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Summary. We describe the “Potential Support Vector Machine” (P-SVM) which
is a new filter method for feature selection. The idea of the P-SVM feature selection
is to exchange the role of features and data points in order to construct “support
features”. The “support features” are the selected features. The P-SVM uses a novel
objective function and novel constraints – one constraint for each feature. As with
standard SVMs, the objective function represents a complexity or capacity measure
whereas the constraints enforce low empirical error. In this contribution we extend
the P-SVM in two directions. First, we introduce a parameter which controls the
redundancy among the selected features. Secondly, we propose a nonlinear version of
the P-SVM feature selection which is based on neural network techniques. Finally,
the linear and nonlinear P-SVM feature selection approach is demonstrated on toy
data sets and on data sets from the NIPS 2003 feature selection challenge.

1 Introduction

Our focus is on the selection of relevant features, that is on the identification of
features, which have dependencies with the target value. Feature selection is impor-
tant (1) to reduce the effect of the “curse of dimensionality” (Bellman, 1961) when
predicting the target in a subsequent step, (2) to identify features which allow to
understand the data as well as control or build models of the data generating pro-
cess, and (3) to reduce costs for future measurements, data analysis, or prediction.
An example for item (2) and (3) are gene expression data sets in the medical context
(e.g. gene expression patterns of tumors), where selecting few relevant genes may
give hints to develop medications and reduce costs through smaller microarrays.
Another example is the World Wide Web domain, where selecting relevant hyper-
links corresponds to the identification of hubs and authorities. Regarding items (2)
and (3), we investigate feature selection methods which are not tailored to a certain
predictor but are filter methods and lead to compact feature sets.

We propose the “Potential Support Vector Machine” (P-SVM, Hochreiter and
Obermayer, 2004a) as filter method for feature selection. The P-SVM describes
the classification or regression function through complex features vectors (certain
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directions in input space) rather than through the input vectors as standard support
vector machines (SVMs, Boser et al., 1992; Cortes and Vapnik, 1995; Schölkopf and
Smola, 2002; Vapnik, 1998) do. This description imposes no restriction on the chosen
function class because it is irrelevant how a function is represented. A feature value
is computed by the dot produce between the corresponding complex feature vector
and an input vector analogous to measurements in physics.

In the following we give an outline of the P-SVM characteristics. (1) The P-SVM
avoids redundant information in the selected features as will be discussed in Section
3. Redundancy is not only opposed to compact feature sets but may reduce the
performance of subsequent model selection methods as shown in (Hochreiter and
Obermayer, 2004a) and in Section 5.1. For example statistical feature selection ap-
proaches suffer from redundant features. (2) The P-SVM has a sparse representation
in terms of complex features as SVM-regression has with the ǫ-insensitive loss. (3)
The P-SVM assigns feature relevance values which are Lagrange multipliers for the
constraints and, therefore, are easy to interpret. A large absolute value of a Lagrange
multiplier is associated with large empirical error if the according complex feature
vector is removed from the description. (4) The P-SVM is suited for a large number
of features because “sequential minimal optimization” (SMO, Platt, 1999) can be
used as solver for the P-SVM optimization problem. Due to the missing equality
constraint, for the P-SVM the SMO is faster than for SVMs (Hochreiter and Ober-
mayer, 2004a). (5) The P-SVM is based on a margin-based capacity measure and,
therefore, has a theoretical foundation as standard SVMs have.

In this chapter we will first introduce the P-SVM. Then we will extend the basic
approach to controlling the redundancy between the selected features. Next, we
describe a novel approach which extends the P-SVM to nonlinear feature selection.
As discussed later in Section 4, kernelizing is not sufficient to extract the nonlinear
relevance of the original features because the nonlinearities which are investigated
are restricted by the kernel. Finally, we apply the generic P-SVM method to the
data sets of the NIPS 2003 feature selection challenge. The “nonlinear” variant of
the P-SVM feature selection method is tested on the nonlinear Madelon data set.

2 The Potential Support Vector Machine

We consider a two class classification task, where we are given the training set
of m objects described by input vectors xi ∈ R

n and their binary class labels
yi ∈ {+1,−1}. The input vectors and labels are summarized in the matrix X =
(x1, . . . , xm) and the vector y. The learning task is to select a classifier g with
minimal risk, R(g) = min, from the set of classifiers

g(x) = sign (w · x + b ) , (1)

which are parameterized by the weight vector w and the offset b. The SVM opti-
mization procedure is given by (Schölkopf and Smola, 2002; Vapnik, 1998)

min
w,b

1

2
‖w‖2 subject to yi (w · xi + b) ≥ 1 , (2)
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for linearly separable data. In this SVM formulation the constraints enforce correct
classification for a hyperplane in its canonical form whereas the objective function
maximizes the margin γ = ‖w‖−1. The margin relates directly to a capacity
measure. Let R be the radius of the sphere containing all training data, then the
term R

γ
is an upper bound for an capacity measure, the VC-dimension (Schölkopf

and Smola, 2002; Vapnik, 1998). SVMs are based on the structural risk minimization
principle which suggests to select from all classifiers, which correctly classify the
training data, the classifier with minimal capacity.

However, the disadvantage of the SVM technique is that it is not scaling in-
variant, e.g. normalization of the data changes both the support vector solution
and the bound R

γ
on the capacity. If scaling is justified, we propose to scale the

training data such that the margin γ remains constant while R becomes as small
as possible. Optimality is achieved when all directions orthogonal the normal vector
w of the hyperplane with maximal margin γ are scaled to zero. The new radius is
R̃ ≤ maxi |ŵ · xi|, where ŵ := w

‖w‖
. Here we assumed centered data and a

centered sphere otherwise an offset allows to shift the data or the sphere. The new
radius is the maximal distance from the origin in an one-dimensional problem. Fi-

nally, we suggest to minimize the new objective
∥

∥X⊤ w
∥

∥

2
, which is an upper bound

on the new capacity measure:

R̃2

γ2
= R̃2 ‖w‖2 ≤ max

i
|w · xi| ≤

∑

i

(w · xi)
2 =

∥

∥

∥
X

⊤
w

∥

∥

∥

2

. (3)

The new objective function can also be derived from bounds on the generalization
error when using covering numbers because the output range of the training data –
which must be covered – is bounded by 2 maxi |w ·xi|. The new objective function
corresponds to an implicit sphering (whitening) if the data has zero mean (Hochreiter
and Obermayer, 2004c). Most importantly, the solution of eqs. (2) with objective
function eq. (3) is now invariant under linear transformation of the data. Until now
we motivated a new objective function. In the following we derive new constraints
which ensure small empirical error.

Definition 1. A complex feature vector zj is a direction in the input space
where the feature value fi,j of an input vector xi is obtained through fi,j = xi · zj.

We aim at expressing the constraints which enforces small empirical error by N
complex feature vectors zj , 1 ≤ j ≤ N . Complex features and feature values are
summarized in the matrices Z := (z1, . . . , zN ) and F = X⊤ Z . The ith feature
vector is defined as fi = (fi,1, . . . , fi,N ) = Z⊤xi. The complex features include
Cartesian unit direction, if we set zj = ej , that is Z = I , F = X⊤, fi,j = xi,j

and N = n. In this case we obtain input variable selection. The introduction of
complex feature vectors is advantageous for feature construction where a function
of Z (e.g. minimal number of directions or statistical independent directions) is
optimized and for handling relational data (Hochreiter and Obermayer, 2004c).

We now propose to minimize eq. (3) under constraints which are necessary for
the empirical mean squared error Remp (gw,b) = 1

2 m

∑m

i=1 (w · xi + b − yi)
2 to

be minimal (∇wRemp (gw,b) = 0), and we obtain
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lim
t→0+

Remp

(

gw+tzj ,b

)

− Remp (gw,b)

t
= (zj)

⊤ ∇wRemp (gw,b) = 0 (4)

and
∂Remp (gw,b)

∂b
= 0 (5)

for the constraints. The empirical error is a convex function in (w, b) and possesses
only one minimum, therefore all constraints can be fulfilled simultaneously. The
model selection method which combines both the new objective from eq. (3) and
the new constraints from eqs. (4) is called “Potential Support Vector Machine”
(P-SVM). Each complex feature zj is associated with a constraint in eqs. (4).

Our approach enforces minimal empirical error and, therefore, is prone to over-
fitting. To avoid overfitting, we allow for violation of the constraints, controlled by a
hyperparameter ǫ. Standardization (mean subtraction and dividing by the standard
deviation) is performed for the feature values (f1,j , . . . , fm,j). We now require, that

∣

∣

∣
(zj)

⊤ ∇wRemp (gw,b)
∣

∣

∣
=

∣

∣

∣

∣

[

F
⊤

(

X
⊤

w − y
)]

j

∣

∣

∣

∣

≤ ǫ . (6)

in analogy to the concept of the ǫ-insensitive loss (Schölkopf and Smola, 2002)
for standard SVMs. Hence, absolute constraint values, i.e. directional derivatives,
smaller than ǫ are considered to be spurious. Note, that standardization leads to
F ⊤1 = 0 and the term F ⊤b 1 vanishes. The value ǫ correlates with the noise level
of the data and is a hyperparameter of model selection. Combining eq. (3) and eqs.
(6) results in the primal P-SVM optimization problem for feature selection:

min
w

1

2
‖X⊤

w‖2 subject to
F ⊤

(

X⊤ w − y
)

+ ǫ 1 ≥ 0

F ⊤
(

X⊤ w − y
)

− ǫ 1 ≤ 0
, (7)

for which the dual formulation is the

P-SVM feature selection

min
α

+,α−

1

2

(

α
+ − α

−)⊤
F

⊤
F

(

α
+ − α

−)

(8)

− y
⊤

F
(

α
+ − α

−)

+ ǫ 1⊤ (

α
+ + α

−)

subject to 0 ≤ α
+ , 0 ≤ α

− .

• ǫ: parameter to determine the number of features, large ǫ means
few features

• αj = α+
j − α−

j : relevance value for complex feature vector zj ,
αj 6= 0 means that vector no. j is selected, positive αj means class
1 indicative vector zj and negative αj means class -1 indicative

• F = X⊤ Z with data matrix X and the matrix of complex
features vectors Z (variable selection: F = X)

• y: vector of labels
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Here α+ and α− are the Lagrange multipliers for the constraints (See Hochre-
iter and Obermayer, 2004a, for the derivation of these equations). Eqs. (8) can be
solved using a new sequential minimal optimization (SMO) technique (Hochreiter
and Obermayer, 2004a). This is important to solve problems with many features
because F ⊤ F is a N × N matrix, therefore the optimization problem is quadratic
in the number of complex features.

Using α = α+ − α−, the weight vector w and the offset b are given by

w = Z α =
N

∑

j=1

αj zj and b =
1

m

m
∑

i=1

yi . (9)

Note, that for feature selection, i.e. Z = I , w = α holds, but still we recommend
to solve the dual optimization problem because it has only box constraints while the
primal has twice as many constraints as input variables.

The classification (or regression) function is the given by

g(x) = w · x + b =

N
∑

j=1

αj zj · x + b =

N
∑

j=1

αj fj + b . (10)

Most importantly, the vector w is expressed through a weighted sum of the
complex features. Note, that the knowledge of fi,j and labels yi for all training input
vectors xi is sufficient to select a classifier (see eqs. (8)). The complex feature vectors
zj must not be known explicitly. Complex feature vectors corresponding to spurious
derivatives (absolute values smaller than ǫ) do not enter w because the corresponding
Lagrange multipliers are zero. In particular the term ǫ 1⊤

(

α+ + α−
)

in the dual
eqs. (8) leads to sparse representation of w through complex features and, therefore,
to feature selection.

Note, that the P-SVM is basically a classification method. On UCI benchmark
datasets the P-SVM showed comparable to better results than ν-SVMs and C-SVMs
(Hochreiter and Obermayer, 2004a). However for classification the constraints are
relaxed differently (by slack variables) to the approach presented here.

3 P-SVM Discussion and Redundancy Control

3.1 Correlation Considerations

In this subsection we focus on feature selection and consider the case of F ⊤ F =
XX⊤ for the quadratic term of the optimization problem (8). Now it is the empirical
covariance matrix of the features. The linear term y⊤ X⊤ in eqs. (8) computes
the correlation between features and target. Thus, such features are selected which
have large target correlation and are not correlated to other features. Large target
correlations result in large negative contributions to the objective function and small
mutual feature correlations in small positive contributions. Consequently, highly
correlated features are not selected together.
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In contrast to statistical methods, the P-SVM selects features not only on the
basis of their target correlation. For example, given the values of the left hand side in
following table, the target t is computed from two features f1 and f2 as t = f1 + f2.
All values have mean zero and the correlation coefficient between t and f1 is zero.
In this case the P-SVM also selects f1 because it has negative correlation with
f2. The top ranked feature may not be correlated to the target, e.g. if it contains
target-independent information which can be removed from other features.

f1 f2 t f1 f2 f3 t

-2 3 1 0 -1 0 -1
2 -3 -1 1 1 0 1

-2 1 -1 -1 0 -1 -1
2 -1 1 1 0 1 1

The right hand side of the table depicts another situation, where t = f2 + f3. f1,
the feature which has highest correlation coefficient with the target (0.9 compared
to 0.71 of the other features) is not selected because it is correlated to all other
features.

3.2 Redundancy versus Selecting Random Probes

For the NIPS feature selection challenge we applied the P-SVM technique and found
that the P-SVM selected a high percentage of random probes as can be see at
Table 4. Random probes are selected because they have by chance a small, random
correlation with the target and are not correlated to other selected features. Whereas
many features with high target correlation are not selected if they are correlated with
other selected features. Avoiding redundancy results in selecting random probes.

In this subsection we extent the P-SVM approach in order to control the re-
dundancy among the selected features. We introduce slack variables in the primal
formulation eqs. (7) to allow to trade lower correlations in the objective function for
errors in the constraints:

min
w

1

2
‖X⊤

w‖2 + C 1⊤ (

ξ
+ + ξ

−)

(11)

subject to F
⊤

(

X
⊤

w − y
)

+ ǫ 1 + ξ
+ ≥ 0

F
⊤

(

X
⊤

w − y
)

− ǫ 1 − ξ
− ≤ 0 , 0 ≤ ξ

+, ξ− .

As dual formulation we obtain the following optimization problem.
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P-SVM feature selection with redundancy control

min
α

+,α−

1

2

(

α
+ − α

−)⊤
F

⊤
F

(

α
+ − α

−)

(12)

− y
⊤

F
(

α
+ − α

−)

+ ǫ 1⊤ (

α
+ + α

−)

subject to 0 ≤ α
+ ≤ C 1 , 0 ≤ α

− ≤ C 1 .

• variables as in problem eqs. (8)
• C controls redundancy of selected features, small C results in more

redundancy

The eqs. (9) for w and b still hold. The effect of introducing the slack variables
can be best seen at the dual problem. Because the αj are bounded by C, high correla-
tions are lower weighted in the objective function. Consequently, correlated features
have a lower positive contribution in the objective function and, therefore, selecting
redundant features does not cost as much as in the original P-SVM formulation.
The effect is demonstrated at the following two toy experiments.

In the first two class classification experiment six dimension out of 100 are in-
dicative for the class. The class membership was chosen with equal probability (0.5)
and with equal probability 0.5 either the first three features were class indicators or
the features 4 to 6. If the first three features are class indicators, features a chosen
according to xi,j ∼ yi N (j, 1), 1 ≤ j ≤ 3, xi,j ∼ N(0, 1), 4 ≤ j ≤ 6, xi,j ∼ N (0, 20),
7 ≤ j ≤ 100. If features 4 to 6 are class indicators, features a chosen according
to xi,j ∼ N(0, 1), 1 ≤ j ≤ 3, xi,j ∼ yi N(j − 3, 1), 4 ≤ j ≤ 6, xi,j ∼ N (0, 20),
7 ≤ j ≤ 100. Only the first six feature are class indicators but mutual redundant.
Finally, the class labels were switched with probability 0.2. In the experiments ǫ
is adjusted to obtain 6 features, i.e. to obtain 6 support vectors. The top part of
Table 1 shows the result for different values of C. With decreasing C more relevant
features are selected because the redundancy weighting is down-scaled.

In the next experiment we extended previous experiment by using 940 probes
and 60 features (1000 input components), where either the first 30 or features 31
to 60 are indicative for the class label. Indicative features are chosen according to
xi,j ∼ N (2, 1). All other value were as in previous experiment. The value of ǫ is
adjusted to a value that only about 60 features are selected (α 6= 0). The bottom
part of Table 1 shows the result for different values of C. The percentage of probes
in the selected variables is 93 % for C = 10 and reduces to 33 % for C = 0.003.

These simple experiments demonstrated that the original P-SVM selects many
random probes because it minimized feature redundancy. Here we controlled this
effect by introducing slack variables. Note, that for the NIPS challenge submissions
no slack variables were used.

3.3 Comparison to Related Methods

1-norm SVMs (Bi et al., 2003). The P-SVM feature selection is related to the
1-norm SVMs because both use a 1-norm sparsity constraint. However the P-SVM
contains – in contrast to the 1-norm SVM – a quadratic part. The effect of the
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Table 1. Toy example for redundancy control. TOP: Feature ranking where
the first 6 features are relevant to predict the class label. With decreasing C more
redundant features are selected and, therefore, more relevant features are found
(their number is given in column “c”). α values are given in brackets. BOTTOM:
60 relevant features exist. Starting from 4 relevant features (93 % probes) reducing
C leads to 40 relevant features (33 % probes).

C ǫ c 1. 2. 3. 4. 5. 6.

10 1.5 3 6 (1.78) 2 (1.12) 26(-0.55) 18(-0.44) 3 (0.35) 52(-0.07)
1 2 4 6 (1.00) 2 (0.71) 5 (0.29) 3 (0.13) 18(-0.09) 26(-0.06)

0.5 2 5 2 (0.50) 5 (0.50) 6 (0.50) 3 (0.22) 18(-0.09) 4 (0.04)

C ǫ # relevant features C ǫ # relevant features

10 0.65 4 0.1 1.7 23
0.5 1 11 0.05 2 31
0.2 1.45 17 0.003 2 40

quadratic part was demonstrated in Subsection 3.1, were we found that important
features are select through correlation with other features. Comparisons can be found
in the experiments in Subsection 5.1.
Zero-norm SVMs (Weston et al., 2003). Zero-norm SVMs optimize a different
objective than the P-SVM, where the scaling factor of the selected features is no
longer important. Scaling factors may, however, be important if different features
contain different levels of noise. We compared the P-SVM with zero-norm SVMs in
the experiments in Subsection 5.1 (only 2 features selected). The zero-norm SVMs
select features by successively repeating 1-norm SVMs. The P-SVMs can be ex-
tended in a similar way if after standardization features are weighted by their actual
importance factors.
LASSO (Tibshirani, 1996). The LASSO is quite similar to the P-SVM method.
In contrast to P-SVM, LASSO does not use the linear term of the dual P-SVM in
the objective function but constraints it. P-SVM is derived from an SVM approach,
therefore contains a primal and a dual formulation which allows to apply a fast
SMO procedure. A major difference between P-SVM and LASSO is that LASSO
cannot control the redundancy among the selected features as the P-SVM can with
its slack variables as demonstrated in Subsection 3.2. Comparisons to LASSO are
implicitly contained the NIPS feature selection challenge, where the methods of
Saharon Rosset and Ji Zhu are based on the LASSO.

4 Nonlinear P-SVM Feature Selection

In this section we extend the P-SVM feature selection approach to assigning rel-
evance values to complex features zj , where we now consider also nonlinear com-
binations of the features. To construct new features by nonlinearly combining the
original features (Kramer, 1991; Oja, 1991; Schölkopf et al., 1997; Smola et al., 2001;
Tishby et al., 1999) by using kernels is possible but not sufficient to extract arbi-
trary nonlinear dependencies of features. Only those nonlinearities can be detected
which are determined by the kernel. A wrong kernel choice does not allow to extract
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proper nonlinearities. Therefore, we attempt to construct proper nonlinearities by
training multi-layer perceptrons (MLPs). After training we determine the relevance
of input variables. Our approach is related to input pruning methods (Hassibi and
Stork, 1993; Moody and Utans, 1992) and automatic relevance determination (ARD,
MacKay, 1993; Neal, 1996).

For input x the value y (x) is the output function of the MLP and netl = wl ·
x + bl the net input of the hidden unit l. After training on the training set {(xi, yi)}},
we set netl = 0 for the forward and backward pass. For training example xi this leads
to a new output of ỹl (xi) and an induced error of el (xi) = 1

2
(ỹl (xi) − y (xi))

2.
The error indicates the relevance of netl but does not supply a desired value for netl.
However, the gradient descent update signal for netl supplies a new target value yl,i

for netl (xi) and we arrive at the regression task:

yl,i = wl · xi + bl , yl,i := −
∂el (xi)

∂netl (xi)
. (13)

This regression problem is now solved by the P-SVM which selects the relevant
input variables for hidden unit l. Fig. 1 depicts the regression task. The vectors
wl are now expressed through complex features zj and allow to assign for each
l a relevance value αj,l to zj . Finally, the results for all l are combined and the
complex features zj are ranked by their relevance values αj,l, e.g. by the maximal
absolute weight or squared weight sum. The pseudo code of the algorithm is shown
in Algorithm 1.

input

hiddenlayer 2

output

P-SVM regression: yl;i = netl (xi) = wl � xi + bl

hiddenlayer 1
xi

~y (xi)

netlnet input :

Fig. 1. Outline of the nonlinear P-SVM. After MLP training the P-SVM solves the
regression task yl,i = wl · xi + bl, where yl,i := − ∂el(xi)

∂netl(xi)
for wl = 0 and

bl = 0. The P-SVM selects the relevant input variables to hidden unit l.
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Algorithm 1 Nonlinear P-SVM Feature Selection

BEGIN INITIALIZATION
training set {(xi, yi)}},
MLP architecture and activation function,
MLP training parameters (learning rate),
MLP learning stop criterion: small error threshold

END INITIALIZATION

BEGIN PROCEDURE
Step 1: perform standardization
Step 2: train an MLP with standard back-propagation until stop criterion
Step 3: {determine feature relevance values for each new feature}

for all hidden units l in chosen hidden layer do
for i = 1 to m do

MLP forward pass with unit l clamped to 0
MLP backward pass to compute yl,i = − ∂el(xi)

∂netl(xi)

end for
hidden layer with the new features (recommended: first hidden layer),
chose P-SVM parameter ǫ
solve regression task ∀i : yl,i = wl · xi + bl by the P-SVM method and
determine relevance values αj,l per new feature

end for
Step 4: {compute relevance values}

combine (squared sum or maximal value) all αj,l to determine relevance of zj

END PROCEDURE

Other targets. The net input netl (xi) as target value instead of yl,i does not
take into account that a hidden unit may not be used, may be less used than others,
or may have varying influence on the net output over the examples. Setting netl

to other values than 0 (e.g. its mean value) when yl,i is computed works as well
as long as saturating regions are avoided. Saturation regions lead to scaling effects
through different derivatives at different input regions and reduce the comparability
of relevance values of one input variable at different units.

Redundancy. The P-SVM is applied to each unit l, therefore the selected input
variables may be redundant after combining the results for each l.

5 Experiments

5.1 Linear P-SVM Feature Selection

Weston Data

We consider a 2 class classification task with 600 data points (300 from each class)
which is similar to the data set in (Weston et al., 2000) but more difficult. 100
randomly chosen data points are used for feature and model selection. The remaining
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500 data points serve as test set. We constructed 2000 input variables from which
only the first 20 input variables have dependencies with the class and the remaining
1980 are random probes. For each data point four out of the first 20 input variables
are indicative for the class label. The data points are in one of five modes, where
the mode determines which input variable is indicative. The modes, which lead to
objects groups, are l = 0, 4, 8, 12, 16 with associated input variables: l = 0 −→ xi,1

– xi,4; l = 4 −→ xi,5 – xi,8; l = 8 −→ xi,9 – xi,12; l = 12 −→ xi,13 – xi,16;
l = 16 −→ xi,17 – xi,20.

A label from {+1,−1} and a mode from {0, 4, 8, 12, 16} was randomly and uni-
formly chosen. Then the four indicative input variables xi,l+τ , 1 ≤ τ ≤ 4, were
chosen according to xi,l+τ ∼ yi ·N (2, 0.5 τ). Input variables xi,j for j 6= l+τ, j ≤ 20
were chosen according to xi,j ∼ N(0, 1). Finally, for 21 ≤ j ≤ 2000 the input
variables xi,j were chosen according to xi,j ∼ N (0, 20).

Table 2. Classification performance for the “Weston” data set. Results
are an average over 10 runs on different training and test sets. The values are the
fractions of misclassification. The table shows the results using the top ranked 5,
10, 15, 20, and 30 features for the methods: Fisher statistics (Kendall and Stuart,
1977), Recursive Feature Elimination (RFE), R2W2, and the P-SVM.

Method number of features
5 10 15 20 30

Fisher 0.31 0.28 0.26 0.25 0.26
RFE 0.33 0.32 0.32 0.31 0.32

R2W2 0.29 0.28 0.28 0.27 0.27
P-SVM 0.28 0.23 0.24 0.24 0.26

We compare the linear P-SVM feature selection technique to Fisher statistics
(Kendall and Stuart, 1977), Recursive Feature Elimination (RFE) method of Guyon
et al. (2002) and the linear R2W2 method (Weston et al., 2000). The experiment
is taken from (Hochreiter and Obermayer, 2004b). First we ranked features on the
training set, where for RFE the ranking was based on multiple runs. Then we trained
a standard C-SVM1 with the top ranked 5, 10, 15, 20, and 30 input variables. The
hyperparameter C was selected from the set {0.01, 0.1, 1, 10, 100} through 5-fold
cross-validation. Table 2 shows the results. The P-SVM method performed best.

The performance of the methods depends on how many modes are represented
through the input variables. The results in Table 2 must be compared to the clas-
sification performance with 20 relevant features (perfect selection), which leads to
a fractional error of 0.10, and without feature selection, which leads to a fractional
error of 0.38.

This benchmark is a very difficult feature selection task because it contains many
features but only few of them are indicative, features are indicative for only 1/5 of
the data, and features are noisy. It is difficult to extract the few indicative features
for all objects groups with few examples available because target correlation by
chance is likely for some features.

1For this experiment we used the Spider-Software, where the C-SVM was easier
to use as classifier than the ν-SVM.
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Two best features experiment

To compare the P-SVM feature selection technique to the 1-norm and 0-norm sup-
port vector machine by performing the benchmark in Weston et al. (2003). The two
class classification task has six dimension out of 100 which are indicative for the
class. The class membership was chosen with equal probability (0.5) and with prob-
ability 0.7 the first three features were class indicators and otherwise the features
4 to 6 are class indicators. For the first case input variables are chosen according
to xi,j ∼ yi N (j, 1), 1 ≤ j ≤ 3, xi,j ∼ N(0, 1), 4 ≤ j ≤ 6, and xi,j ∼ N (0, 20),
7 ≤ j ≤ 100. For the second case the input variables are xi,j ∼ N (0, 1), 1 ≤ j ≤ 3,
xi,j ∼ yi N(j − 3, 1), 4 ≤ j ≤ 6, and xi,j ∼ N (0, 20), 7 ≤ j ≤ 100. Only the first six
input variables are class indicators but mutual redundant. The two top ranked input
variables are used for classification. Training and feature selection is performed on
10, 20, and 30 randomly chosen training points and the selected model is tested on
additionally 500 test points. The result is an average over 100 trials.

The feature selection methods, which are compared in Weston et al. (2003), are:
no feature selection (no FS), 2-norm SVM (largest weights), 1-norm SVM (largest
weights), correlation coefficient (CORR), RFE, R2W2, and three approaches to zero-
norm feature selection, namely FSV (Bradley and Mangasarian, 1998; Bradley et al.,
1998), ℓ2-AROM, and ℓ1-AROM (Weston et al., 2003). The correlation coefficient
is computed as (µ+ − µ−)2 /

(

σ2
+ + σ2

−

)

, where µ+ and σ+ are the mean and
the standard deviation of the feature value for the positive class and µ− and σ− the
according values for the negative class. The authors in (Weston et al., 2003) only
mentioned that they used “linear decision rules” while used for the P-SVM a linear
ν-SVM with ν = 0.3 as classifier.

Table 3. Comparison of different compact feature set selection methods.
The percentage of the test error with its standard deviation in rectangular brackets
is given. The number of trials where two relevant non-redundant features are selected
is in round brackets. For 10 and 20 point the P-SVM method performs as good as the
best methods and for 30 data points the P-SVM performs worse than the zero-norm
methods but better than the others.

Method 10 points 20 points 30 points

no FS 33.8 [std: 6.6] (0) 23.2 [std: 5.6] (0) 16.4 [std: 3.9] (0)
2-norm SVM 26.8 [std:13.9] (3) 16.3 [std: 7.7] (16) 13.4 [std: 4.2] (17)
1-norm SVM 25.9 [std:14.5] (17) 11.0 [std:10.9] (67) 12.1 [std:13.5] (66)

CORR 23.6 [std:12.9] (9) 15.8 [std: 5.4] (9) 14.3 [std: 3.2] (5)
RFE 30.1 [std:14.5] (10) 11.6 [std:11.0] (64) 8.2 [std: 6.1] (73)

R2W2 26.3 [std:14.1] (14) 9.8 [std: 8.6] (66) 7.8 [std: 6.1] (67)
FSV 24.6 [std:14.9] (17) 9.1 [std: 8.3] (70) 5.9 [std: 5.4] (85)

ℓ2-AROM 26.7 [std:14.6] (15) 8.8 [std: 9.0] (74) 5.7 [std: 5.0] (85)
ℓ1-AROM 25.8 [std:14.9] (20) 8.9 [std: 9.7] (77) 5.9 [std: 5.1] (83)
P-SVM 26.0 [std:13.8] (13) 8.6 [std: 7.4] (67) 6.9 [std: 9.1] (73)
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Table 3 shows the results as an average over 100 trials. The table reports the
percentage of test error with the according standard deviation2 and the number of
times that the selected features are relevant and non-redundant. The P-SVM method
performs as good as the best methods for 10 and 20 data points but for 30 data
points worse than the zero-norm methods and better than other methods. Because
the zero-norm approaches solve iteratively one- or two-norm SVM problems, it may
be possible to do the same for the P-SVM approach by re-weighting the features by
their α-values.

NIPS Challenge

In this section we report the results of the P-SVM method for the NIPS 2003 feature
selection challenge. The method and the results are given in the Fact Sheet ?? and
the results at the top of Table 4. In order to obtain a compact feature set we applied
the P-SVM method without slack variables. Therefore, the P-SVM method selects a
high percentage of random “probes”, i.e. features which are artificially constructed
and are not related to the target. Especially prominent is this behavior for the data
set Arcene, where features are highly correlated with each other. This correlation
was figured out by a post challenge submission and by the data set description which
was made available after the challenge.

We computed the NIPS challenge results for methods with compact feature sets,
i.e. methods which based their classification on less than 10 % extracted features.
Only methods are reported which have a non-negative score to ensure sufficient clas-
sification performance. Bottom of Table 4 reports the results. The P-SVM method
yields good results if compact feature sets are desired. In summary, the P-SVM
method has shown good performance as a feature selection method especially for
compact feature sets.

5.2 Nonlinear P-SVM Feature Selection

Toy Data

In this experiment we constructed two data sets in which the relevant features cannot
be found by linear feature selection techniques. We generated 500 data vectors xi

(1 ≤ i ≤ 500) with 100 input variables xi,j (1 ≤ j ≤ 100). Each input variable
was chosen according to xi,j ∼ N (0, 1). The attributes yi of the data vectors xi were
computed from the first two variables by A) yi = x2

i,1 + x2
i,2 and B) yi = xi,1xi,2.

We thresholded yi by yi > 1 ⇒ yi = 1 and yi < −1 ⇒ yi = −1. For both
tasks the correlation coefficient between the target and the relevant input variables
is zero. For task A) this follows from the fact that the first and third moments of
the zero-mean Gaussian are zero and for task B) if follows from the zero mean of
input variables (XOR problem).

We performed 10 trials for each task with the P-SVM nonlinear relevance ex-
traction method. First, a 3-layered multi-layer perceptron (100 inputs, 10 hidden,
one output) with sigmoid units in [−1, 1] was trained until the error was 5 % of its

2Note, that in Weston et al. (2003) the standard deviation of the mean is given,
which scales the standard deviation by a factor of 10.
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Table 4. NIPS 2003 challenge results for P-SVM. “Score”: The score used
to rank the results by the organizers (times 100). “BER”: Balanced error rate (in
percent). “AUC”: Area under the ROC curve (times 100). “Feat”: Percent of features
used. “Probe”: Percent of probes found in the subset selected. “Test”: Result of the
comparison with the best entry using the MacNemar test. TOP: General result table.
BOTTOM: Results for compact feature sets with non-negative score. The column
“Method” gives the method name. The P-SVM has multiple entries were different
weighting of the CV folds is used to select features and hyperparameters. The results
are listed according to the percentage of features used.

Dec. 1st Our best challenge entry The winning challenge entry
Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 14.18 11.28 93.66 4.6 34.74 88.00 6.84 97.22 80.3 47.8 1
Arcene 16.36 20.55 87.75 7 61 98.18 13.30 93.48 100 30.0 1
Dexter -60 8.70 96.39 2.5 46.6 96.36 3.90 99.01 1.5 12.9 1

Dorothea 29.09 16.21 88.00 0.2 29.58 98.18 8.54 95.92 100 50.0 1
Gisette 18.18 2.06 99.76 12 36.5 98.18 1.37 98.63 18.3 0.0 1

Madelon 67.27 8.89 96.39 1.4 0 100.0 7.17 96.95 1.6 0.0 1

Dec. 1st Method Feat Score BER AUC Probe Test

P-SVM (1) 3.83 0 11.82 93.41 34.6 1
Modified-RF 3.86 6.91 10.46 94.58 9.82 1

P-SVM (2) 4.63 14.18 11.28 93.66 34.74 1
BayesNN-small 4.74 68.73 8.20 96.12 2.91 0.8

final-1 6.23 40.36 10.38 89.62 6.1 0.6
P-SVM (3) 7.38 5.09 12.14 93.46 45.65 1
Collection2 7.71 28 10.03 89.97 10.6 1

initial value. The P-SVM method was applied and features were ranked according to
their maximal values of αj,l. In all trials the P-SVM ranked the two relevant features
xi,1 and xi,2 on top and produced a clear visible gap between the relevance values
of the true relevant features and the remaining features. For comparison we also
performed 5 trials with linear P-SVM feature selection on each of both tasks. The
linear version failed to detect the true relevant features. For comparison we selected
input variables with “Optimal Brain Surgeon” (OBS, Hassibi and Stork, 1993) and
“Optimal Brain Damage” (OBD, LeCun et al., 1990). We applied OBS and OBD in
two ways after the neural network has been trained: first, we computed the saliency
values for all weights with OBS and OBD and ranked the features according to their
highest values; secondly, we successively deleted weights according to the OBS and
OBD procedure and ranked a feature before another feature if at least one input
weight is removed later than all the input weights of the other feature. For the latter
we retrained the neural network if the error increase more than 10 % since the last
training. OBS and OBD lead also to success at this task. This experiment demon-
strated that P-SVM nonlinear relevance extraction is able to reliably detect relevant
features whereas the linear P-SVM method could not identify relevant features.
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NIPS Challenge: Madelon

The data generation procedure of the NIPS feature selection challenge was made
public after the challenge. Therefore, we know that the class labels for the data set
Madelon were constructed nonlinearly from the input variables. After the challenge,
when knowing the data generation process, we computed Pearson’s correlation co-
efficient for each pair of features. That allowed us to extract the 20 relevant features
through looking for a set of 20 features which have high intercorrelation.

For nonlinear feature selection (P-SVM, OBS, OBD) we used 3-layered multi-
layer perceptrons (MLPs) with 20 hidden units and 4-layered MLPs with 10 hidden
units in each hidden layer. All non-input units have a sigmoid activation function
in range [−1, 1]. We trained the MLPs with backpropagation until the error was at
5 % of its initial value. Features were ranked by the P-SVM, OBS, and OBD as in
Subsection 5.2.

The linear P-SVM ranked in 10 runs 13 out of 20 true relevant features at
the top. Nonlinear P-SVMs with 3-layered and 4-layered nets ranked in 10 runs
always 18 to 20 relevant features at the top, however no gap in relevance values
between features and probes was visible. Table 5 shows typical results. Increasing
the ǫ value produces a gap in the relevance values between the true relevant features
and the probes, however fewer true relevant features are ranked at the top (see in
Table 5). Both the ranking by OBS and OBD through the saliency and through
backward elimination lead to inferior results compared to the P-SVM method. On
average 3 true relevant features were extracted (Table 5 presents typical results). For
backward elimination we started by removing a sets of weights (4-layered: 4×500,
3×400, 3×300, 3×200, 2×100, 3×50, 20, 2×10 = 5,090; 3-layered: 19×500, 200,
100, 2×50, 5×20 = 10,000). After removing a set we extensively retrained. After
removing weight sets, we deleted weights step by step. As seen in previous studies,
OBS and OBD tend to keep large weights which result from overfitting (Hochreiter
and Schmidhuber, 1997). Only the nonlinear P-SVM was able to rank almost all
relevant features at the top. This experiment showed that the nonlinear extension of
the P-SVM feature selection method can detect relevant features which are missed
with the linear version and also missed by OBS and OBD.

6 Conclusion

In the future we intend to investigate how optimization of the complex feature vec-
tors (e.g. to obtain few feature vectors or independent features) can be integrated
into our approach. Further we intend to apply the P-SVM method to genomic data
(e.g. microsatellites) to identify genetic causes for various diseases (e.g. schizophre-
nia).

On the NIPS 2003 feature selection challenge data sets we have experimentally
shown that the linear P-SVM method is one of the best methods for selecting a
compact feature set. The linear P-SVM approach has been generalized to include
redundancy control and nonlinearities. Nonlinear P-SVM feature selection does not
only extract features which are missed by its linear version but has the potential to
give the features a more appropriate ranking. This property is especially important
for data sets, where only few top ranked features control the data generating process.
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Table 5. Madelon nonlinear feature selection examples. Typical runs for lin-
ear (average over four runs with different ǫ) and nonlinear P-SVM, OBS, and OBD.
Selected input variables are ordered line-wise and true features are marked boldface.
The nonlinear methods are based on a 3-layered and a 4-layered neural network. OBS
and OBD ranking uses either the saliency values or successively deleted weights. For
the latter a feature is ranked according to when its last weight is deleted. For the
P-SVM the ǫ values are given in brackets. The linear P-SVM was not able to find
all true relevant features whereas the nonlinear P-SVM finds all of them.

Method feature ranking

linear P-SVM 242 476 337 65 339 454 494 443 49 379
(ǫ = 3.0, 473 129 106 431 324 120 425 378 44 11

2.6, 2.2, 1.8) 297 56 164 495 121 227 137 283 412 482

nonlinear P-SVM 452 494 49 319 242 473 443 379 65 456
(3-layered net) 106 154 282 29 129 337 339 434 454 476

(ǫ = 0.01) 122 195 223 343 21 402 315 479 409 330

nonlinear P-SVM 65 494 242 379 443 454 434 476 129 282
(4-layered net) 106 154 473 452 319 339 49 456 308 387

(ǫ = 0.01) 283 311 139 162 236 457 229 190 16 453

nonlinear P-SVM 65 494 242 379 443 476 434 454 106 129
(4-layered net) 282 308 387 311 283 139 162 16 236 457

(ǫ = 0.2) 229 190 453 35 136 474 359 407 76 336

OBS 62 49 169 324 457 424 442 348 302 497
saliency 66 310 61 336 44 299 453 161 212 48

(3-layered net) 78 383 162 5 317 425 197 331 495 153

OBS 425 302 443 66 246 49 297 497 249 39
saliency 169 164 453 324 166 298 137 11 311 421

(4-layered net) 292 62 433 404 6 310 224 349 476 431

OBS 242 49 337 497 324 457 318 50 154 62
elimination 162 206 56 299 310 169 348 5 412 128

(3-layered net) 495 27 6 442 415 424 19 47 61 25

OBS 49 443 283 324 497 297 319 164 138 5
elimination 62 249 86 349 246 43 208 6 310 491

(4-layered net) 410 291 298 54 166 302 476 457 482 212

OBD 49 62 169 457 324 424 442 348 497 310
saliency 61 299 336 154 161 78 453 313 293 5

(3-layered net) 495 153 331 292 128 162 121 302 287 411

OBD 425 66 443 246 49 297 249 169 302 497
saliency 39 453 164 224 324 62 298 349 137 310

(4-layered net) 421 6 43 292 291 58 457 404 166 433
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