularization
is used in addition. Section B.3 finally addresses how pairs of variables are
chosen for every SMO iteration.

B.1 Optimization Step for Regularization with Slack Vari-
ables

For the regularization scheme based on slack variables (classification and regres-
sion), the dual optimization problem is given by

min
α

1
2
α�Q α − l�α (60)

s.t. − C ≤ αj ≤ C .

We denote the objective function by O:

O :=
1
2
α�Q α − l�α . (61)

Standard SMO proceeds iteratively by first choosing two variables α1 and α2 and
then optimizing the Lagrangian for these two variables under the constraints.
Since the usual equality constraint is missing in eqs. (61), it would suffice to
optimize eqs. (61) with respect to one variable only in every iteration, i.e. it
would suffice to optimize

O (α1) =
1
2
α2

1 Q11 + α1

∑
j �=1

αj Q1j − α1 l1 + c (62)

= − 1
2
α2

1 Q11 + α1 F1

under constraint −C ≤ α1 ≤ C (c is a constant independent of α1). The
derivative of the objective with respect to αj = α1 must be zero

∂O (αj)
∂αj

= Fj = 0 , (63)

where we used ∂Fj

∂αj
= Qjj . Optimizing eqs. (61) for one variable at a time has

the advantage that there is no need for an additional heuristics. Unfortunately,
it turns out, that an SMO method based on eq. (63) is slow. This is particularly
serious if the two rows Qj· and Qi· are similar but lj and li differ. For ξj = 0
and ξi = 0, SMO attempts to fulfill the KKT conditions by setting Fj to zero,
which changes an already zero Fi and oscillations between zeroing Fj and Fi

may arise. Indeed we have observed strong oscillations of this kind in numerical
simulations of ill-conditioned problems.

In order to avoid abovementioned problem, we suggest to optimize the ob-
jective function with respect to two variables α1 and α2 simultaneously at every



iteration. We obtain

O (α1, α2) =
1
2
α2

1 Q11 +
1
2
α2

2 Q22 + α1 α2 Q12 (64)

+ α1

∑
j �=1,2

αj Q1j + α2

∑
j �=1,2

αj Q2j − α1 l1 − α2 l2

!= min

under the constraint that −C ≤ α1,2 ≤ C. We first calculate the uncon-
strained minimum of eq. (65). If the corresponding values α1 or α2 violate the
constraints, the values are corrected and set to the proper values (see below). If
we set the derivatives of O in eq. (65) with respect to both α1 and α2 to zero,
we obtain the linear equations

α1 Q11 + α2 Q12 +
∑

j �=1,2

αj Q1j − l1 = 0 , (65)

α1 Q21 + α2 Q22 +
∑

j �=1,2

αj Q2j − l2 = 0 .

The linear equations are solved by

αnew
1 =

− Q22

(∑
j �=1,2 αj Q1j − l1

)
+ Q12

(∑
j �=1,2 αj Q2j − l2

)
Q11 Q22 − Q2

12

,

(66)

αnew
2 =

Q12

(∑
j �=1,2 αj Q1j − l1

)
− Q22

(∑
j �=1,2 αj Q2j − l2

)
Q11 Q22 − Q2

12

,

which can be rewritten using
∑

j �=1,2 αj Q1j − l1 = F1 − αold
1 Q11 − αold

2 Q12

and
∑

j �=1,2 αj Q2j − l2 = F2 − αold
1 Q12 − αold

2 Q22 as

αnew
1 = αold

1 +
F2 Q12 − F1 Q11

Q11 Q22 − Q2
12

, (67)

αnew
2 = αold

2 +
F1 Q12 − F2 Q22

Q11 Q22 − Q2
12

.

Note that if K is normalized,
∑L

i=1 K2
ij = L (eqs. (23)), then Qjj = L.

The minimum (αnew
1 , αnew

2 ) has now to be checked against the “box con-
straints” −C ≤ α1,2 ≤ C and the values have to be properly corrected. The
location of the unconstrained optimum can appear in six non-trivially different
configurations relative to the position of the box. Fig. 9 shows these configura-
tions for the left and upper border of the constraining box. The unconstrained
minimum can be located in the box, −C ≤ α1,2 ≤ C (A), beside the box,
−C ≤ α2 ≤ C and α1 < −C (B), above the box, −C ≤ α1 ≤ C and
α2 > C (C), or in the upper left quadrant outside the box, α1 < −C and
α2 > C (D,E,F). The latter case must be divided into three different cases,
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Figure 9: Illustration of the six non-trivial configurations of the unconstrained
minimum of the objective function relative to the constraints on α1 and α2

indicated by the box. The minimum of the objective function is located in
the center of the ellipsoids which indicate lines of equal value of the objective
function. Similar configurations exist for the other three corners of the box.

because the objective function may take its minimal value at the upper left
corner (D), at the upper border (E), or at the left border (F).

For case (A) the minimum is given by (αnew
1 , αnew

2 ). For cases (B) and (C)
the minimum can be determined by setting αnew

1 = −C (B) or αnew
2 = C (C),

then updating the corresponding F1,2 with the new value, and then solving eq.
(64) for αj = α2 which gives αnew

2 (B) or αj = α1 which gives αnew
1 (C). In

order to distinguish between the cases (D), (E), and (F), the derivatives of the
objective function with respect to α1 and α2 are calculated for α1 = −C and
α2 = C (upper left box corner). A positive derivative with respect to α1 and
a negative derivative with respect to α2 indicate case (D), a negative derivative
with respect to α1 and a negative derivative with respect to α2 indicate case (E),
a positive derivative with respect to α1 and a positive derivative with respect to
α2 indicate case (F). For case (D) the optimal value is given by α1 = −C and
α2 = C while the cases (E) and (F) are treated similar to cases (B) or (C).



B.2 Optimization Step for Regularization with Slack Vari-
ables and Correlation Threshold

The dual P-SVM optimization problem can be rewritten as

min(
α+
α−

) 1
2

(
α+

α−

)�(
K�K − K�K

− K�K K�K

)(
α+

α−

)
(68)

− y� (K − K)
(

α+

α−

)
+ ε

(
1
1

)�(
α+

α−

)

s.t. 0 ≤
(

α+

α−

)
≤ C

(
1
1

)
.

(
a
b

)
denotes a column vector combining the elements of a and b. If we set

α̃ :=
(

α+

α−

)
, (69)

Q̃ :=
(

K�K − K�K
− K�K K�K

)
, and

l̃ = y� (K − K) − ε

(
1
1

)�
,

then we obtain the optimization setting from Section B.1, eqs. (61), with the
lower bound equal to 0 instead of −C. This optimization problem can be solved
by the SMO method of Section B.1, however, the dimensionality of the param-
eter vector has doubled.

Fortunately, above optimization problem can be formulated in compact form
if we exploit the facts that for i ≤ P we obtain F̃i = F+

j , F̃(P+i) = F−
j ,

and Q̃ij = − Q̃(P+i)j for P complex features. From the facts presented at the
beginning of Appendix B we know: α̃i · α̃(P+i) = 0 and F̃i = −F̃(P+i) + 2 ε,
which leads to an efficient implementation of the SMO optimization step. We
find that α̃i changes only if α̃(P+i) = 0 and vice versa, and that both F̃i

and F̃(P+i) can be stored in the same variable. That means we must consider
either α̃i or α̃(P+i) during optimization. Only for α̃i = α̃(P+i) = 0 both
variables must be checked for updating which also is very efficient. To perform
this check early in the optimization procedure and, therefore, to determine early
if α̃i > 0 or α̃(P+i) > 0, initialization of the SMO procedure with αj = 0
is to be preferred (besides the positive effect that this initialization starts with
the most sparse solution).

In conclusion, the implementation of the SMO technique for the correlation
threshold regularization scheme is almost as efficient as for the slack variable
regularization scheme treated in Section B.1. Only if α̃i = α̃(P+i) = 0,
computational overhead is required.



B.3 Choice of Variables

Now we turn to the problem how to select the pair of variables for the next SMO
iteration. The first variable, α1, is chosen for an equation, where the Karush-
Kuhn-Tucker (KKT) conditions are not fulfilled. If no such variable exists then
the optimum has been found.

From the consideration before Section B.1 it follows that α+
j = C implies

ξ+
j ≥ 0. This, together with the considerations at the beginning of Section B,

let us deduce that the KKT conditions are met if

α+
j = 0 =⇒ F+

j ≥ 0
0 < α+

j < C =⇒ F+
j = 0

α+
j = C =⇒ F+

j ≤ 0
(70)

for α+
j and

α−
j = 0 =⇒ F−

j ≥ 0
0 < α−

j < C =⇒ F−
j = 0

α−
j = C =⇒ F−

j ≤ 0
(71)

for α−
j . In order to find a proper α1 we must check whether conditions eqs. (71)

and eqs. (72) are fulfilled for the dual variables α±
j , for which 0 < α±

j < C.
If this is not the case, on-bound variables are checked (α±

j = 0 or α±
j = C).

The evaluation of eqs. (71) and eqs. (72) does not increase the computational
costs because the Fj are updated according to the new α1 and α2 at each SMO
iteration.

After the choice of α1 we check all variables (except α1) and compute the
optimal update according to Section B.1. The second variable, α2, is chosen
such that

∣∣αnew
1,2 − αold

1,2

∣∣ is maximal for α1 or α2. In contrast to Platt’s SMO
variant we do not use an approximation for the update values. It turned out
that for matrices with small eigenvalues this gives a considerable speed up and
the loss of speed for computing the exact update values is small.

For leave-one-out cross validation successive P-SVM optimization problems
are similar to each other because only one training data point is exchanged.
Therefore, support vectors of previous optimizations can be marked, i.e. “primed”,
and checked first in the new optimization problem for choosing α1 and α2. The
speed up with priming is due to the fact that large updates are done earlier and
following updates are more precise. We recommend to initialize the SMO with
α = 0, because then the matrix Q must not be computed completely in order
to compute the Fj , but has only to be evaluated at positions where αj �= 0.



C Measurements, Kernels, and Dot Products

In this section we address the question under what conditions a “measurement
kernel” which gives rise to a measured matrix K can be interpreted as a dot
product between the “row” and “column” objects of a “matrix data” set. Section
C.1 treats the case, where “row” and “column” objects are from different sets.
We will show that under mild conditions the kernel corresponds to a dot product
between feature vectors which are assigned to the objects and which live in a
Hilbert space, where the dot product always exists for finite and almost always
exists for infinite many “row” objects. The classification or regression function,
which is chosen by the P-SVM, exists for all “column” objects. Section C.2
treats the case of pairwise data. We obtain results similar to Section C.1 but
we will construct a classification or regression function in a Minkowski space.

C.1 Matrix Data

Let us assume that “column” objects x (“samples”) and “row objects” z (“com-
plex features”) are from sets X and Z, which can both be completed by a
σ-algebra and a measure μ to a measurable spaces. We construct Hilbert spaces
on these sets, but need some definitions first.

Let (U , B, μ) be a measurable space with σ-algebra B and a σ-additive mea-
sure μ on the set U . We consider functions f : U → R on the set U . A function
f is called μ-measurable on (U , B) if f−1 ([a, b]) ∈ B for all a, b ∈ R, and
μ-integrable if

∫
U f dμ < ∞. We define

‖f‖L2
μ

:=
(∫

U
f2 dμ

) 1
2

(72)

and the set

L2
μ(U) :=

{
f : U → R; f is μ-measurable and ‖f‖L2

μ
< ∞

}
. (73)

L2
μ(U) is a Banach space with norm ‖ · ‖L2

μ
. If we define the dot product

〈f, g〉L2
μ(U) :=

∫
U

f g dμ (74)

then the Banach space L2
μ(U) is a Hilbert space with a dot product 〈·, ·〉L2

μ(U).
For simplicity, we denote this Hilbert space by L2(U). L2(U1,U2) is the Hilbert
space of functions k with

∫
U1

∫
U2

k2 (u1,u2) dμ (u2) dμ (u1) < ∞ using
the product measure of μ (U1 × U2) = μ (U1) μ (U2). Let �2 be the Hilbert
space of the set of infinite vectors a = (a1, a2, . . . ) where

∑
i a2

i converges
which possesses the dot product 〈a, b〉�2 =

∑
i aibi and the norm ‖a‖�2 =(∑

i a2
i

) 1
2 . With these definitions we see that H1 := L2(Z), H2 := L2(X ),

and H3 := L2(X ,Z) are Hilbert spaces of L2-functions with domains X , Z,
and X × Z, respectively. The dot product in Hi is denoted by 〈·, ·〉Hi

.



Let us now assume that k ∈ H3. k induces a Hilbert-Schmidt operator Tk:

f(x) = (Tkα)(x) =
∫
Z

k(x, z) α(z) dμ(z) , (75)

which maps α ∈ H1 (a parameterization) to f ∈ H2 (a classifier).
If we set μ(z) =

∑P
j=1 δ

(
zj
)
, we recover the P-SVM classification function

(without b), eq. (33), with αj = α(zj)

f(u) =
P∑

j=1

αj k
(
u, zj

)
=

P∑
j=1

αj K(u)j . (76)

Here δ
(
zj
)

is the Dirac delta function at location zj . Note, that sums of Dirac
functions define a measure (see Werner, 2000, page 464, example (c)).

We will now prove that a kernel k is a dot product for almost all pairs of
(x, z) in some space if

(1) “column” objects (“samples”) x are from a set X which can be completed
to a measurable space,

(2) “row” objects (“complex features”) z are from a set Z which can be com-
pleted to a measurable space, and

(3) the kernel k is from L2(X ,Z).

If
∫
Z(k(x, z))2 dμ (z) ≤ K2 then the space, where k evaluates a dot product,

can be identified as �2. Further, the regression or classification function f is
continuous and the expansion in orthonormal functions converges absolutely and
uniformly. The kernel k can be interpreted as mapping two objects, a “column”
object x and “row” object z into a common space. In contrast to Mercer kernels
the kernel k defines two mappings into the feature or measurement space. Fig.
10 depicts the situation: “column” objects (circles) and “row” objects (squares)
are both mapped into a common space. In the measurement space the “column”
objects are used to describe the normal vector of the separating hyperplane.

The next theorem provides assumptions for a kernel computing a dot product
between the object’s feature vectors.

Theorem 1 (Singular Value Expansion)
Let α be from H1 and let k be a kernel from H3 which defines a Hilbert-Schmidt
operator Tk : H1 → H2

(Tkα) (x) = f(x) =
∫
Z

k(x, z) α(z) dz . (77)

Then ‖f‖2
H2

= 〈T ∗
k Tkα, α〉H1 , where T ∗

k is the adjoint operator of Tk, and there
exists an expansion

k(x, z) =
∑

n

sn en(z) gn(x) (78)

which converges in the L2-sense. The sn ≥ 0 are the singular values of Tk, and
en ∈ H1, gn ∈ H2 are the corresponding orthonormal functions.
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Figure 10: Interpretation of the measurement kernel applied to a set of “col-
umn” objects (circles) which should be classified and a set of “row” objects
(squares) used to describe the “column” objects. Evaluating the kernel k(x, z)
is equivalent to first mapping both objects x and z into a common vector space
(right) and then performing a scalar product (cf. eq. (79)). Dark and light cir-
cles indicate class membership, and the classification boundary (black line) is
described by the “support row objects”.

Proof.
From f = Tkα we obtain

‖f‖2
H2

= 〈Tkα, Tkα〉H2 = 〈T ∗
k Tkα, α〉H1 . (79)

The singular value expansion of Tk is

Tkα =
∑

n

sn〈α, en〉H1 gn (80)

(see Werner, 2000, Theorem VI.3.6). The values sn are the singular values
for the orthonormal systems {en} on H1 and {gn} on H2. We define rnm :=
〈Tken, gm〉H2 , where the sum∑

m

r2
nm =

∑
m

(〈Tken, gm〉H2)
2 ≤ ‖Tken‖2

H2
< ∞ (81)

converges because of Bessel’s inequality (the ≤-sign). Next we complete the or-
thonormal system (ONS) {en} to an orthonormal basis (ONB) {ẽl} by adding
an ONB of the kernel ker (Tk) of the operator Tk to the ONS {en}. The func-
tion α ∈ H1 possesses an unique representation through this basis: α =∑

l〈α, ẽl〉H1 ẽl. We obtain

Tkα =
∑

l

〈α, ẽl〉H1 Tkẽl . (82)



Because Tkẽl = 0 for all ẽl ∈ ker (Tk), the image Tkα can be expressed
through the ONS {en}:

Tkα =
∑

n

〈α, en〉H1 Tken (83)

=
∑

n

〈α, en〉H1

(∑
m

〈Tken, gm〉H2 gm

)
=
∑
n,m

rnm〈α, en〉H1 gm .

Here we used the fact that {gm} is an ONB of the range of Tk and, therefore,
Tken =

∑
m〈Tken, gm〉H2 gm.

Because the set of functions {en(z) gm(x)} are an ONS in H3 (which can be
completed to an ONB) and

∑
n,m r2

nm < ∞ (cf. eq. (82)), the kernel

k̃(z, x) :=
∑
n,m

rnm en(z) gm(x) (84)

is from H3. We observe that the induced Hilbert-Schmidt operator Tk̃ is equal
to Tk which can be seen with eq. (84):(

Tk̃α
)
(x) =

∑
n,m

rnm〈α, en〉H1 gm(x) = (Tkα)(x) . (85)

It follows that the kernel k and kernel k̃ are equal except for a set with zero
measure, i.e. k =μ k̃. We obtain 〈Tkel, gt〉H1 = δlt sl from the singular value
decomposition eq. (81) and 〈Tkel, gt〉H1 = rlt from eq. (86), and, therefore,
rlt = δltsl. Inserting rnm = δnmsn into eq. (85) proves the theorem.
�
As a consequence of this theorem we can define a mapping ω of “row” objects
z and a mapping φ “column” objects x into a common feature space where k
is a dot product.

φ(x) := (s1g1(x), s2g2(x), . . . ) , (86)
ω (z) := (e1(z), e2(z), . . . ) ,

〈φ(x),ω (z)〉 =
∑

n

sn en(z) gn(x) = k(z, x) .

For the classification case these mappings are depicted in Fig. 10. In this com-
mon space a hyperplane which separates the “column” objects with respect to
the class label should be constructed, and it is solely described by the “row”
objects or, equivalently, through directions in the common space. From eq. (84)
we obtain for the classification or regression function

f(x) =
∑

n

sn 〈α, en〉H1 gn(x) . (87)

The classification or regression function is well defined because sets of zero
measure vanish through integration in eq. (76), which is confirmed through
expansion eq. (88), where the zero measure is “absorbed” in the terms 〈α, en〉H1 .



However, the kernel expansion and the dot product expansion is not en-
sured to converge absolutely and uniformly in x which is desired to exchange
summation with integration or differentiation. Therefore, the expansion of the
classification or regression function f(x) into the ONS gm (cf. eq. (88)) should
be ensured to converge absolutely and uniformly in x to justify the analysis in
eq. (8) and eq. (9). More importantly, absolute and uniform convergence of the
sum eq. (88) implies that f(x) is continuous as a function of x. This can be
seen because en are eigenfunctions of the compact, positive, self-adjoint oper-
ator (T ∗

k Tk)
1
2 and gn are isometric images of en (see Werner, 2000, Theorem

VI.3.6 and Text before Theorem VI.4.2). Hence, the orthonormal functions gn

are continuous.
To obtain absolute and uniform convergence of the sum for f(x), we must

enforce ‖k(x, ·)‖2
H1

≤ K2 as can be seen in the following corollary.

Corollary 1 (Linear Classification in �2)
Let the assumptions of Theorem 1 hold and let

∫
Z(k(x, z))2 dz ≤ K2 for all

x ∈ X .
We define w := (〈α, e1〉H1 , 〈α, e2〉H1 , . . . ), and φ(x) := (s1g1(x), s2g2(x), . . . ).
Then w,φ(x) ∈ �2, where ‖w‖2

�2 ≤ ‖α‖2
H1

and ‖φ(x)‖2
�2 ≤ K2, and the

following sum convergences absolutely and uniformly:

f(x) = 〈w,φ(x)〉�2 =
∑

n

sn 〈α, en〉H1 gn(x) . (88)

Proof.
First we show that φ(x) ∈ �2:

‖φ(x)‖2
�2 =

∑
n

(sn gn(x))2 =
∑

n

((Tken)(x))2 (89)

=
∑

n

(〈k(x, .), en〉H1)
2 ≤ ‖k(x, .)‖2

H1

≤ sup
x ∈ X

{
∫
Z

(k(x, z))2 dz} ≤ K2 ,

where we used Bessel’s inequality for the first ”≤”, we used the supremum over
x ∈ X for the second ”≤” (the supremum exists because {∫ (k(x, z))2 dz} is a
bounded subset of R), and we used the assumption of the corollary for the last
”≤”. To prove ‖w‖2

�2 ≤ ‖α‖2
H1

we use again Bessel’s inequality:

‖w‖2
�2 =

∑
n

(〈α, en〉H1)
2 ≤ ‖α‖2

H1
. (90)

Finally, we prove that the sum

f(x) = 〈w,φ(x)〉�2 =
∑

n

sn 〈α, en〉H1 gn(x) (91)

converges absolutely and uniformly. The fact that the sum convergences in the
L2 sense follows directly from the singular value expansion of Theorem 1. We



now chose an m ∈ N with
∞∑

n=m

(〈α, en〉H1)
2 ≤

( ε

K

)2

(92)

for ε > 0 (because of eq. (91) such an m exists), and we apply the Cauchy-
Schwarz inequality

∞∑
n=m

|sn 〈α, en〉H1 gn(x)|

≤
( ∞∑

n=m

(sn gn(x))2
) 1

2
( ∞∑

n=m

(〈α, en〉H1)
2

) 1
2

≤ K
ε

K
= ε ,

where we used inequalities eqs. (90) and (93). Because m is independent of x,
the convergence is absolutely and uniformly, too.
�
Eq. (76) or, equivalently, (89) is a linear classification or regression function
in �2. We find that the expansion of the classifier f converges absolutely and
uniformly and, therefore, that f is continuous.

In the following we show the connection to the P-SVM, where we use μ(x) =∑L
i=1 δ

(
xi
)
, μ(z) =

∑P
i=j δ

(
zj
)
, and αj := α

(
zj
)
. We obtain

f(x) =
P∑

j=1

αj k
(
x, zj

)
=

〈
φ (x) ,

P∑
j=1

αj ω
(
zj
)〉

,

X =
(
φ
(
x1
)
,φ
(
x2
)
, . . . ,φ

(
xL
))

,

Z =
(
ω
(
z1
)
,ω
(
z2
)
, . . . ,ω

(
zP
))

,

w =
P∑

j=1

αi ω
(
zj
)

(expansion into support vectors),

Kij =
〈
φ
(
xi
)
,ω
(
zj
)〉

=
∑

n

sn en

(
zj
)

gn

(
xi
)

= k
(
xi, zj

)
,

K = X� Z , and
‖f‖2

H2
= α�K�K α = ‖X� w‖2

2 (the objective function). (93)

At the end of Section 2.5 we mentioned that w is not unique with respect to
the subspace which is mapped to zero by the matrix X. Here we obtain an
analog result: w is not unique with respect to the subspace which is mapped
to the zero function by Tk, that is components of α which are in the subspace
which is mapped to the zero function by Tk have no impact on w. Interestingly,
we recovered the new objective function eq. (6) as the L2-norm ‖f‖2

H2
on the

classification function. This, again, motivates the use of the new objective
function as a capacity measure.



We found that the primal problem of the P-SVM (e.g. eq. (27)) corresponds
to the formulation in H2, while the dual (e.g. eq. (32)) corresponds to the
formulation in H1. Primal and dual P-SVM formulations can be transferred
into each other via the property 〈Tkα, Tkα〉H2 = 〈T ∗

k Tkα, α〉H1 .
The objective function eq. (6) minimizes the capacity of the classifier in H2,

that is the range of Tk. However, regularization schemes restrict the domain of
Tk via a maximum norm on the function α: maxx |α(x)| ≤ C (classification and
regression using slack variables) or minimize the domain capacity by pushing
the functions towards the zero function via minimizing ‖α‖1 =

∫
Z |α(z)| dμ(z)

(feature selection using the correlation threshold). Note that δ(zj) has measure
larger than zero and, therefore, zj never belongs to a zero measure set.

C.2 Kernels for Pairwise Data

Pairwise data is a special case of matrix data, for which “row” and “column”
objects are from the same set. Therefore, only one mapping φ into the feature
space exists and an eigenvalue decomposition has to be performed instead of
the expansion into singular values from the previous section. The consequence,
however, is that that eigenvalues may become negative (see the following theo-
rem).

Theorem 2 (Eigenvalue Expansion)
Let definitions and assumptions be as in Theorem 1. Let H1 = H2 = H and let
k be symmetric. Then there exists an expansion k(x, z) =

∑
n νn en(z) en(x)

which converges in the L2-sense. The νn are the eigenvalues of Tk with the
corresponding orthonormal eigenfunctions en.

Proof.
This theorem is Theorem 87.7 in (Heuser, 1992).
�
If k is both continuous and positive definite and if H is compact, then the
expansion for k in Theorem 2 converges uniformly and absolutely for all x
(Mercer). As in previous section, we want for more general non-Mercer k the
sum, which expands the classifier, to converge absolutely and uniformly (see
following corollary).

Corollary 2 (Minkowski Space Classification)
Let the assumptions of Theorem 2 and

∫
X (k(x, z))2 dz ≤ K2, for all x, hold

true. We define w := (
√|ν1|〈α, e1〉H ,

√|ν2|〈α, e2〉H , . . . ),
φ(x) := (

√|ν1|e1(x),
√|ν2|e2(x), . . . ), and denote by �2S the space �2 with a

given signature S = (sign(ν1), sign(ν2), . . . ). Then the following holds true:
(a) w ∈ �2S and ‖w‖2

�2S
= 〈Tkα, α〉H ,

(b) If φ(x) ∈ �2S then ‖φ(x)‖2
�2S

= k(x, x) in the L2 sense, and
(c) the following sum convergences absolutely and uniformly:

f(x) = 〈w,φ(x)〉�2S =
∑

n

νn 〈α, en〉H en(x) . (94)



Proof.
The fact that the sum which expands f(x) convergences absolutely and uni-
formly is stated as Theorem (87.8) in (Heuser, 1992).
Next we want prove that w ∈ �2S . The uniform convergence of f(x) allows for

∞ > 〈α, Tkα〉H = 〈α, f〉H =

〈
α,
∑

n

νn 〈α, en〉H en

〉
H

(95)

=
∑

n

νn 〈α, en〉2H = ‖w‖2
�2S

.

Note, that the last equality is the definition of ‖ · ‖2
�2S

(not ‖ · ‖2
H).

If φ(x) ∈ �2S then

‖φ(x)‖2
�2S

=
∑

n

νn en(x)2 = k(x, x) (96)

holds in the L2 sense because of the eigenvalue expansion.
�
Eq. (95) is a linear classification or regression function in the Minkowski space
�2S . In comparison to Corollary 1 we have ‖w‖2

�2S
= αT K α and we must assume

that the expansion for ‖φ(x)‖2
�2S

does converge. As consequence only almost
all classification tasks can be formulated in �2S . However, the classification or
regression function still converges always absolutely and uniformly.
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