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Abstract

We describe a new technique for the analysis of data, where two sets
of objects (“row” and “column” objects) are represented by a matrix of
numerical values which describe their mutual relationships. The new tech-
nique, called “Potential Support Vector Machine” (P-SVM), is a large-
margin based method for the construction of classifiers and regression
functions for the “column” objects. Contrary to standard support vec-
tor machine approaches, the P-SVM minimizes a scale-invariant capacity
measure under a new set of constraints. As a result, the P-SVM leads
to a usually sparse expansion of the classification or regression functions
in terms of the “row” rather than the “column” objects and can handle
data matrices which are neither positive definite nor square. We then
describe two complementary regularization schemes. The first scheme
improves generalization performance for the classification and regression
tasks, the second scheme leads to the selection of a small, informative set
of “row” objects and can be applied to feature selection. Benchmarks are
performed with toy as well as with several real world data sets, including
data from the UCI repository, protein classification, web-page classifica-
tion, and DNA microarray data, and cover classification, regression, and
feature selection tasks.

1 Introduction

Learning from examples in order to predict is one of the standard tasks in
machine learning. Many techniques have been developed to solve what statisti-
cians call classification and regression problems, but by far most of them were
specifically designed for vectorial data. Vectorial data, where data objects are
described by vectors of numbers and where these data vectors are treated as
elements of a vector space, are very convenient, because of the structure im-
posed by the typically chosen Euclidean metric. However, for many datasets a
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vector-based description is inconvenient or simply wrong, and other represen-
tations like matrices, trees, or graphs, which take relationships between objects
into account, are often more appropriate.
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Figure 1: (a) Dyadic data: Column objects {A, B, C, D} and row objects
{α, β, . . . , γ} are represented by a matrix of numerical values which describe
their natural relationships. (b) Pairwise data: Special case where the set of row
and column objects coincide.

In the following we will study representations of data objects which are based
on matrices. The description consists of two sets of objects: “column” objects
and “row” objects (Fig. 1a). “Column” objects are the objects to be described,
while “row” objects are the objects which serve for their description. Then
the whole dataset can be represented using a rectangular matrix whose entries
denote the relationships between the corresponding “row” and the “column”
objects. In the following we will call representations of this form dyadic data.
If “row” and “column” objects are from the same set (Fig. 1b), the representa-
tion is usually called pairwise data, and the entries of the matrix can often be
interpreted as the degree of similarity (or dissimilarity) between pairs of objects.

Dyadic descriptions are more powerful than vector-based descriptions, but
vectorial data can always be brought into dyadic form, when required. This
is often done for kernel-based classifiers or regression functions (Schölkopf and
Smola, 2002; Vapnik, 1998), where a Gram matrix of mutual similarities (Fig.
1b) is calculated before the predictor is learned. A similar procedure can also
be used in the case where the “row” and “column” objects are from different
sets (Fig. 1a). If both of them are described by feature vectors, a matrix can
be calculated by applying a kernel function to pairs of feature vectors, one
vector describing a “row” and the other vector describing a “column” object.
One example for this is the drug-gene matrix of Scherf et al. (2000), which was
constructed as the product of a measured drug-sample and a measured sample-
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gene matrix and where the kernel function was a scalar product. In many cases,
however, dyadic descriptions emerge, because the matrix entries are measured
directly.

Pairwise data representation can be found in many datasets which are gen-
erated by measuring similarities. Examples include similarities of protein se-
quences (Lipman and Pearson, 1985), biophysically defined similarities between
proteins (Sigrist et al., 2002; Falquet et al., 2002), gene similarity measure based
on their chromosome location (Cremer et al., 1993; Lu et al., 1994), or co-
expression data for genes (Heyer et al., 1999), co-citation matrices for text doc-
uments (White and McCain, 1989; Bayer et al., 1990; Ahlgren et al., 2003),
or binary connectivity matrices which summarize the hyperlinks between web-
pages (Kleinberg, 1999). In general, these measured matrices are symmetric but
may not be positive definite, and even if they are for the training set, they may
not remain positive definite, if new examples are included. Examples for gen-
uine dyadic data are DNA microarray data (Southern, 1988; Lysov et al., 1988;
Drmanac et al., 1989; Bains and Smith, 1988), where the “column” objects are
tissue or cell-line samples, the “row” objects are genes, and every sample-gene
pair is related by the expression level of this particular gene in this particular
sample. Other examples are web-documents, where the “column” objects are
web-pages which are described by whether other web-pages, the “row” objects,
contain a hyperlink reference. Every pair is then characterized by the number of
directed hyperlinks from row to column, which gives rise to a rectangular matrix
of ordinal values1. Other examples include (i) images (“column” objects), which
can be described by the scalar values (matrix elements) obtained from average
linear or non-linear filter responses (“row” objects) to an image, (ii) time-series,
which can be described by scalar values which may be the components of their
short term power spectra, wavelet coefficients, or components of the autocorre-
lation functions, (iii) customers of a company can be described by their product
preferences or by their transaction data, (iv) documents in a database can be
described by word-frequencies, or (v) molecules can be described by transferable
atom equivalent (TAE) descriptors (Mazza et al., 2001), for the purpose of drug
design. Traditionally, “row” objects have been called “features” and “column”
vectors of the data matrix have mostly been treated as “feature vectors” which
live in an Euclidean vector space. Difficulties, however, arise when the features
are heterogeneous, and apples and oranges must be compared. What theoret-
ical arguments would, for example, justify, to treat the values of a set of TAE
descriptors as coordinates of a vector in Euclidean space?

Classification and regression problems on dyadic data, have been mostly ad-
dressed within the feature vector framework (Graepel et al., 1999; Mangasarian,
1998), i.e. the “feature map” method (Schölkopf and Smola, 2002). An “non-
vectorial” approach to pairwise data is to interpret the data matrix as a Gram
matrix and to apply support vector machines (SVM) for classification and re-
gression if the data matrix is positive semidefinite (Graepel et al., 1999). For

1Note, that in previous paragraph for pairwise data examples the linking matrix was sym-
metric because links were considered bidirectional. Here the links are undirectional and the
data is no longer pairwise because it is not symmetric.
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indefinite (but symmetric) matrices two other non-vectorial approaches have
been suggested (Graepel et al., 1999). In the first approach, the data matrix is
made positive definite by projecting into the subspace spanned by the eigenvec-
tors with positive eigenvalues. This is an approximation and one would expect
it to give good results only, if the absolute values of the negative eigenvalues are
small compared to the dominant positive ones. In the other approach directions
of negative eigenvalues are processed by just flipping the sign of these eigen-
values. All three approaches, however, lead to positive semidefinite matrices
for training set relations, but do not ensure that positive semidefiniteness still
holds, if a new test object must be included. A fourth embedding approach
was suggested by Herbrich et al. (1998) for antisymmetric matrices, but this
was specifically designed for data sets, where the matrix entries denote prefer-
ence relations between objects. So far, no general method exists for learning
classifiers or regression functions from data represented dyadicly.

Here we argue that — in order to avoid abovementioned shortcomings — it
is beneficial to consider “column” and “row” objects on equal footing. With this
we mean, that the construction of the data matrix or the actual measurement
of the matrix entries can be described by a kernel function, which takes a “row”
object, applies it to a “column” object, and outputs a number. We show that,
under mild assumptions, pairwise measurements are sufficient to create a vec-
tor space endowed with a dot product into which the “row” and the “column”
objects are mapped (cf. Section 2.5 and Appendix A). Using this mathematical
argument as a justification, we then construct the classification or regression
function in analogy to the large margin based methods for learning perceptrons
for vectorial data in this vector space. Using an improved measure for model
complexity and a new set of constraints which ensure a good performance on the
training data we arrive at a generally applicable method for learning predictors
for dyadic data. The new method is called the potential support vector machine
(P-SVM) and can handle rectangular matrices as well as pairwise data whose
matrices are not necessarily positive semidefinite. But even when the P-SVM
is applied to regular Gram matrices, it shows very good results when compared
with standard methods. Due to the choice of constraints, the final predictor is
expanded into a usually sparse set of descriptive “row” objects, which is dif-
ferent from the standard expansion in terms of “column” objects. This opens
up another important application domain: a sparse expansion is equivalent to
feature selection (see Guyon and Elisseeff, 2003; Hochreiter and Obermayer,
2004b; Kohavi and John, 1997; Blum and Langley, 1997 for reviews on feature
selection). An efficient implementation of the P-SVM requires a modified se-
quential minimal optimization procedure for learning. This method is described
in (Hochreiter and Obermayer, 2004a).
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2 The Potential Support Vector Machine

2.1 The Standard SVM Approach

Consider a set
{
xi | 1 ≤ i ≤ L

} ⊂ X of objects which are described by

feature vectors xi
φ ∈ R

N and which form a training set Xφ =
{
x1

φ, . . . , xL
φ

}
.

The index “φ” is introduced, because we will later assume that the vectors
xi

φ are images in R
N of a map φ which is induced either by a kernel or by a

measurement function (and utilizing a kernel trick)2. Assume for the moment
a simple binary classification problem, where class membership is indicated by
labels yi ∈ {+1,−1}, and a set {sign (f)} of linear classifiers with

sign (f) = {(xφ, y) | y = sign (f(xφ)) = sign (〈w, xφ〉 + b)} , (1)

which are parameterized by the weight vector w and the offset b (〈·, ·〉 denotes
the dot product). The classification boundaries are given by the hyperplanes
f(xφ) = 0, and the margin γ can be calculated according to

γ =
minxφ∈Xφ

|〈w, xφ〉 + b|
‖w‖2

. (2)

If the hyperplane is given in its “canonical form” (Vapnik, 1995), then we obtain
γ = ‖w‖−1

2 .
Standard SVM-techniques select the “canonical” hyperplane with the largest

margin under the constraint of correct classification on the training set:

min
w,b

1
2
‖w‖2 (3)

s.t. yi

(〈
w, xi

φ

〉
+ b

) ≥ 1 .

If the training data are not linearly separable, a large margin is traded against
a small training error using a suitable regularization scheme.

The maximum margin objective is motivated by bounds on the generalization
error using the Vapnik-Chervonenkis (VC) dimension h as capacity measure
(Vapnik, 1998). For the set of all linear classifiers defined on Xφ, for which
γ ≥ γmin holds, one obtains

h ≤ min
{[

R2

γ2
min

]
, N

}
+ 1 (4)

(see Vapnik, 1998; Schölkopf and Smola, 2002). [·] denotes the integer part,
and R is the radius of the smallest sphere in data space, which contains all the
training data. Capacity measures and bounds derived using the fat shattering
dimension (Shawe-Taylor et al., 1996, 1998; Schölkopf and Smola, 2002), and
bounds on the expected generalization error (cf. Vapnik, 1998; Schölkopf and
Smola, 2002) depend on R

γmin
in a similar manner. In (Schölkopf et al., 1999)

instead of a sphere, an ellipsoid is fitted to the data which more accurately
bounds the generalization error.

2The following considerations also hold for N → ∞, if a Hilbert space like �2 is considered.
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2.2 The Advantage of Scale Invariance

Both the selection of a classifier using the maximum margin principle and the
values obtained for the generalization error bounds described in the last section
suffer from the problem that they are not invariant under linear transforma-
tions. This problem is illustrated in Fig. 2. The figure shows a two dimensional

��

��

�

�

� ����

Figure 2: LEFT: data points from two classes (triangles and circles) are sepa-
rated by the hyperplane with the largest margin (solid line). The two support
vectors (black symbols) are separated by dx along the horizontal and by dy along

the vertical axis, from which we obtain γ = 1
2

√
d2

x + d2
y and R2

γ2 = 4 R2

d2
x + d2

y
.

The dashed line indicates the classification boundary of the classifier shown on
the right, scaled along the vertical axis by the factor 1

s . RIGHT: the same data
but scaled along the vertical axis by the factor s. The data points still lie within
the sphere of radius R. The solid line denotes the maximum margin hyperplane.
We obtain γ = 1

2

√
d2

x + s2 d2
y and R2

γ2 = 4 R2

d2
x + s2 d2

y
. For dy 
= 0 both the

margin γ and the term R2

γ2 depend on s.

classification problem, where the data points from the two classes are indicated
by triangles and circles. In the left figure, both classes are separated by the
hyperplane with the largest margin (solid line). In the right figure, the same
classification problem is shown, but scaled along the vertical axis by a factor s.
Again, the solid line denotes the support vector solution, but when the classifier
is scaled back to s = 1 (dashed line in the left figure) it does no longer coincide
with the original SVM solution. These considerations show, that the optimal
hyperplane is not scale invariant and predictions of class labels may change if
the data is rescaled before learning. In the legend of Fig. 2 it is shown that the
ratio R2

γ2 , which bounds the VC dimension (see eq. (4)), also depends on the
scale factor. This situation may appear often in real data in higher dimensions
because the situation is not present if in an n-dimensional space the (n + 1)
border points are on a hypersphere. In all other situations scaling orthogonal
to points on the hypersphere is possible. Therefore, the question arises, which
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scale factors should be used for classifier selection.
Here we suggest to scale the training data such that the margin γ remains

constant while the radius R of the sphere containing all training data becomes
as small as possible. The result is a new sphere with radius R̃ which still
contains all training data but which leads to a tighter margin-based bound for
the generalization error. Optimality is achieved when all directions orthogonal
to the normal vector w of the hyperplane with maximal margin γ are scaled
to zero and R̃ = mint∈R maxi |

〈
ŵ, xi

φ

〉
+ t| ≤ maxi |

〈
ŵ, xi

φ

〉
|, where

ŵ := w
‖w‖ . If the absolute value of t is small compared to the absolute values

of
〈
ŵ, xi

φ

〉
, e.g. if the data is centered around the origin, t can be neglected

through above inequality. Unfortunately, above formulation does not lead to
an optimization problem which is easy to implement. Therefore, we suggest to
minimize the upper bound:

R̃2

γ2
= R̃2 ‖w‖2 ≤ max

i

〈
w, xi

φ

〉2 ≤
∑

i

〈
w, xi

φ

〉2
=

∥∥X�
φ w

∥∥2
, (5)

where the matrix Xφ :=
(
x1

φ, x2
φ, . . . , xL

φ

)
contains all the training vectors xi

φ.
The second inequality is the squared bound on the maximum norm by the
Euclidean norm. Its worst case factor is L, but the bound is tight (e.g. if only
one component differs from zero).

It can be shown that replacing the objective function ‖w‖2 (eqs. (3)) by the
upper bound

w�Xφ X�
φ w =

∥∥X�
φ w

∥∥2
(6)

on R̃2

γ2 , eq. (5), corresponds to the integration of sphering (whitening) and SVM
learning if the data have zero mean. Minimizing the new objective leads to
normal vectors which are rotated towards directions of low variance of the data
when compared with the standard maximum margin solution. To quantify the
difference of using the new objective instead of the margin as in the standard
SVM approach we used the breast-cancer data set from the UCI collection (see
experiments in Subsection 3.1.1). We report in that sphering in feature space
changes the classification bondary of a SVM-based classifier. We chose the
first training set and compared the the SVM-base classifiers with the differen
objective for different C-values for the RBF-kernel with σ = 1 and for differend
σ with C-value of 2.0. For all pairs of objectives we computed the angle of the
solution in feature space:

φ = arccos

(
〈wsvm, wsphered〉√〈wsvm, wsvm〉 √〈wsphered, wsphered〉

)
=

arccos

⎛
⎜⎝

∑
i,j αsvm

i αsphered
j yi k

(
xi, xj

)
√∑

i,j αsvm
i αsvm

j yi yj k (xi, xj)
√∑

i,j αsphered
i αsphered

j k (xi, xj)

⎞
⎟⎠ .
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The results are given in Fig. 3 for C-values (left) and σ-values (right). The
solution converge to each other if lower training error is enforces and more
training examples are used but differ considerably if regularization is allowed.
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Figure 3: The angle between the SVM-based classifiers where one is the standard
SVM solution and one sphering in feature space. The angle vs. the regulariza-
tion value C (left) and vs. the kernel regularization parameter σ (right).

The new objective is well defined also for cases where Xφ X�
φ or/and X�

φ Xφ

is singular, and the kernel trick carries over to the new technique. If the data
has already been sphered, then the covariance matrix is given by Xφ X�

φ = I
and we recover the classical SVM. Note, however, that whitening can easily be
performed in input space but becomes nontrivial if the data is mapped to a
high-dimensional feature space using a kernel function3.

The new objective function, eq. (6), leads to separating hyperplanes which
are invariant under linear transformations of the data. As a consequence, neither
the bounds nor the performance of the derived classifier depends on how the
training data was scaled. But is the new objective function also related to a
capacity measure for the model class like the margin is? It is, and in (Hochreiter
and Obermayer, 2004c) it has been shown, that the capacity measure, eq. (6),
emerges when a bound for the generalization error is constructed using the
technique of covering numbers.

2.3 Constraints for Complex Features

The next step is to formulate a set of constraints which (i) enforce a good per-
formance on the training set and (ii) regard the conditions imposed by the new
idea of treating dyadic data. We assume that “row” and “column” objects are
both mapped into a Hilbert space within which the matrix entries give the scalar
products from which the classification or regression function is constructed. If
the dyadic data was produced by a measurement device, then this assumption
is based on consideration in Section 2.5 and Appendix A which state that mea-
surements are projections of object feature vectors xφ onto a limited set of P

3In this case, sphering must be based on the computationally expensive kernel PCA and
regularization as in sections 2.4.3 and 2.4.5 is not possible.
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complex features zω, i.e. the zω are the only measurable and acessible directions
in feature space. The value Kij of a complex feature zj

ω for an object xi
φ is then

given by the dot product

Kij =
〈
xi

φ, zj
ω

〉
. (7)

In analogy to the index “φ” for xφ, the index “ω” indicates that we will later
assume that the vectors zi

ω are images in R
N of a map ω which is induced by

either a kernel or a measurement function. A mathematical foundation of the
ansatz eq. (7) is given in Appendix A.

Let Zω :=
(
z1

ω, z2
ω, . . . , zP

ω

)
be the matrix of the complex features. Then we

can summarize our (incomplete) knowledge about the set of objects Xφ using
the data matrix K, where

K = X�
φ Zω . (8)

In the case of DNA microarray data, for example, we could identify K with the
matrix of expression values obtained by a microarray experiment. For web data
we could identify K with the matrix of ingoing or outgoing hyperlinks. For a
document data set we could identify K with the matrix of word frequencies.
Hence we assume, that xφ and zω live in a space of hidden causes which are
responsible for the different attributes of the objects. The complex features{
zj

ω

}
span a subspace of the original feature space, but we do not require them

to be orthogonal, normalized, or linearly independent. If we set zj
ω = ej (jth

Cartesian unit vector), that is Zω = I, Kij = xi
j and P = N , the “new”

description, eq. (8), is fully equivalent to the “old” description using the original
feature vectors xφ.

We now define a quality measure for the performance of the classifier or the
regression function on the training set. We consider the quadratic loss function

c(yi, f(xi
φ)) =

1
2
r2
i , (9)

where

ri = f(xi
φ) − yi =

〈
w, xi

φ

〉
+ b − yi (10)

is the residual error for a data point xi
φ. The total residual error on the training

set, the mean squared error, is

Remp [fw,b] =
1
L

L∑
i=1

c
(
yi, f(xi

φ)
)

. (11)

We now require, that the selected classification or regression function minimizes
the total residual error, i.e. that

∇wRemp [fw,b] =
1
L

Xφ

(
X�

φ w + b1 − y
)

= 0 (12)

and
∂Remp[f ]

∂b
=

1
L

∑
i

ri = b +
1
L

∑
i

(〈
w, xi

φ

〉 − yi

)
= 0 , (13)

9



where the labels for all objects in the training set are summarized by a label
vector y. Since the quadratic loss function is convex in w and b, only one
minimum exists if Xφ X�

φ has full rank. If Xφ X�
φ is singular, then all points

of minimal value correspond to a subspace of R
N . From eq. (13) we obtain

b = − 1
L

L∑
i=1

(〈
w, xi

φ

〉 − yi

)
= − 1

L

(
w�Xφ − y�)1 . (14)

Condition eq. (12) implies, that the directional derivative should be zero
along any direction in feature space, including the directions of the complex
feature vectors zω. We, therefore, obtain

dRemp

[
fw + t zj

ω,b

]
dt

=
(
zj

ω

)� ∇wRemp [fw,b] (15)

=
1
L

(
zj

ω

)�
Xφ

(
X�

φ w + b1 − y
)

= 0 ,

and, combining all complex features,

1
L

Z�
ω Xφ

(
X�

φ w + b1 − y
)

=
1
L

K� (
X�

φ w + b1 − y
)

=
1
L

K�r = 0 . (16)

Hence we require, that for every complex feature zj
ω the mixed moments σj

between the residual error ri and the measured values Kij should be zero:

σj =
1
L

L∑
i=1

〈
xi

φ, zj
ω

〉
ri =

1
L

[
K�r

]
j

(17)

=
dRemp

[
fw + t zj

ω,b

]
dt

= 0 .

2.4 The Potential Support Vector Machine (P-SVM)

2.4.1 The Basic P-SVM

The new objective from eq. (6) and the new constraints from eq. (16) constitute
a new procedure of selecting a classifier or a regression function. The number
of constraints is equal to the number P of complex features, which can be
larger or smaller than the number L of data points or the dimension N of the
original feature space. Because the mean squared error of a linear function fw,b

is a convex function of the parameters w and b, the constraints can always be
fulfilled at its minimum.4. Therefore, f is chosen from all linear functions which
are described by the P complex features and which have minimal mean squared
error according to the objective function which measures f ’s capacity.

4w =
“
X�

φ

”∗
(y − b 1) fulfills the constraints, where A∗ is the pseudo-inverse of A.
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If K has at least rank L (number of training examples), then r = 0 is always
enforced (cf. eq. (16)). Consequently, overfitting occurs and a regularization
scheme is needed.

Before a regularization scheme can be defined, however, the mixed moments
σj must be normalized. The reason is, that high values of σj may either be a
result of a high variance of the values of Kij or the result of a high correlation
between the residual error ri and the values of Kij . Since we are interested in the
latter the most appropriate measure would be Pearson’s correlation coefficient

σ̂j =
∑L

i=1

(
Kij − K̄j

)
(ri − r̄)√∑L

i=1

(
Kij − K̄j

)2
√∑L

i=1 (ri − r̄)2
, (18)

where r̄ = 1
L

∑L
i=1 ri is the mean residual and K̄j = 1

L

∑L
i=1 Kij is the

mean value of the jth complex feature. If the data vectors (K1j , K2j, . . . , KLj)
are normalized to zero mean and unit variance,

1
L

L∑
i=1

(
Kij − K̄j

)2
= 1 and K̄j =

1
L

L∑
i=1

Kij = 0 , (19)

we obtain

σj =
1
L

L∑
i=1

Kij ri = σ̂j
1√
L

‖r − r̄1‖2 . (20)

Because r̄ = 0 (cf. eq. (13)), the mixed moments are now proportional to the
correlation coefficient σ̂j with a proportionality constant which is independent
of the complex feature zj

ω and σj can be used instead of σ̂j to formulate the
constraints.

If the data vectors are normalized, the term K�1 vanishes and we obtain
the basic P-SVM optimization problem

Basic P-SVM optimization problem

min
w

1
2
‖X�

φ w‖2 (21)

s.t. K� (
X�

φ w − y
)

= 0 ,

The offset b of the classification or regression function is given by eq. (14) which
to (see (Hochreiter and Obermayer, 2004a), Appendix A)

b =
1
L

L∑
i=1

yi . (22)

We will call this model selection procedure the Potential Support Vector
Machine (P-SVM), and we will always assume normalized data vectors in
the following.
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2.4.2 The Kernel Trick

Following the standard “support vector” way to derive learning rules for per-
ceptrons, we have so far considered linear classifiers only and an appropriate
feature space Xφ within which the classification problem is linear separable.
Most practical classification problems, however, require non-linear classification
boundaries which makes the construction of a proper feature space necessary.
In analogy to the standard SVM, we now invoke the kernel trick.

Let xi and zj be feature vectors, which describe the “column” and the “row”
objects of the dataset. We then choose a kernel function k

(
xi, zj

)
and compute

the matrix K of relations between “column” and “row” objects:

Ki,j = k
(
xi, zj

)
=

〈
φ
(
xi

)
, ω

(
zj

)〉
=

〈
xi

φ, zj
ω

〉
, (23)

where xi
φ = φ

(
xi

)
and zj

ω = ω
(
zj

)
. In Appendix A it is shown that any

L2-kernel corresponds (for almost all points) to a dot product in a Hilbert space
in the sense of eq. (23) and corresponds to an (implicit) mapping into a feature
space within which a linear classifier is constructed. In the following chapters
we will, therefore, distinguish between the actual measurements xi and zj and
the feature vectors xi

φ, and zj
ω “induced” by the kernel k. Potential choices for

“row” objects and their vectorial description are (1) zj = xj , P = L, (standard
construction of a Gram matrix), (2) zj = ej , P = N (“elementary” features),
(3) zj is the jth cluster center of a clustering algorithm applied to the vectors
xi (example for a “complex” feature), or (4) zj is the jth vector of an PCA or
ICA preprocessing (another example for a “complex” feature).

If the entries Ki,j of the data matrix are directly measured, the application
of the kernel trick needs additional considerations. In appendix A we show, that
- if the measurement process can be expressed through a kernel k

(
xi, zj

)
, which

takes a column object xi and a row object zj and outputs a number - the matrix
K of relations between the “row” and “column” objects can be interpreted as
a dot product in some features space:

Ki,j =
〈
xi

φ, zj
ω

〉
, (24)

where xi
φ = φ

(
xi
)

and zj
ω = ω

(
zj
)
. Note, that we distinguish between

an object xi and its associated feature vectors xi or xi
φ, leading to differences

in the definition of k for the cases of vectorial and (measured) dyadic data.
Eq. (24) justifies the P-SVM approach, which was derived for the case of linear
predictors, also for measured data.

2.4.3 The P-SVM for Classification

If the P-SVM is used for classification, we suggest a regularization scheme based
on slack variables ξ+ and ξ−. Slack variables allow for small violations of
individual constraints if the correct choice of w would lead to a large increase
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of the objective function otherwise. We obtain

min
w,ξ+,ξ−

1
2
‖X�

φ w‖2 + C1� (
ξ+ + ξ−) (25)

s.t. K� (
X�

φ w − y
)

+ ξ+ ≥ 0

K� (
X�

φ w − y
) − ξ− ≤ 0

0 ≤ ξ+, ξ−

for the primal problem.
Above regularization scheme makes the optimization problem robust against

“outliers”. A large value of a slack variable indicates, that the particular “row”
object only weakly influences the direction of the classification boundary, be-
cause it would otherwise considerably increase the value of the complexity term.
This happens in particular for high levels of measurement noise which leads to
large, spurious values of the mixed moments σj . If the noise is large, the value
of C must be small to “remove” the corresponding constraints via the slack vari-
ables ξ. If the strength of the measurement noise is known, the correct value of
C can be determined a priori. Otherwise, it takes the role of a hyperparameter
and must be adapted using model selection techniques.

In order to derive the dual optimization problem, we evaluate the Lagrangian
L,

L =
1
2

w� Xφ X�
φ w + C1� (

ξ+ + ξ−) (26)

− (
α+

)� (
K� (

X�
φ w − y

)
+ ξ+

)
+

(
α−)� (

K� (
X�

φ w − y
) − ξ−)

− (
μ+

)�
ξ+ − (

μ−)� ξ− , (27)

where the vectors α+ ≥ 0, α− ≥ 0, μ+ ≥ 0, and μ− ≥ 0 are the Lagrange
multipliers for the constraints in eqs. (25). The optimality conditions (Schölkopf
and Smola, 2002) require that

∇wL = Xφ X�
φ w − Xφ K α (28)

= Xφ X�
φ w − Xφ X�

φ Zω α = 0 ,

where we used the abbreviation α = α+ − α− (αi = α+
i − α−

i ). In order to
ensure eq. (28) and its equivalent equation Xφ X�

φ w = Xφ X�
φ Zω α, we set

w = Zω α . (29)

In contrast to the standard SVM expansion of w into its support vectors xφ,
the weight vector w is now expanded into a set of complex features zω which
we will call “support features” in the following. We then arrive at the dual
optimization problem:
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P-SVM classification optimization problem

min
α

1
2
α� K� K α − y� K α (30)

s.t. − C 1 ≤ α ≤ C1 ,

which now only depends on the data via the kernel or data matrix K. The
dual problem is solved by a Sequential Minimal Optimization (SMO) technique
which is described in (Hochreiter and Obermayer, 2004a), which is essential if
many complex features are used, because the P × P matrix K�K enters the
dual formulation.

Finally, the classification function f has to be constructed using the optimal
values of the Lagrange parameters α.

P-SVM classification function

f(xφ) =
P∑

j=1

αj K(x)j + b ,

where the expansion eq. (29) has been used for the weight vector w and b is
given by eq. (22).

The classifier based on eq. (31) depends on the weighting coefficients αj ,
which were determined during optimization, on b, which can be computed di-
rectly, and on the measured values K(x)j for the new object x. The weighting
coefficients αj = α+

j − α−
j can be interpreted as class indicators, because

they separate the complex features into features which are relevant for class 1
and class -1, according to the sign of αj . Note, that if we consider the Lagrange
parameters αj as parameters of the classifier, we find that

dRemp

[
fw + t zj

ω , b

]
dt

= σj =
∂Remp[f ]

∂αj
. (31)

The directional derivatives of the empirical error Remp along the complex fea-
tures in the primal formulation correspond to its partial derivatives with respect
to the corresponding Lagrange parameter in the dual formulation.

One of the most crucial properties of the P-SVM procedure is, that the dual
optimization problem only depends on K via K�K. Therefore, K is neither
required to be positive semidefinite nor to be square. This allows not only the
construction of SVM-based classifiers for matrices K of general shape but also
to extend SVM-based approaches to the new class of indefinite kernels operating
on the objects’ feature vectors.

In the following we illustrate the application of the P-SVM approach to
classification using a toy example. The data set consists of 70 objects x, 28
from class 1 and 42 from class 2, which are described by 2D-feature vectors x
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(see open and solid circles in Fig. 4). A pairwise data set was then generated
by applying the (indefinite) sine-kernel k

(
xi, xj

)
= sin

(
θ ‖xi − xj‖2

)
leading

to an indefinite Gram matrix. Fig. 4 shows the classification result obtained
with the P-SVM method in comparison to the result using the standard RBF-
kernel. The sine-kernel is more appropriate than the RBF-kernel for this data set
because it is better adjusted to the “oscillatory” regions of class membership,
leading to a smaller number of support vectors and to a smaller test error.
In general, the value of θ has to be selected using standard model selection
techniques. A large value of θ leads to a more “complex” set of classifiers,
reduces the classification error on the training set, but increases the error on
the test set. Non-Mercer kernels extend the range of kernels which are currently
used and, therefore, opens up a new direction of research for kernel design.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

σ: 0.1, C: 100 θ: 25, C: 100
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Figure 4: Application of the P-SVM method to a toy classification problem.
Objects are described by two-dimensional feature vectors x, and 70 feature
vectors were generated of which 28 belong to class 1 (open circles) and 42
belong to class 2 (solid circles). A Gram matrix was constructed using the
positive definite RBF kernel k

(
xi, xj

)
= exp

(− 1
σ2 ‖xi − xj‖2

)
(left) and

the indefinite sine-kernel k
(
xi, xj

)
= sin

(
θ ‖xi − xj‖) (right). White and

gray indicate regions of class 1 and class 2 membership. Circled data indicate
support vectors. Parameters are given in the figure.

2.4.4 The P-SVM for Regression

The new objective function of eq. (6) was motivated for a classification problem
but it can also be used to find an optimal regression function in a regression

task. In regression the term
∥∥∥X�

φ w
∥∥∥2

=
∥∥∥X�

φ ŵ
∥∥∥2

‖w‖2, ŵ := w
‖w‖ ,

is the product of a term which expresses the deviation of the data from the
zero-isosurface of the regression function and a term which corresponds to the
smoothness of the regressor. If the regression function intersects the origin,
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which can be enforced by normalizing data vectors xφ to have zero mean (see
eq. (19)) and by normalizing the attributes yi such that b = 0 (see eq. (22)),
then X�

φ ŵ is the vector of distances between the data and the regression
function. The smoothness of the regression function is determined by the norm
of the weight vector w. If f(xi

φ) =
〈
w, xi

φ

〉
+ b and the length of the vectors

xφ is bounded by B, then the deviation of f from offset b is bounded by:∥∥f(xi
φ) − b

∥∥ =
∥∥〈w, xi

φ

〉∥∥ ≤ ‖w‖ ∥∥xi
φ

∥∥ ≤ ‖w‖ B , (32)

where the first “≤” follows from the Cauchy-Schwarz inequality, hence a smaller
value of ‖w‖ leads to a smoother regression function. This tradeoff between
smoothness and residual error is also reflected by eq. (64) in Appendix A which
shows that eq. (6) is the L2-norm of the function f . The discussion in Section
2.3 and beginning of Section 2.4 also showed, that the constraints of vanishing
mixed moments carry over to regression problems with the only modification,
that the target values yi in eqs. (25) are real rather than binary numbers. The
constraints are even more “natural” for regression because the ri are indeed
the residuals a regression function should minimize. We, therefore, propose to
use the primal optimization problem, eqs. (25), and its corresponding dual, eqs.
(30), also for the regression setting.

Fig. 5 shows the application of the P-SVM to a toy regression example
(pairwise data). 50 data points are randomly chosen from the true function
(dashed line) and i.i.d. Gaussian noise with mean 0 and standard deviation 0.2
is added to each y-component. One outlier was added by hand at x = 0. The
figure shows the P-SVM regression results (solid lines) for an RBF-kernel and
three different combinations of C and σ. The hyperparameter C controls the
sensitivity against outliers: A smaller value of C increases the error at x = 0
but also the number of support vectors. The width σ of the RBF-kernel controls
the overall smoothness of the regressor: A larger value of σ increases the error
at x = 0 without increasing the number of support vectors (cf. arrows in bold
in Fig. 5).

2.4.5 The P-SVM for Feature Selection

In this section we modify the P-SVM method for feature selection such that it
can serve as a data preprocessing method in order to improve the generalization
performance of subsequent classification or regression tasks (see also Hochreiter
and Obermayer, 2004b). Due to the property of the P-SVM method to expand
w into a sparse set of support features, it can be modified to optimally extract
a small number of “informative” features from the set of “row” objects. The
set of “support features” may then be used as input to an arbitrary predictor,
e.g. another P-SVM, a standard SVM or a K-nearest-neighbor classifier.

Noisy measurements can lead to spurious mixed moments, i.e. complex fea-
tures may contain no information about the objects’ attributes but still exhibit
finite values of σj . In order to prevent those features to affect the classification
boundary or the regression function, we introduce a “correlation threshold” ε
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Figure 5: Application of the P-SVM method to a toy regression problem. Ob-
jects (small dots), described by the x-coordinate, were generated by randomly
choosing points from the true function (dashed line) and adding Gaussian noise
with mean 0 and standard deviation 0.2 to the y-component of each data point.
One outlier was added by hand at x = 0 (thin arrows). A Gram matrix was
then generated using an RBF-kernel k

(
xi, xj

)
= sin

(
θ ‖xi − xj‖) with width

σ. The solid lines show the regression result. Circled dots indicate support vec-
tors. Parameters are given in the figure. The bold arrows in the figures mark
the location x = −2, where the effect of local vs. global smoothing can be seen
(see text).

and modify the constraints in problem eqs. (21) according to

‖K� (
X�

φ w − y
) ‖∞ ≤ ε , (33)

which can be written as

K� (
X�

φ w − y
)− ε 1 ≤ 0 , K� (

X�
φ w − y

)
+ ε 1 ≥ 0 .(34)

This regularization scheme is analogous to the ε-insensitive loss (Schölkopf and
Smola, 2002). Absolute values of mixed moments smaller than ε are considered
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to be spurious. Consequently, the influence of the corresponding features do not
influence the weight vector, because the constraints remain fulfilled.

The value of ε directly correlates with the strength of the measurement noise,
and can be determined a priori if it is known. If this is not the case, ε serves
as a hyperparameter and its value can be determined using model selection
techniques. Note, that data vectors have to be normalized (cf. eqs. (19)) before
applying the P-SVM, because otherwise a global value of ε would not suffice.

Combining eq. (6) and eqs. (34) we then obtain the primal optimization
problem

min
w

1
2
‖X�

φ w‖2 (35)

s.t. K� (
X�

φ w − y
)

+ ε 1 ≥ 0

K� (
X�

φ w − y
) − ε 1 ≤ 0

for P-SVM feature selection. In order to derive the dual formulation we have
to evaluate the Lagrangian:

L =
1
2

w� Xφ X�
φ w (36)

− (
α+

)� (
K� (

X�
φ w − y

)
+ ε 1

)
+

(
α−)� (

K� (
X�

φ w − y
) − ε 1

)
,

where we have used the notation from Section 2.4.3. The vector w is again
expressed through the complex features,

w = Zω α , (37)

and we obtain the dual formulation of eq. (35):

P-SVM feature selection optimization problem

min
α+,α−

1
2
(
α+ − α−)� K� K

(
α+ − α−) (38)

− y� K
(
α+ − α−) + ε 1� (

α+ + α−)
s.t. 0 ≤ α+ , 0 ≤ α− .

The term ε 1� (α+ + α−) in this dual objective function enforces a sparse
expansion of the weight vector w in terms of the support features. This occurs,
because for large enough values of ε, this term forces all αj towards zero except
for the complex features which are most relevant for classification or regression.
If K� K is singular and w is not uniquely determined, ε enforces a unique
solution, which is characterized by the most sparse representation through com-
plex features. The dual problem is again solved by a fast Sequential Minimal
Optimization (SMO) technique (see (Hochreiter and Obermayer, 2004a)).
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Finally, let us address the relationship between the value of a Lagrange
multiplier αj and the “importance” of the corresponding complex feature zj

ω

for prediction. The change of the empirical error under a change of the weight
vectors by an amount β along the direction of a complex feature zj

ω is given by

Remp

[
fw + β zj

ω , b

]
− Remp [fw,b] (39)

= β σj +
β2

2 L

∑
i

K2
ij = β σj +

β2

2

≤ ε |β|
L

+
β2

2
,

because the constraints eq. (34) ensure that |σj | L ≤ ε. If a complex feature
zj

ω is completely removed, then β = − αj and

Remp

[
fw − αj zj

ω , b

]
− Remp [fw,b] ≤ ε |αj |

L + α2
j

2 . (40)

The Lagrange parameter αj is directly related to the increase in the empirical
error when a feature is removed. Therefore, α serve as importance measures
for the complex features and allows to rank features according to the absolute
value of its components.

In the following, we illustrate the application of the P-SVM approach to
feature selection using a toy example, which considers a classification task. The
data set consists of 50 “column” objects x, 25 from each class, which are de-
scribed by 2D-feature vectors x (open and solid circles in Fig. 6). 50 “row” ob-
jects z were randomly selected by choosing their 2D-feature vectors z according
to an uniform distribution on the interval [−1.2, 1.2]× [−1.2, 1.2]. The data ma-
trix K was generated using an RBF kernel k

(
xi, zj

)
= exp

(− 1
2 σ2 ‖xi − zj‖2

)
with std σ = 0.2. Fig. 6 shows the result of the P-SVM feature selection method
with a correlation threshold ε = 20. The selected features are indicated by
crosses. The figure shows, that every group of data points (“column” objects)
is described (and detected) by one or two feature objects.

The number of selected features depends on ε, and on σ, which determines
how the “strength” of a complex feature decreases with the distances ‖xi − zj‖.
Smaller ε or larger σ would result in more complex features assigned to every
data group.

2.5 The Dot Product Interpretation of Dyadic Data

In the derivation of the P-SVM method we have used the fact that the matrix
K is a dot product matrix whose elements denote a scalar product between
the feature vectors which describe the “row” and the “column” objects. If
K, however, is a matrix of measured values the question arises under which
conditions such a matrix can be interpreted as a dot product matrix.

As shown in Appendix A, above question reduces to the question whether
or not the following three conditions hold:
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Figure 6: Application of the P-SVM method to a toy feature selection prob-
lem for a classification task. “Column” and “row” objects are described by
two-dimensional feature vectors x and z, respectively. Feature vectors for 50
“column” objects, 25 from each class (open and solid circles), were generated
randomly by choosing one of the centers from {(1, 1), (1,−1), (−1, 1), (−1,−1)}
with equal probability and then constructing a 2D-feature vecotro by adding
to each coordinate a random number drawn from a Gaussian with mean 0 and
standard deviation 0.1. Feature vectors of 100 “row” objects (complex features)
were generated randomly and uniformly from the interval [−1.2, 1.2]×[−1.2, 1.2].
An RBF-kernel exp

(− 1
2 σ2 ‖xi − zj‖2

)
with width σ = 0.2 is applied to each

pair
(
xi, zj

)
of “row” and “column” object in order to construct the data ma-

trix K. Black crosses indicate the location of support features selected by the
P-SVM method.

• (1) “Column” objects (“samples”) x are from a set X which can be com-
pleted to a measure space.

• (2) “Row” objects z are from a set Z which can be completed to a measure
space.

• (3) The measurement process can be expressed via the evaluation of a
measurable kernel k (x, z) which is from L2(X ,Z).

Conditions (1) and (2) can easily fulfilled by defining a suitable σ-algebra on
the sets; condition (3) holds if k is bounded and the sets X and Z are compact.
Condition (3) equates the evaluation of a kernel as known from standard SVMs
with physical measurements, and physical characteristics of the measurement
device determines the properties of the kernel, e.g. boundedness and continu-
ity. But can a measurement process indeed be expressed through a kernel?.
There is no full answer to this question from a theoretical viewpoint, practical
applications have to confirm (or disprove) the chosen ansatz and data model.
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3 Numerical Experiments and Applications

In this section we apply the P-SVM method to various kinds of real world
data sets and provide benchmark results with previously proposed methods
when appropriate. This section consists of three parts which cover classification,
regression, and feature selection. In part one the P-SVM is first tested as a
classifier on data sets from the UCI Benchmark Repository and its performance
is compared with results obtained with C- and the ν-SVMs for different kernels.
Secondly, we apply the P-SVM to a measured (rather than constructed) pairwise
(“protein”, see Hochreiter and Obermayer, 2004a for others) and dyadic data set
(“World Wide Web”). In part two the P-SVM is applied to regression problems
taken from the UCI Benchmark Repository and compared to results obtained
with C-Support Vector Regression and Bayesian SVMs. Part three describes
results obtained for the P-SVM as a feature selection method for microarray
data (reported from Hochreiter and Obermayer, 2004b) and for the “protein”
and “World Wide Web” data sets from part one.

3.1 Application to Classification Problems

3.1.1 UCI Data Sets

In this section we report benchmark results for the data sets “thyroid” (5 fea-
tures), “heart” (13 features), “breast-cancer” (9 features), and “german” (20
features) from the UCI benchmark repository, and for the data set “banana”
(2 features) taken from (Rätsch et al., 2001). All data sets were preprocessed
as described in (Rätsch et al., 2001) and divided into 100 training/test set
pairs. Data sets were generated through resampling where data points were
randomly selected for the training set and the remaining data was used for
the test set. We downloaded the original 100 training/test set pairs from
http://ida.first.fraunhofer.de/projects/bench/. For the data sets “ger-
man” and “banana” we restricted the training set to the first 200 examples of
the original training set in order to keep hyperparameter selection feasible.

For testing we used the original test sets. Pairwise datasets were generated
by constructing the Gram matrix for radial basis function (RBF), polynomial
(POL), and Plummer (PLU, see Hochreiter et al., 2003) kernels, and the Gram
matrices were used as input for kernel Fisher discriminant analysis (KFD, Mika
et al., 1999), C-, ν-, and P-SVM. Because KFD only selects a direction in input
space onto which all data points are projected, we must select a classifier for the
resulting one-dimensional classification task. We follow (Schölkopf and Smola,
2002) and classify a data point according to its posterior probability under the
assumption of a Gaussian distribution for each label. Hyperparameters (C,
ν, and kernel parameters) were optimized using 5–fold cross validation on the
corresponding training sets. To ensure a fair comparison, the hyperparameter
selection procedure was equal for all methods, except that the ν values of the
ν-SVM were selected from {0.1, . . . , 0.9} in contrast to the selection of C for
which a logarithmic scale was used. To test the significance of the differences
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in generalization performance (percent of misclassifications), we first performed
a test for the “difference of two proportions” for each training/test set pair
(Dietterich, 1998). The “difference of two proportions” is the difference of the
misclassification rates of two models on the test set, where the models are se-
lected on the training set by the two methods which are to be compared. After
this test we adjusted the false discovery rate through the “Benjamini Hochberg
Procedure” (Benjamini and Hochberg, 1995) which was recently shown to be
correct for dependent outcomes of the tests (Benjamini and Yekutieli, 2001).
The fact that the tests can be dependent is important because training and test
sets overlap for the different training/test set pairs. The false detection rate
was controlled at 5 %. We counted for each pair of methods the selected models
from the first method which perform significantly (5 % level) better than the
selected models from the second method.

Table 1 summarizes the percentage of misclassification averaged over 100
experiments. Despite the fact that C– and ν–SVMs are equivalent, results
differ because of the somewhat different model selection results for the hyper-
parameters C and ν. Best and second best results are indicated by bold and
italic numbers. The significance tests did not reveal significant differences in
generalization performance for most of the cases (for details see http://ni.-
cs.tu-berlin.de/publications/psvm sup). The ν-SVM with the Plummer
kernel however performed slightly (less than 5 significant differences out of 100)
worse than the other methods5. For the “banana” data set, P-SVM with “RBF”
was significantly the best, followed by P-SVM with “PLU”, ν-SVM with “RBF”,
and ν-SVM with “PLU” (other methods perform significantly worse).

The UCI-benchmark result shows that the P-SVM is competitive to other
state-of-the-art methods for a standard problem setting (measurement matrix
equivalent to the Gram matrix). Although the P-SVM method never performed
significantly worse, it generally required fewer support vectors than other SVM
approaches. This was also true for the cases, where the P-SVM’s performance
was significantly better.

3.1.2 Protein Data Set

The “protein” data set (cf. Hofmann and Buhmann, 1997) was provided by
M. Vingron and consists of 226 proteins from the globin families. Pairs of
proteins are characterized by their evolutionary distance, which is defined as
the probability of transforming one amino acid sequence into the other via point
mutations. Class labels are provided, which denote membership in one of the
four families: hemoglobin-α (“H-α”), hemoglobin-β (“H-β”), myoglobin (“M”),
and heterogenous globins (“GH”).

Table 2 summarizes the classification results, which were obtained with the
generalized SVM (G-SVM, Graepel et al., 1999; Mangasarian, 1998) and the
P-SVM method. Since the G-SVM interprets the columns of the data matrix as
feature vectors for the column objects and applies a standard ν-SVM to these

5The ν-SVM with POL performed better on the data set “thyroid” than the P-SVM with
PLU and KFD with POL but not better than others.
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RBF POL PLU
Thyroid

C-SVM 5.11 (2.34) 4.51 (2.02) 4.96 (2.35)
ν-SVM 5.15 (2.23) 4.04 (2.12) 4.83 (2.03)
KFD 4.96 (2.24) 6.52 (3.18) 5.00 (2.26)

P-SVM 4.71 (2.06) 9.44 (3.12) 5.08 (2.18)
Heart

C-SVM 16.67 (3.51) 18.26 (3.50) 16.33 (3.47)
ν-SVM 16.87 (3.87) 17.44 (3.90) 18.47 (7.81)
KFD 17.82 (3.45) 22.53 (3.37) 17.80 (3.86)

P-SVM 16.18 (3.66) 16.67 (3.40) 16.54 (3.64)
Breast-Cancer

C-SVM 26.94 (5.18) 26.87 (4.79) 26.48 (4.87)
ν-SVM 27.69 (5.62) 26.69 (4.73) 30.16 (7.83)
KFD 27.53 (4.19) 31.30 (6.11) 27.19 (4.72)

P-SVM 26.78 (4.58) 26.40 (4.54) 26.66 (4.59)
Banana

C-SVM 11.88 (1.11) 12.09 (0.96) 11.81 (1.07)
ν-SVM 11.67 (0.90) 12.72 (2.16) 11.74 (0.98)
KFD 12.32 (1.12) 14.04 (3.89) 12.14 (0.96)

P-SVM 11.59 (0.96) 14.93 (2.09) 11.52 (0.93)
German

C-SVM 26.51 (2.60) 27.27 (3.23) 26.88 (3.12)
ν-SVM 27.14 (2.84) 27.13 (3.06) 28.60 (6.27)
KFD 26.58 (2.95) 30.96 (3.23) 26.90 (3.15)

P-SVM 26.45 (3.20) 25.87 (2.45) 26.65 (2.95)

Table 1: Average percentage of misclassification for the UCI and the “banana”
data sets. The table compares results obtained with the kernel Fisher discrimi-
nant analysis (KFD), C-, ν-, and P-SVM for the Radial Basis Function (RBF),
exp(− 1

2 σ2 ‖xi − xj‖2, polynomial (POL),
(〈

xi, xj
〉

+ η
)δ, and Plummer

(PLU), 1
(‖xi − xj‖ + ρ)ζ , kernels. Results were averaged over 100 experiments

with separate training and test sets. For each data set numbers in bold and
italic highlight the best and the second best result, the numbers in brackets
denote standard deviations of the results. C, ν, and kernel parameters were
determined using 5–fold cross validation on the training set and usually differed
between individual experiments.

vectors (this is also called “feature map” Schölkopf and Smola, 2002), we call the
G-SVM simply “ν-SVM” in the following. The table shows the percentage of
misclassification for the four two-class classification problems “one class against
the rest”. The P-SVM yields better classification results although a conservative
test for significance was not possible due to the small number of data. However,
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The P-SVM selected 180 proteins as support vectors on average, compared to
203 proteins used by the ν-SVM (note that for 10–fold cross validation 203 is
the average training size). Here a small number of support vectors is highly
desirable, because it reduces the computational costs of sequence alignments
which are necessary for the classification of new examples.

protein data
Reg. H-α H-β M GH

Size — 72 72 39 30
ν-SVM 0.05 1.3 4.0 0.5 0.5
ν-SVM 0.1 1.8 4.5 0.5 0.9
ν-SVM 0.2 2.2 8.9 0.5 0.9
P-SVM 300 0.4 3.5 0.0 0.4
P-SVM 400 0.4 3.1 0.0 0.9
P-SVM 500 0.4 3.5 0.0 1.3

Table 2: Percentage of misclassification for the “protein” data set for classifiers
obtained with the P-SVM and ν-SVM methods. Column “Reg.” lists the value
of the regularization parameter (ν for ν-SVM and C for P-SVM). Columns “H-
α” to “GH” provide the results for the four classification problems “one class
against the rest”. The percentage of misclassification was computed using 10–
fold cross validation. The best classification results for each problem are shown
in bold. Note, that the data matrix contained “measured” values (rather than
values computed using a kernel) and was not positive semi-definite.

3.1.3 World Wide Web Data Set

The “World Wide Web” data sets consist of 8,282 WWW-pages collected dur-
ing the Web−→Kb project at Carnegie Mellon University in January 1997 from
the web sites of the computer science departments of the four universities Cor-
nell University (“Cornell”), Texas University (“Texas”), Washington Univer-
sity (“Washington”), and Wisconsin University (“Wisconsin”). The pages were
manually classified into the categories “student”, “faculty”, “staff”, “depart-
ment”, “course”, “project”, and “other”.

Every pair (i, j) of pages is characterized by whether page i contains a hy-
perlink to page j and vice versa. The data is summarized using two binary
matrices and a ternary matrix. The first matrix K (“out”) contains a one for
at least one outgoing link (i → j) and a zero if no outgoing link exists, the sec-
ond matrix K� (“in”) contains a one for at least one ingoing link (j → i) and a
zero otherwise, and the third, ternary matrix 1

2

(
K + K�) (“sym”) contains

a zero, if no link exists, a value of 0.5, if only one unidirectional link exists, and
a value of 1, if links exists in both directions. For the following experiments, we
restricted the data set to pages from the first six classes which had more than
one in- or outgoing link. The data set thus consists of the four subsets “Cornell”
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(350 pages), “Texas” (286 pages), “Wisconsin” (300 pages), and “Washington”
(433 pages).

Table 3 summarizes the classification results for the C- and P-SVM methods.
The parameter C for both SVMs was optimized for each cross validation trial
using another 4–fold cross validation on the training set. Significance tests were
performed to evaluate the differences in generalization performance using the
10-fold cross-validated paired t-test (Dietterich, 1998). We considered 48 tasks
(4 universities, 4 classes, 3 matrices) and checked for each task whether the C-
SVM or the P-SVM performed better using a p-value of 0.05. In 30 tasks the P-
SVM had a significantly better performance than the C-SVM, while the C-SVM
was never significantly better than the P-SVM (for details see http://ni.cs.-
tu-berlin.de/publications/psvm sup).

Classification results are better for the asymmetric matrices “in” and “out”
than for the symmetric matrix “sym”, because there are cases for which highly
indicative pages (hubs) exist which are connected to one particular class of pages
by either in- or outgoing links. At Cornell university, for example, the project
pages have indicative outgoing links and the Texas university contains web pages
which are indicative for the student pages by linking only them. The symmetric
case blurs the contribution of the indicative pages because ingoing and outgoing
links can no longer be distinguished which leads to poorer performance. Because
the P-SVM yields fewer support vectors, online classification is faster than for
the C-SVM and – if web pages cease to exist – the P-SVM is more likely not
to be affected. Table 4 provides a more detailed analysis of the classification
results for the problem “student pages vs. the rest”. The false positive rate
for the matrix “out” is higher than the matrix “in”. This means that the most
indicative pages, which are referred by “student” pages, are not as discriminative
as pages indexing student pages.

3.2 Application to Regression Problems

In this section we report results for the data sets “robot arm” (2 features),
“boston housing” (13 features), “computer activity” (21 features), and “abalone”
(10 features) data sets from the UCI benchmark repository. The data prepro-
cessing is described in (Chu et al., 2004), and the data sets are available as train-
ing / test set pairs at http://guppy.mpe.nus.edu.sg/~chuwei/data. The size
of the data sets were (training set / test set): “robot arm”: 200 / 200, 1 set;
“boston housing”: 481 / 25, 100 sets; “computer activity”: 1000 / 6192, 10 sets;
“abalone”: 3000 / 1177, 10 sets.

Pairwise data sets were generated by constructing the Gram matrices for
Radial Basis Function kernels of different widths σ, and the Gram matrices
were used as input for the three regression methods, C-support vector regression
(SVR, Schölkopf and Smola, 2002), Bayesian support vector regression (BSVR,
Chu et al., 2004), and the P-SVM. Hyperparameters (C and σ) were optimized
using n-fold cross-validation (n = 50 for “robot arm”, n = 20 for “boston
housing”; n = 4 for “computer activity” and n = 4 for “abalone”). Parameters
were first optimized on a coarse 4× 4 grid and later refined on a 7× 7 fine grid
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Course Faculty Project Student
Cornell University

Size 57 60 52 143
C-SVM (Sym) 11.1 (6.2) 19.7 (5.3) 13.7 (4.0) 50.0 (11.5)
C-SVM (Out) 12.6 (3.1) 15.1 (6.0) 10.6 (4.9) 22.3 (10.3)
C-SVM (In) 11.1 (4.9) 21.4 (4.3) 14.6 (5.5) 48.9 (15.5)

P-SVM (Sym) 12.3 (3.3) 17.1 (6.2) 15.4 (6.3) 19.1 (5.7)
P-SVM (Out) 8.6 (3.8) 14.3 (6.3) 8.3 (4.9) 16.9 (7.9)
P-SVM (In) 7.1 (4.1) 13.7 (6.6) 10.9 (5.5) 17.1 (5.7)

Texas University
Size 52 35 29 129

C-SVM (Sym) 17.2 (9.0) 22.0 (9.1) 19.8 (6.7) 53.5 (11.8)
C-SVM (Out) 9.5 (5.1) 16.5 (5.8) 20.2 (8.7) 28.9 (11.7)
C-SVM (In) 12.6 (4.9) 20.6 (7.8) 20.9 (5.1) 16.4 (7.6)

P-SVM (Sym) 15.8 (5.8) 13.6 (7.3) 12.2 (6.2) 25.5 (6.9)
P-SVM (Out) 8.1 (7.6) 9.8 (3.6) 9.8 (3.9) 20.9 (6.7)
P-SVM (In) 12.3 (5.6) 10.5 (6.3) 9.4 (4.6) 13.0 (5.0)

Wisconsin University
Size 77 36 22 117

C-SVM (Sym) 27.0 (10.0) 22.0 (5.5) 14.0 (6.4) 49.3 (11.1)
C-SVM (Out) 19.3 (7.5) 16.0 (3.8) 10.3 (4.8) 34.3 (10.5)
C-SVM (In) 22.0 (8.6) 16.3 (5.8) 7.7 (4.5) 24.3 (9.9)

P-SVM (Sym) 18.7 (4.5) 15.0 (9.3) 10.0 (5.4) 34.3 (8.6)
P-SVM (Out) 12.0 (5.5) 11.3 (6.5) 7.7 (4.2) 23.7 (4.8)
P-SVM (In) 13.3 (4.4) 8.7 (8.2) 6.3 (7.1) 13.3 (5.9)

Washington University
Size 169 44 39 151

C-SVM (Sym) 19.6 (6.8) 18.7 (6.8) 10.6 (3.5) 43.6 (8.3)
C-SVM (Out) 10.6 (4.6) 14.1 (3.0) 14.3 (4.8) 28.2 (9.8)
C-SVM (In) 20.3 (6.4) 20.4 (5.3) 13.8 (4.7) 38.3 (11.9)

P-SVM (Sym) 17.1 (4.4) 13.4 (6.6) 8.8 (2.1) 20.3 (6.8)
P-SVM (Out) 10.6 (5.2) 12.7 (2.9) 6.7 (3.4) 17.1 (4.3)
P-SVM (In) 11.8 (5.6) 9.2 (6.2) 6.7 (2.0) 14.3 (6.9)

Table 3: Percentage of misclassification for the World Wide Web data sets for
classifiers obtained with the P-SVM and C-SVM methods. The percentage of
misclassification was measured using 10–fold cross-validation. The best results
and second best for each data set and classification task are indicated in bold
and italics; numbers in brackets denote standard deviations of the results.

around the values for C and σ selected in the first step (65 tests per parameter
selection).
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student
pages pages “in” “out” “sym”

Cornell 350 143 17 17 19
+12/-21 +11/-21 +23/-16

Texas 286 129 13 21 26
+10/-15 +35/-9 +33/-20

Wisconsin 300 117 13 24 34
+14/-13 +32/-19 +42/-29

Washington 433 151 14 17 20
+18/-12 +36/-7 +30/-15

Table 4: P-SVM classification results for the problem “student pages vs. the
rest” for the “world wide web” data set. The percentage of misclassifications
is analyzed with respect to the false positive rate (“+”) and the false negative
rate (“-”). Unsigned numbers in the rightmost four columns denote the total
percentage of errors.

Table 5 shows the mean squared error and the standard deviation of the re-
sults. We also performed a Wilcoxon signed rank test to verify the significance
for these results (for details see http://ni.cs.tu-berlin.de/publications-
/psvm sup), except for the “robot arm” data set, which has only one train-
ing/test set pair, and the “boston housing” data set, which contains too few test
examples. On “computer activity” SVR was significantly better (5 % threshold)
than BSVR, and on both data sets “computer activity” and “abalone”, SVR
and BSVR were significantly outperformed by the P-SVM (the P-SVM used
fewer support vectors than its competitors).

robot boston computer
arm (10−3) housing activity abalone

SVR 5.84 10.27 (7.21) 13.80 (0.93) 0.441 (0.021)
BSVR 5.89 12.34 (9.20) 17.59 (0.98) 0.438 (0.023)
P-SVM 5.88 9.42 (4.96) 10.28 (0.47) 0.424 (0.017)

Table 5: Regression results for the UCI data sets. The table shows the mean
squared error and its standard deviation in brackets. Best results for each data
set are shown in bold. For the “robot arm” data only one data set was available
and, therefore, no standard deviation is given.

3.3 Application to Feature Selection Problems

In this section we apply the P-SVM to feature selection problems of various
kinds, using the “correlation threshold” regularization scheme (Section 2.4.5).
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We first reanalyze the “protein” and “world wide web” data sets of sections
3.1.3 and 3.1.2 and then report results on three DNA microarray data sets.
Further feature selection results can be found in (Hochreiter and Obermayer,
2005) where also results for the NIPS feature selection challange are reported
and where the P-SVM was the best stand-alone method for selecting a compact
feature set, and in (Hochreiter and Obermayer, 2004b), where details of the
microarray datasets benchmarks are reported.

3.3.1 Protein and World Wide Web Data Sets

In this section we again apply the P-SVM to the “protein” and “world wide
web” data sets of sections 3.1.2 and 3.1.3. Using both regularization schemes
simultaneously leads to a trade-off between a small number of features (a small
number of measurements) and better classification result. Reducing the number
of features is beneficial if measurements are costly and if a small increase in
prediction error can be tolerated.

Table 6 shows the results for the “protein” data sets for various values of
the regularization parameter ε. C was set to 100, because it gave good results
for a wide range of ε values. We chose a minimal ε = 0.2 because it resulted
in a classifier, where all complex features were support vectors. The size of the
training set is 203. Note, that C was smaller than in the experiments in Section
3.1.2 because large values of ε pushed the dual variables α towards zero and,
therefore, large values of C have no influence. The table shows that classification
performance drops if less features are considered, but that 5 % of the features
suffice to obtain a performance which lead only to about 5 % misclassifications
compared to about 2 % at the optimum. Since every feature value has to
be determined via a sequence alignment, this saving in computation time is
essential for large data bases like the Swiss-Prot data base (130,000 proteins),
where supplying all pairwise relations is currently impossible.

Table 7 shows the corresponding results (10–fold cross validation) for the
P-SVM applied to the “world wide web” data set “Cornell” and for the classi-
fication problem “student pages vs. the rest”. Only ingoing links (matrix K�

of Section 3.1.3) were used. P-SVM hyperparameters C were optimized using
3–fold cross validation on the corresponding training sets for each of the 10–fold
cross validation runs. By increasing the regularization parameter ε the number
of web pages which have to be considered in order to classify a new page (the
number of support vectors) decreases from 135 to 8. At the same time the
percentage of pages which can no longer be classified because they receive no
ingoing link from one of the “support vector page” increases. The percentage
of misclassification, however, is reduces from 14 % for ε = 0.1 to 0.6 % for
ε = 2.0. With only 8 pages providing ingoing links more than 50 % of the
pages could be classified with only 0.6 % misclassification rate.
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protein data
ε H-α H-β M GH

0.2 1.3 4.9 0.9 1.3
(203) (203) (203) (203)

1 2.6 5.3 1.3 4.4
(41 ) (110) (28) (41)

10 3.5 8.8 1.8 13.3
(10) (26) (5) (7)

20 3.5 8.4 4.0 13.3
(5) (12) (4) (5)

Table 6: Percentage of misclassification and the number of support features (in
brackets) for the “protein” data set for the P-SVM method. The maximum
number of features is 226. The value for ε is provided in the first column (C was
100). The four columns to the right show the results for the four classification
problems “one class against the rest” using 10–fold cross-validation.

“Cornell” data set, student pages
ε % classified % incorrect # (%) SVs

0.1 84 14 135 (38.6)
0.2 81 12 115 (32.8)
0.3 79 9.7 99 (28.3)
0.4 75 6.9 72 (20.6)
0.5 73 5.5 58 (16.6)
0.6 71 4.8 48 (13.7)
0.7 66 3.9 38 (10.9)
0.8 65 3.1 34 (9.7)
0.9 64 2.7 32 (9.1)
1.0 61 1.4 27 (7.7)
1.1 59 1.0 21 (6.0)
1.4 56 1.0 12 (3.4)
1.6 55 1.0 10 (2.8)
2.0 51 0.6 8 (2.3)

Table 7: Feature selection and classification results of 10–fold cross validation
for the P-SVM method for “world wide web” data set “Cornell” and the classi-
fication problem “student pages against the rest”. The first column shows the
chosen ε for the P-SVM (C was optimized through a 3–fold cross validation on
the corresponding training set). Columns three to five show the percentage of
classified pages, the percentage of misclassifications and the number (percent-
age) of support vectors.

3.3.2 Micorarray Data Sets

In this subsection we describe the application the P-SVM to real DNA microar-
ray data. All data set consist of tumor tissue samples which were characterized
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by the expression values of genes. Samples are labeled according to the out-
come of a particular treatment (positive/negative) and the task is to predict
the outcome for a new patient. The data was taken from Pomeroy et al. (2002)
(brain tumor), Shipp et al. (2002) (lymphoma tumor), and van’t Veer et al.
(2002) (breast cancer). The P-SVM results are taken from (Hochreiter and
Obermayer, 2004b) where the details concerning the data sets and the gene
selection procedure based on the P-SVM can be found.

We compare following combinations of feature selection and classification
methods:

selection method classification method
(1) expression value of the TrkC gene one gene classification
(2) SPLASH (Califano et al., 1999) likelihood ratio classifier (LRC)
(3) signal-to-noise-statistics (STN) K-nearest neighbor (KNN)
(4) signal-to-noise-statistics (STN) weighted voting (voting)
(5) Fisher statistics (Fisher) weighted voting (voting)
(6) R2W2 R2W2
(7) P-SVM ν-SVM

Table 8 summarizes the results which are taken from the corresponding litera-
ture. The P-SVM method outperforms standard methods – in most cases with
fewer selected genes.

4 Summary

In this contribution we have described the Potential Support Vector Machine
(P-SVM) as new method for classification, regression, and feature selection.
The P-SVM selects models using the principle of structural risk minimization.
In contrast to standard SVM approaches, however, the P-SVM is based on a
new objective function and a new set of constraints which lead to an expansion
of the classification or regression function in terms of “support features”. The
combination of the new objective with the new constraints results in a quadratic
problem which is always well defined, suited for dyadic data, and neither requires
square nor positive definite Gram matrices. Therefore, the method can also be
used without preprocessing with matrices which are measured and with matrices
which are constructed from a vectorial representation using an indefinite kernel
function. In feature selection mode the P-SVM allows to select and rank the
features through the support vector weights of its sparse set of support vectors.
The sparseness constraint avoids the construction of sets for features, which are
redundant. In a classification or regression setting this is a clear advantage over
statistical methods where redundant features are often kept as long as they pro-
vide information about the objects’ attributes. Because the dual formulation of
the optimization problem can be solved by a fast sequential minimal optimiza-
tion technique, the new P-SVM can be applied to data sets with many features.
The P-SVM approach was compared with several state-of-the-art classification,
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Brain Tumor

Feature Selection / # #
Classification F E

TrkC (one gene) 1 33
SPLASH / LRC – 25

R2W2 25
STN / voting – 23
STN / KNN 8 22

TrkC & SVM & KNN – 20
P-SVM / ν-SVM 45 7

Lymphoma

Feature Selection / # #
Classification F E
STN / KNN 8 28
STN / voting 13 24

R2W2 22
P-SVM / ν-SVM 18 21

Breast Cancer

Feature Selection / # # ROC
Classification F E area

Fisher / voting 70 26 0.88
P-SVM / ν-SVM 30 15 0.77

Table 8: Classification results for DNA microarray data sets, where the leave-
one-out error E (% misclassifications) and the number F of features are reported.
For breast cancer only the minimal value of E for different thresholds was avail-
able, therefore the area under a receiver operating curve is provided in addition.

regression and feature selection methods. Whenever significance tests could be
applied, the P-SVM never performed significantly worse than its “competitor”,
in many cases it performed significantly better. But even if no significant im-
provement in prediction error could be found, the P-SVM needed less “support
features”, i.e. less measurements, for evaluating new data objects.

Finally, we have suggested a new interpretation of dyadic data. Objects in
real world are no longer described by vectorial representations. Structures like
dot products or norms are induced directly through measurements of object
pairs, i.e. through relations between objects. This opens up a new field of
research where relations between real world objects determine mathematical
structures.
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A Measurements, Kernels, and Dot Products

In this appendix we address the question under what conditions a “measurement
kernel” which gives rise to a measured matrix K can be interpreted as a dot
product between the “row” and “column” objects of a “dyadic data” set. We
will show that under mild conditions the kernel corresponds to a dot product
between feature vectors which are assigned to the objects and which live in a
Hilbert space, where the dot product always exists for a finite and almost always
exists for an infinite number of “row” objects. The classification or regression
function, which is chosen by the P-SVM, exists for all “column” objects.

Let us assume that “column” objects x (“samples”) and “row objects” z
(“complex features”) are from sets X and Z, which can both be completed
by a σ-algebra and a measure μ to a measurable spaces. We then construct
Hilbert spaces on these sets, but need some definitions first. Let (U , B, μ) be a
measurable space with σ-algebra B and a σ-additive measure μ on the set U . We
consider functions f : U → R on the set U . A function f is called μ-measurable
on (U , B) if f−1 ([a, b]) ∈ B for all a, b ∈ R, and μ-integrable if

∫
U f dμ < ∞.

We define

‖f‖L2
μ

:=
(∫

U
f2 dμ

) 1
2

(41)

and the set

L2
μ(U) :=

{
f : U → R; f is μ-measurable and ‖f‖L2

μ
< ∞

}
. (42)

L2
μ(U) is a Banach space with norm ‖ · ‖L2

μ
. If we define the dot product

〈f, g〉L2
μ(U) :=

∫
U

f g dμ (43)

then the Banach space L2
μ(U) is a Hilbert space with a dot product 〈·, ·〉L2

μ(U) and
scalar body R. For simplicity, we denote this Hilbert space by L2(U). L2(U1,U2)
is the Hilbert space of functions k with

∫
U1

∫
U2

k2 (u1, u2) dμ (u2) dμ (u1) <

∞ using the product measure of μ (U1 × U2) = μ (U1)μ (U2). With these
definitions we see that H1 := L2(Z), H2 := L2(X ), and H3 := L2(X ,Z)
are Hilbert spaces of L2-functions with domains X , Z, and X ×Z, respectively.
The dot product in Hi is denoted by 〈·, ·〉Hi . Note, that for discrete X or Z the
respective integrals can be replaced by sums (integral is evaluated by a measure
of Dirac delta functions at the discrete points).

Let us now assume that k ∈ H3. k induces a Hilbert-Schmidt operator Tk:

f(x) = (Tkα)(x) =
∫
Z

k(x, z) α(z) dμ(z) , (44)

which maps α ∈ H1 (a parameterization) to f ∈ H2 (a classifier). If we set
μ(z) =

∑P
j=1 δ

(
zj
)
, we recover the P-SVM classification function (without b),
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eq. (31), with αj = α(zj)

f(u) =
P∑

j=1

αj k
(
u, zj

)
=

P∑
j=1

αj K(u)j . (45)

Here δ
(
zj
)

is the Dirac delta function at location zj. Note, that sums of Dirac
functions define a measure (see Werner, 2000, page 464, example (c)).

We will now prove that a kernel k is a dot product for almost all pairs of
(x, z) in some space if

(1) “column” objects (“samples”) x are from a set X which can be completed
to a measurable space,

(2) “row” objects (“complex features”) z are from a set Z which can be com-
pleted to a measurable space, and

(3) the kernel k is from L2(X ,Z).

If
∫
Z(k(x, z))2 dμ (z) ≤ K2 then the space, where k evaluates a dot product,

can be identified as �2. �2 denotes the Hilbert space of the set of infinite vectors
a = (a1, a2, . . .), where

∑
i a2

i converges, with dot product 〈a, b〉�2 =
∑

i aibi

and the norm ‖a‖�2 =
(∑

i a2
i

) 1
2 . Further, the regression or classification

function f is continuous and the expansion in orthonormal functions converges
absolutely and uniformly. The kernel k can be interpreted as mapping two
objects, a “column” object x and “row” object z into a common space. In
contrast to Mercer kernels the kernel k defines two mappings into the feature
or measurement space, in which the “column” objects are used to describe the
separating hyperplane.

The next theorem provides assumptions for a kernel computing a dot product
between the object’s feature vectors.

Theorem 1 (Singular Value Expansion)
Let α be from H1 and let k be a kernel from H3 which defines a Hilbert-Schmidt
operator Tk : H1 → H2

(Tkα) (x) = f(x) =
∫
Z

k(x, z) α(z) dz . (46)

Then

‖f‖2
H2

= 〈T ∗
k Tkα, α〉H1 (47)

where T ∗
k is the adjoint operator of Tk and there exists an expansion

k(x, z) =
∑

n

sn en(z) gn(x) (48)

which converges in the L2-sense. The sn ≥ 0 are the singular values of Tk, and
en ∈ H1, gn ∈ H2 are the corresponding orthonormal functions.

For X = Z and symmetric, positive definite kernel k, we obtain the eigen-
functions en = gn of Tk with corresponding eigenvalues sn.
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Proof.
From f = Tkα we obtain

‖f‖2
H2

= 〈Tkα, Tkα〉H2 = 〈T ∗
k Tkα, α〉H1 . (49)

The singular value expansion of Tk is

Tkα =
∑

n

sn〈α, en〉H1 gn (50)

(see Werner, 2000, Theorem VI.3.6). The values sn are the singular values of
Tk for the orthonormal systems {en} on H1 and {gn} on H2. We define

rnm := 〈Tken, gm〉H2 = δnm sm , (51)

where the last “=” results from eq. (50) for α = en. The sum∑
m

r2
nm =

∑
m

(〈Tken, gm〉H2)
2 ≤ ‖Tken‖2

H2
< ∞ (52)

converges because of Bessel’s inequality (the ≤-sign). Next we complete the or-
thonormal system (ONS) {en} to an orthonormal basis (ONB) {ẽl} by adding
an ONB of the kernel ker (Tk) of the operator Tk to the ONS {en}. The func-
tion α ∈ H1 possesses an unique representation through this basis: α =∑

l〈α, ẽl〉H1 ẽl. We obtain

Tkα =
∑

l

〈α, ẽl〉H1 Tkẽl , (53)

where we used that Tk is continuous. Because Tkẽl = 0 for all ẽl ∈ ker (Tk),
the image Tkα can be expressed through the ONS {en}:

Tkα =
∑

n

〈α, en〉H1 Tken (54)

=
∑

n

〈α, en〉H1

(∑
m

〈Tken, gm〉H2 gm

)
=

∑
n,m

rnm〈α, en〉H1 gm .

Here we used the fact that {gm} is an ONB of the range of Tk and, therefore,
Tken =

∑
m〈Tken, gm〉H2 gm.

Because the set of functions {en gm} are an ONS in H3 (which can be completed
to an ONB) and

∑
n,m r2

nm < ∞ (cf. eq. (52)), the kernel

k̃(z, x) :=
∑
n,m

rnm en(z) gm(x) (55)

is from H3. We observe that the induced Hilbert-Schmidt operator Tk̃ is equal
to Tk:(

Tk̃α
)
(x) =

∑
n,m

rnm〈α, en〉H1 gm(x) = (Tkα)(x) , (56)
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where the first “=”-sign follows from eq. (55) and the second “=”-sign from eq.
(54).

It follows that the kernel k and kernel k̃ are equal except for a set with
zero measure, i.e. k =μ k̃. We obtain from eq. (51) 〈Tkel, gt〉H1 = δlt sl

and 〈Tkel, gt〉H1 = rlt from eq. (56), and, therefore, rlt = δltsl. Inserting
rnm = δnmsn into eq. (55) proves the eq. (48) in the theorem.

The last statement of the theorem follows from the fact that |Tk| =
(T ∗

k Tk)1/2 = Tk (Tk is positive and selfadjoint) and, therefore, en = gn

(Werner, 2000, proof of Theorem VI.3.6, page 246 top).
�

As a consequence of this theorem, for finite Z we can define a mapping ω of
“row” objects z and a mapping φ “column” objects x into a common feature
space where k is a dot product.

φ(x) := (s1g1(x), s2g2(x), . . .) , (57)
ω (z) := (e1(z), e2(z), . . .) ,

〈φ(x), ω (z)〉 =
∑

n

sn en(z) gn(x) = k(z, x) .

Note, that finite Z ensures that 〈ω (z) , ω (z)〉 converges. In this common space
a hyperplane which separates the “column” objects with respect to the class
label should be constructed, and it is solely described by the “row” objects or,
equivalently, through directions in the common space. From eq. (54) we obtain
for the classification or regression function

f(x) =
∑

n

sn 〈α, en〉H1 gn(x) . (58)

The classification or regression function is well defined because sets of zero
measure vanish through integration in eq. (44), which is confirmed through
expansion eq. (58), where the zero measure is “absorbed” in the terms 〈α, en〉H1 .

The expansion of the classification or regression function f(x) into the ONS
gm (cf. eq. (58)) should be ensured to converge absolutely and uniformly in x
to justify the analysis in eq. (32), to allow derivatives of gm with respect to x,
and to ensure that f(x) is continuous as a function of x. The latter can be seen
because en are eigenfunctions of the compact, positive, self-adjoint operator
(T ∗

k Tk)
1
2 and gn are isometric images of en (see Werner, 2000, Theorem VI.3.6

and Text before Theorem VI.4.2). Hence, the orthonormal functions gn are
continuous.

To obtain absolute and uniform convergence of the sum for f(x), we must
enforce ‖k(x, ·)‖2

H1
≤ K2 as can be seen in the following corollary.

Corollary 1 (Linear Classification in �2)
Let the assumptions of Theorem 1 hold and let

∫
Z(k(x, z))2 dz ≤ K2 for all

x ∈ X . We define w := (〈α, e1〉H1 , 〈α, e2〉H1 , . . .), and φ(x) := (s1g1(x), s2g2(x), . . .).
Then w, φ(x) ∈ �2, where ‖w‖2

�2 ≤ ‖α‖2
H1

and ‖φ(x)‖2
�2 ≤ K2, and the fol-
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lowing sum convergences absolutely and uniformly:

f(x) = 〈w, φ(x)〉�2 =
∑

n

sn 〈α, en〉H1 gn(x) . (59)

Proof.
First we show that φ(x) ∈ �2:

‖φ(x)‖2
�2 =

∑
n

(sn gn(x))2 =
∑

n

((Tken)(x))2 (60)

=
∑

n

(〈k(x, .), en〉H1 )
2 ≤ ‖k(x, .)‖2

H1
≤ sup

x ∈ X
{
∫
Z

(k(x, z))2 dz} ≤ K2 ,

where we used Bessel’s inequality for the first ”≤”, we used the supremum over
x ∈ X for the second ”≤” (the supremum exists because {∫ (k(x, z))2 dz} is a
bounded subset of R), and we used the assumption of the corollary for the last
”≤”. To prove ‖w‖2

�2 ≤ ‖α‖2
H1

we use again Bessel’s inequality:

‖w‖2
�2 =

∑
n

(〈α, en〉H1)
2 ≤ ‖α‖2

H1
. (61)

Finally, we prove that the sum

f(x) = 〈w, φ(x)〉�2 =
∑

n

sn 〈α, en〉H1 gn(x) (62)

converges absolutely and uniformly. The fact that the sum convergences in the
L2 sense follows directly from the singular value expansion of Theorem 1. We
now chose an m ∈ N with

∞∑
n=m

(〈α, en〉H1)
2 ≤

( ε

K

)2

(63)

for ε > 0 (because of eq. (61) such an m exists), and we apply the Cauchy-
Schwarz inequality

∞∑
n=m

|sn 〈α, en〉H1 gn(x)|

≤
( ∞∑

n=m

(sn gn(x))2
) 1

2
( ∞∑

n=m

(〈α, en〉H1)
2

) 1
2

≤ K
ε

K
= ε ,

where we used inequalities eqs. (60) and (63). Because m is independent of x,
the convergence is absolutely and uniformly, too.
�
Eq. (44) or, equivalently, (59) is a linear classification or regression function
in �2. We find that the expansion of the classifier f converges absolutely and
uniformly and, therefore, that f is continuous.
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In the following we show the connection to the P-SVM, where we use μ(x) =∑L
i=1 δ

(
xi
)
, μ(z) =

∑P
j=1 δ

(
zj
)
, and αj := α

(
zj
)
. We obtain

f(x) =
P∑

j=1

αj k
(
x, zj

)
=

〈
φ (x) ,

P∑
j=1

αj ω
(
zj
)〉

,

Xφ =
(
φ
(
x1

)
, φ

(
x2

)
, . . . , φ

(
xL

))
,

Zω =
(
ω
(
z1

)
, ω

(
z2

)
, . . . , ω

(
zP

))
,

w =
P∑

j=1

αi ω
(
zj
)

(expansion into support vectors),

Kij =
〈
φ
(
xi
)
, ω

(
zj
)〉

=
∑

n

sn en

(
zj
)

gn

(
xi
)

= k
(
xi, zj

)
,

K = X�
φ Zω , and

‖f‖2
H2

= α�K�K α = ‖X�
φ w‖2

2 (the objective function). (64)

Note, that w is not unique with respect to the subspace which is mapped to zero
by the matrix Xφ. Here we obtain an analog result: w is not unique with respect
to the subspace which is mapped to the zero function by Tk, that is components
of α which are in the subspace which is mapped to the zero function by Tk have
no impact on w. Interestingly, we recovered the new objective function eq. (6)
as the L2-norm ‖f‖2

H2
on the classification function. This, again, motivates the

use of the new objective function as a capacity measure. We also find that the
primal problem of the P-SVM (e.g. eq. (25)) corresponds to the formulation
in H2, while the dual (e.g. eq. (30)) corresponds to the formulation in H1.
Primal and dual P-SVM formulations can be transferred into each other via the
property 〈Tkα, Tkα〉H2 = 〈T ∗

k Tkα, α〉H1 .
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S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discrimi-
nant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas,
editors, Neural Networks for Signal Processing IX, pages 41–48. IEEE, 1999.

S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E.
McLaughlin, J. Y. H. Kim, L. C. Goumnerova, P. M. Black, C. Lau, J. C.
Allen, D. Zagzag, J. M. Olson, T. Curran, C. Wetmore, J. A. Biegel, T. Pog-
gio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D. N. Louis, J. P.
Mesirov, E. S. Lander, and T. R. Golub. Prediction of central nervous system
embryonal tumour outcome based on gene expression. Nature, 415(6870):
436–442, 2002.
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