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Abstract

In this paper, an algorithm for data-
driven incremental learning of fuzzy
basis function networks is presented.
A modified version of vector quan-
tization is exploited for rule evo-
lution and incremental learning of
the rules’ antecedent parts. An-
tecedent learning is connected in
a stable manner with a recursive
learning of rule consequent functions
with linear parameters. The pa-
per is concluded with an evaluation
of the proposed algorithm on high-
dimensional measurement data for
engine test benches.
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1 Introduction

Adaptive algorithms for data-driven models
are often of fundamental importance in order
to identify real-time processes that possess a
time-variant behavior [17]. Beyond that, an
insufficiency of amount, distribution or qual-
ity of actual recorded measurement data can
occur, such that the model cannot meet the
expectations at a particular time. In this case,
the incorporation of newly recorded data can
improve the model’s accuracy and reduce the
model error. This automatically yields an
improvement in process security as extrap-
olation to new operating conditions or sys-

tem states is prevented. For online identifi-
cation tasks, this requires an adaptation of
some model parameters in form of incremental
learning steps. This is because a complete re-
building of the models from time to time with
all so far recorded measurements would yield
an unacceptable computational effort. In or-
der to meet these requirements algorithms for
an incremental learning of fuzzy models are
proposed in literature, such as DENFIS [12],
eTS [2] or FLEXFIS [15]. In this paper a
modified version of vector quantization is ex-
ploited (Section 3) for improving FLEXFIS
with respect to the accuracy and complexity
of the obtained models. This will be evalu-
ated in Section 5 based on the fault detection
performance at engine test benches. A spe-
cial attention is given to a stable connection
between antecedent and consequent learning
in Section 4.

2 Definition of Fuzzy Basis
Function Networks

A fuzzy basis function network with input
variables x = (x1, ..., xp) and a single output
variable y can be defined in the following way:

f̂(x) = ŷ =
C∑

i=1

li(x)Ψi(x) (1)

with the normalized membership functions
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and consequent functions

li(x) = wi0 + wi1x1 + wi2x2 + ... + wipxp (3)

with cij the center and σij the width of the
Gaussian function appearing as fuzzy set in
the j-th antecedent part (i.e. the antecedent
part for the jth dimension) of the i-th rule.

When inspecting this formulation of a fuzzy
basis function network we have to real-
ize that principally three different kinds of
components may be learned in incremental
manner: linear rule consequent parameters
(wi0, wi1, ..., wip), nonlinear antecedent para-
meters (cij ,σij) and the rule base concerning
the number of rules (C).

3 Antecedent Parameter
Adaptation and Rule Learning

The incremental training process of the rules’
antecedents is carried out with the help of
incremental clustering. Whenever new clus-
ters are born during the incremental learn-
ing process, new rules are born. More-
over, the clusters are projected onto the one-
dimensional axes in order to form the fuzzy
sets and rules. Hence, rules can be identi-
fied with clusters and a movement of clusters
corresponds to a movement of the fuzzy sets
in the rules antecedents. This is also carried
out in approaches such as [4, 19]. In our ap-
proach a modified version of vector quantiza-
tion is exploited for the incremental clustering
process.

3.1 Vector Quantization in
Incremental Mode

The purpose of vector quantization [8] origi-
nally stems from encoding discrete data vec-
tors in order to compress data which has to
be transferred quickly. It can be easily recog-
nized that it is only applicable for offline clus-
tering tasks as it processes through the entire
data set more than one time. If this would be
carried out for each incremental learning step,
i.e., for each actual loaded data block sepa-
rately, the cluster centers would only repre-
sent a reliable partition of this data block and

forget the older data completely. Moreover,
the number of clusters has to be known in ad-
vance. It should be noticed, that this problem
can be indeed solved for the offline case by ex-
ploiting cluster validation indices [10] and ap-
plying them for different partitions obtained
with different numbers of clusters. However,
for the online case the drawback still remains
as usually the data has to be sent into the
algorithm as it is loaded or recorded.

Hence, for omitting these drawbacks the idea
of adaptive resonance theory network [6] is
exploited. In ART networks, especially in
the ART-2 algorithm, the stability/plasticity
dilemma is solved by the introduction of a
vigilance parameter. It controls the tradeoff
between adaptation of already learned clus-
ters and generation of new clusters. In this
sense, for each new data point the following
condition is checked:

‖x− cwin‖A ≥ ρ and x is not faulty (4)

with x the actual data point, cwin the winning
cluster and A the norm-inducing distance. If
this condition is fulfilled, the prototype cC+1

of the new (the C + 1st) cluster is set to the
actual data point. The second part of condi-
tion (4) assures that the new data point does
not represent a faulty situation during data
recordings. This is very hard to decide and
further investigations needs to be done in this
direction. In fact, it is true that the problem
of a-priori defining the number of clusters C
is shifted to finding a good value for the vigi-
lance parameter ρ. However, a good guess for
this parameter can be achieved much more
easier, when clustering is applied onto data
normalized into the hypercube [0, 1]p: being
far away from a new data point always can
be explained with a certain distance value.
In a trial and error tuning phase, it turned
out that the following choice of this parame-
ter should be preferred:

ρ = fac ·
√

p
√

2
(5)

The dependency of ρ on the p-dimensional
space diagonal can be explained with the
so-called curse of dimensionality effect: the



higher the dimension, the greater the distance
between two adjacent data points, see [11].
Therefore, the larger the parameter ρ should
get in order to prevent the algorithm to gen-
erate too much clusters and causing overfit-
ting effects. An appropriate value for fac
strongly depends on the nature of the data.
Usually, it can be set between 0.2 and 0.4
and is quite insensitive, but this is only a
trial-and-error guess to our best knowledge.
However, cluster merging and splitting strate-
gies [5] can be modified and applied after each
incremental learning step in order to compen-
sate an inappropriate setting of fac. There-
fore, after each sample-wise incremental step
the updated cluster is first split into two parts
and the resulting cluster structure is validated
with a cluster validation index, which does
not need any prior data (for instance PS-
index [21]). This is compared with the vali-
dation without this split and the better struc-
ture is kept. The same procedure can be done
for merging, where the cluster closest to the
updated one is merged with the updated one.

With these notations and by assuming nor-
malized data, vector quantization in incre-
mental mode becomes:

Algorithm 1. VQ-INC

1. Initialize the number of clusters to 0

2. Take the next incoming data point x

3. If the number of clusters is 0

(a) Set i = 1, set the first center c1 to
the actual data point, hence c1 = x

(b) goto step 8

4. Calculate the distance of the selected
data point to all cluster centers by using
a predefined distance measure.

5. Elicit the cluster center which is closest
to the data point by taking the minimum
over all calculated distances → winner
cluster cwin

6. If ‖x− cwin‖A ≥ ρ and x is not faulty

(a) Set i = i + 1, set ci = x
(b) goto step 8

7. Update the p components of the winner
cluster by moving it towards the selected
point x:

c(new)
win = c(old)

win + η(x− c(old)
win ) (6)

8. If new incoming data points are still
available, goto step 2, otherwise stop

From this definition it can be realized that
each (newly loaded) data point is processed
only once through the update process. This
is quite reliable (opposed to conventional vec-
tor quantization) as clusters centers are al-
ready initialized in new local data clouds and
hence restricted to move therein (because of
condition (5)). For this algorithm, the learn-
ing gain ηi (for the ith cluster center) should
be decreased by the number of data points
belonging to a cluster, i.e., for all i

ηi =
0.5
ki

(7)

with ki the number of data points belonging
to cluster i. This is because, as in k-means
clustering algorithm [1], the step size is also
normalized by this number, whereas original
vector quantization is a simplified version of
k-means clustering.

3.2 An Alternative Distance Strategy

The problem with Algorithm 1 is that, in the
case of wider data clouds, it tends to generate
more clusters than necessary and hence per-
forms an ’overclustering’ and incorrect parti-
tion of the input space. This fact is underlined
in the left image of Figure 1, where obviously
three clusters are the optimal case, but five
cluster are generated. The reason for this un-
pleasant occurrence lies at hand: Algorithm
1 compares each new incoming point with all
the cluster centers. This can be far away even
if the data point is close to its spanned range
of influence (represented by those data points
already belonging to the cluster). Therefore,
an obvious overcoming of this drawback can
be achieved by calculating the range of influ-
ence during the incremental learning process
and taking the distance of new points to these



ranges. Whenever the Euclidean distance is
used as distance measure, axis-parallel ellip-
soids are obtained as clusters, whose range of
influence (as 2σ-area) can be calculated in in-
cremental mode by exploiting recursive vari-
ance formula [18]:

kwinσ
2
win,j =

(kwin − 1)σ2
win,j + ki∆c2

win,j + (cwin,j − xj)2

(8)

where ∆cwin,j is the distance of the old proto-
type to the new prototype of the cluster near-
est to the actual point x in the jth dimension
and kwin is the number of data points lying
nearest to cluster cwin For the distance of the
new data point to the surface of the multi-
dimensional ellipsoid spanned by a cluster we
take the distance along the direction from the
actual point towards the cluster center.

Lemma 1. Let therefore
∑p

j=1
(xj−cij)

2

σ2
ij

= 1

be a multidimensional ellipsoid of the ith clus-
ter in main position, σij the variance of the
data belonging to the ith cluster in dimension
j, then the Euclidian distance of the new data
point (q1, ..., qp) to the surface along the di-
rection towards the cluster center cij is given
by

dist = (1− t)

√√√√ p∑
j=1

(qj − cij)2 (9)

with
t =

1√∑p
j=1

(qj−cij)2

σ2
ij

(10)

In fact, the distance (9) is only computed for
the actual data point, if it is lying outside the
ranges of influence of all clusters, i.e. there
exists no i such that

p∑
j=1

(qj − cij)2

σ2
ij

≤ 1 (11)

Otherwise, the usual distance strategy is ap-
plied for all clusters fulfilling (11).

This leads us to the modified version of vector
quantization in incremental mode:

Algorithm 2. VQ-INC-MOD

1. Initialize the number of clusters to 0

2. Take the next incoming data point x

3. If the number of clusters is 0

(a) Set i = 1, set the first center c1 to
the actual data point, hence c1 =
x, set σ1 = ε, ε a vector of small
numbers > 0

(b) goto step 8

4. If condition (11) is fulfilled for at least
one i

(a) Calculate the distance of the se-
lected data point to all those clus-
ter centers fulfilling (11) by using
Euclidian distance measure.

(b) Elicit the cluster center which is
closest to the data point by taking
the minimum over all calculated dis-
tances → winner cluster cwin

(c) Set mindist = 0

5. Else If condition (11) is not fulfilled for
any i

(a) Calculate (9) for all clusters
(b) Elicit the cluster center which is

closest to the data point by taking
the minimum over all calculated dis-
tances → winner cluster cwin

(c) Set mindist as the minimum over all
distances

6. If mindist ≥ ρ and x is not faulty

(a) Set i = i + 1
(b) ci = x, σi = 0

7. Else Update the p components of the
winner cluster by moving it towards the
selected point x as in (6), update the
variance in each direction by using (8).

8. If new incoming data points are still
available goto step 2, otherwise stop

Figure 1 demonstrates the impact of this mod-
ified version of vector quantization. While
Algorithm 1 generates new clusters for data
points lying near the range of influence of an-
other cluster (left image), the modified ver-
sion performs better and extends the range of



Figure 1: Left Image: clustering obtained by
Algorithm 1 → ’over-clustering’ (three clus-
ters are generated instead of one correct one
for the large data cloud at the bottom); right
image: clustering obtained by its modified
version with new distance strategy (Algo-
rithm 2) → clusters are correct

influence of the nearby lying cluster (right im-
age). The cluster centers are visualized as big
dark dots.

4 Connecting Rule Antecedent
Learning with Rule Consequent
Learning

Principally two different approaches for learn-
ing linear rule consequents can be applied [22]:

• Global Learning: all C normalized mem-
bership functions (each one belonging ex-
actly to one rule) are joined together in
one regression matrix. Hence, the com-
plete parameter vector w representing all
linear consequent parameters in all rules
is optimized.

• Local Learning: Each rule is treated sep-
arately and the corresponding linear con-
sequent parameters are optimized in a
weighted least squares approach, where
the weights contain the normalized mem-
bership functions.

A local approach is necessary for a complete
incremental learning of Takagi-Sugeno fuzzy
systems, as it yields a higher flexibility for ad-
joining rules when new operating conditions
for the measurement process occur. This is
because for each rule an independent linear
consequent parameter estimation is carried

out (which is not the case for global learn-
ing). Furthermore, local learning possesses
some other advantages compared to global
learning such as numerical stability (as deal-
ing with inversion of smaller matrices), com-
putational performance and transparency of
the consequent functions (hyper-planes). The
latter aspect is based on an observed snug-
gling of the linear hyper-planes along the ap-
proximating surface [14].

The adaptive formulation of local learning re-
sults in well-known recursive weighted least
squares [3,13], which calculates a new update
for the linear parameters w each time a new
data point comes in. It is remarkable, that
it is a recursive formulation of weighted least
squares, meaning that for each time instant
the algorithm leads to the optimum in the
least squares sense within each iteration step.

ŵi(k + 1) =ŵi(k) + γ(k)(y(k + 1)

− rT (k + 1)ŵi(k)) (12)

γ(k) =
Pi(k)r(k + 1)

1
Ψi(x(k+1))

+ rT (k + 1)Pi(k)r(k + 1)
(13)

Pi(k + 1) = (I − γ(k)rT (k + 1))Pi(k) (14)

with Pi(k) = (Ri(k)T Qi(k)Ri(k))−1 the in-
verse weighted inverse Hessian matrix and
r(k+1) = [1 x1(k+1) . . . xp(k+1)]T the re-
gressor values of the k+1th data point, which
is the same for all i rules

This recursive learning of linear consequent
parameters is connected with the antecedent
parameter and rule learning strategy in Sec-
tion 3. An obvious and straightforward way
for doing so would be, either first to update
the antecedent part and then second to adapt
the consequent parameters of that rule corre-
sponding to the winning cluster, or vice versa.

However, we want the incremental learning
variant to be as close as possible to the so-
lution obtained by the batch learning case, as
this leads to the optimal solution in the least
squares sense. Indeed, recursive weighted least
squares applied to the linear consequent pa-
rameters of each rule separately as in (12),



(13) and (14) possesses the property of con-
vergence within each iteration step. However,
a change of fuzzy sets in the antecedent parts
and furthermore in the normalized mem-
bership functions (2) makes the prior esti-
mated linear consequent parameters always
non-optimal for this changed fuzzy model (as
these were optimized for the old fuzzy set
positions). Hence, we introduce correction
terms for the linear parameter update in or-
der to balance out this non-optimal situation
towards the optimal one with respect to the
degree of change in the antecedent part. In
this sense, before updating rule consequents,
they are added to linear parameters as well as
to the inverse Hessian matrix P .

The incremental learning of fuzzy basis func-
tion networks with a modified version of vec-
tor quantization becomes:

Algorithm 3. FLEXFIS-MOD

1. Collect k data points sufficient for the ac-
tual dimensionality of the problem

2. From these collected k data points gen-
erate an initial fuzzy model by using
VQ-INC-MOD and local learning of rules
consequents in batch mode (with least
squares)

3. Take the next incoming data point x

4. Normalize cluster centers and widths as
well as the current data point due to the
ranges from the previous cycle. This has
the effect that new incoming (fault-free)
data points lying significantly outside the
already estimated range cause certainly a
new rule.

5. Perform steps 4, 5 and 6 of Algorithm 2

6. If the condition in step 6 of Algorithm 2
is fulfilled, set a new rule: C = C + 1,
project cluster to the axes to obtain the
Gaussian fuzzy sets, set the linear con-
sequent parameters ŵC of the new rule
C to 0, set the inverse Hessian matrix
(RT

CQCRC)−1 of the new rule to αI.

7. Else Perform step 7 in Algorithm 2,
project modified clusters onto the axes

→ modified sets; correct the linear para-
meter vector of consequent functions and
the inverse Hessian matrix of the rule cor-
responding to the winning cluster by

ŵwin(k) = ŵwin(k) + δwin(k)
Pwin(k) = Pwin(k) + ∆win(k)

8. Update the ranges of all input and output
variables

9. Perform recursive weighted least squares
as in (12) to (14) for all C rules, achieving
parameter vectors ŵi(k + 1) and inverse
Hessian matrices Pi(k + 1) for all i rules.

10. If new incoming data points are still
available set k = k + 1 goto step 3, oth-
erwise stop

The correction terms δwin(k) and ∆win(k) can-
not be calculated explicitly within each in-
cremental learning step without using prior
loaded data points. However, a bound to
these correction terms can be achieved, en-
suring an almost-optimality (close to the op-
timality) in the least squares sense, when the
correction terms are simply set to 0. The key
factors of this achievement are the decreas-
ing learning gain η (see (7)) and the bounded
change of the rules’ antecedents in each incre-
mental learning step (because of condition in
Step 6 of Algorithm 2).

5 Evaluation

In order to demonstrate practical feasibil-
ity, FLEXFIS-MOD is applied for generating
high-dimensional fuzzy models from measure-
ment data coming from engine test benches.
Real faults were simulated at the test bench
while recording the data. These faults should
be detected by calculating the deviation of ac-
tual measurements to the online trained fuzzy
models as done in [16]. There, it was pointed
out that the fault detection performance of
data-driven models is directly related to their
prediction performance. Hence, the detection
rate, i.e. the number of correctly detected
faults is stated as quality measure in Table
1. These values were achieved by setting the



Figure 2: ROC curves for genfis2 with consequent adaptation (left), FLEXFIS (middle) and
FLEXFIS-MOD (right)

Table 1: Comparison of incremental training
variants for fuzzy basis function networks

Method Comp. Det. Rate
genfis2 + 9.43 53.75% / 50%
consequ. adapt
FLEXFIS [15] 8.24 66.25% / 75%
FLEXFIS-MOD 7.12 70% / 75%

threshold in a way, such that no false detec-
tions occurred. A zero false detection rate is
quite often a requirement in industrial sys-
tems, as with a high number of false alarms
the confidence of the operators in the software
gets weakened, until finally the fault detection
component is ignored. Furthermore, for com-
paring the methods with respect to specificity
vs. sensitivity, the ROC curve is shown in Fig-
ure 2. Note that the closer the curve follows
the left-hand border and then the top border
of the ROC space, the better the fault detec-
tion performance of the method. In sum,
56 up to five-dimensional reasonable models
could be extracted automatically from the
data with the help of variable selection meth-
ods [9], where 70 channels were measured in
sum. This gives a good coverage of channels,
when taking into account, that some of the
remaining 14 appear at the input side of the
models.

The table and the ROC curve are shown
for the online case, where fuzzy models have
to be adaptively trained with new incom-
ing data. This was accomplished in an on-

line simulation framework, where the data
was loaded sample-wise into the memory. A
high-frequented re-building with conventional
batch modelling methods of all the 56 mod-
els was not possible, as this slowed down the
whole process significantly, such that real time
performance could not be achieved. There-
fore, in the case of genfis2 [20] (as batch
mode modeling variant) an adaptation of lin-
ear rule consequent parameter alone (with re-
cursive least squares as stated in Section 4)
was tried, as it is often proposed in litera-
ture, e.g. [4, 7]. From Table 1 and Figure 2 it
can be recognized that this incremental fuzzy
model training option cannot compete with
both, FLEXFIS and FLEXFIS-MOD. This is
quite intuitive as different operating condi-
tions at the engine test bench occurred, for
which the models needs to be extended and
flexibly adapted. This cannot be achieved
with adaptations of the linear hyper-planes
alone. The complexity is measured by the av-
erage number of rules over the 56 fuzzy mod-
els and stated in Table 1. In this table the
detection rate and the false detection rate are
measured on two bases: the first number cor-
responds to the measurement basis i.e. all
measurements affected by faults are counted
(in sum 80), the second one corresponds to
the fault bases, i.e. all different kind of faults
are counted (in sum eight). The ROC curves
in Figure 2 only show the rates on the mea-
surement basis.



6 Conclusion

A new method for incremental learning of
fuzzy systems was demonstrated. It exploits
a modified variant of vector quantization and
recursive learning of linear rule consequent
parameters. A special attention is given to
stability and process safety when combining
these two approaches. The evaluation in
Section 5 underlines the applicability of the
method for online identification and fault de-
tection tasks. Promising future directions will
include process safety enhancements with re-
spect to extrapolation behavior, a concept for
omitting the incorporation of faulty occasions
and calculating error bars incrementally for
improved fault detection.
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