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Theorem 1 (skipped)

Theorem 2 (Poisson Equation) Assume that the kernel k(a, b) : T×T → R

is two times continuously differentiable, symmetric, and positive definite, and
that T is compact. Assume further that forces are symmetric:

∇ak(a, b) = − ∇bk(a, b) .

If uniform convergence holds for each ρ then k must be of the following
form: k can be partitioned into kernels k =

∑

l kU(λl), where the U(λl) form
a partition of T and the kU(λl) obey the following Dirichlet problems on U(λl)
(Poisson equation):

∇
2
a
(− kU(λl)(a, b)) = λl δU(λl)(a − b) , (1)

where δU(λl) is the delta function restricted to U(λl) and 0 ≤ λl.

Proof.

STEP 1 — We will show that ∇
2
a
(− k(a, b)) is a Mercer kernel.

∇
2
a
k (a, b) ∈ L2(T × T ) holds. This follows form the fact that ∇

2
a
k (a, b)

is continuous according to the assumption that k is two times continuously
differentiable and the fact that T is compact. Especially the kernel ∇

2
a
k (a, b)

takes its maximum on T × T : maxa,b∈T |∇2
a
(k(a, b))| = M .

According to Theorem ??:

k (a, b) =

∫

T

kd (a, c) kd (b, c) dc .

The symmetry of forces gives

∇
2
a
k (a, b) = ∇a · ∇ak (a, b) = −∇a · ∇bk (a, b) =

−

∫

T

∇a · (kd (a, c) ∇bkd (b, c)) dc =

−

∫

T

∇akd (a, c) · ∇bkd (b, c) dc ,

where ”·” denotes the dot product. The last equation is valid because it is
the divergence operater with respect to a applied to the product of a scalar
depending on a and a vector independent of a.

∇
2
a
(− k(a, b)) induces a Hilbert-Schmidt operator and for all ρ ∈ L2(T ) we
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get

(*): 0 ≤

∫

T

∫

T

∇
2
a
(− k(a, b)) ρ(b) ρ(a) db da =

∫

T

ρ(a)

(
∫

T

∇
2
a
(− k(a, b)) ρ(b) db

)

da =

∫

T

(
∫

T

ρ(a)∇akd (a, c) da

)2

dc .

(*) allows to apply Mercers theorem to the kernel ∇
2
a
(− k(a, b)): the fol-

lowing sum converges absolutely and uniformly:

∀a, b ∈ T : − ∇
2
a
k(a, b) =

∞
∑

n=1

λn en(a) en(b)

and ∀n : λn ≥ 0. The e1, e2, . . . are an orthonormal eigenfunction system.
Further L2(T ) = span{en | 1 ≤ n}, where A denotes the closure of a set A.

STEP 2 – For a given a we assume that λi 6= λj and ei(a) ej(a) 6= 0. From

this assumption we will deduce that 0 < m ≤
∫

T\{a}

(

∇
2
a
(− k(a, b))

)2
db.

Let a be given. Let us assume that λi 6= λj and ei(a) 6= 0 and ej(a) 6= 0,
i.e., ei(a) ej(a) 6= 0 holds.

We define

ρ̂(b) = ei(b) +

(

−
ei(a)

ej(a)

)

ej(b) .

We constructed ρ̂(b) so that ρ̂(a) = 0.
∫

T

∇
2
a
(− k(a, b)) ρ̂(b) db = (λi − λj) ei(a) 6= 0 .

We found that ∇
2
a
(− k(a, b)) 6= 0 on a mesurable nonzero set which does

not contain a. Therefore we have

0 < m ≤

∫

T\{a}

(

∇
2
a
(− k(a, b))

)2
db .

STEP 3 – Assumption of step 2. We will construct function ρ̃ which violates
sign(∇ · (E(a))) = sign

(∫

T
∇

2
a
(− k(a, b)) ρ̃(b) db)

)

= sign(ρ̃(a)) and which
as is absolute maximum value at a.

We use the assumptions of step 2.
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From step 1 we know that ∇
2
a
(− k(a,a)) is bounded, i.e., ∇

2
a
(− k(a,a)) ≤

M

We define for T ∈ R
d:

δn(a − b) :=







n

(

1 − 2
(

n
d+1

)
1
d

maxi |ai − bi|

)

∀ b ∈ Bn(a)

0 otherwise
,

where

Bn(a) :=

{

b | ∀i : ai − 0.5

(

d + 1

n

)
1
d

≤ bi ≤ ai + 0.5

(

d + 1

n

)
1
d

}

the d-dimensional hypercube with edge length
(

d+1
n

)
1
d and center a. (b, δn(a − b))

is the surface of (d+1)-dimensional hyperpyramid with base Bn(a) and altitude
n, which is reached at a the single peak at a.

We ensured that
∫

T
δn(a − b)db = 1:

∫

T

δn(a − b)db =

∫

Bn(a)

n

(

1 − 2

(

n

d + 1

)
1
d

max
i

|ai − bi|

)

db =

(

(

d + 1

n

)
1
d

)d

n

∫

Bd+1(0)

(

1 − 2 max
i

|ci|
)

dc =

(d + 1)

(

1 − 2d+1 d

∫ 0.5

0

c1

∫ c1

0

dc2 . . .

∫ c1

0

dcd dc1

)

=

(d + 1)

(

1 − 2d+1 d

∫ 0.5

0

cd
1dc1

)

=

(d + 1)

(

1 −
d

d + 1

)

= 1 .

We defined ci :=
(

n
d+1

)
1
d

(ai − bi) and Bd+1(0) as the d-dimensional hyper-

cube with edge length 1 and center 0. The factor 2d resulted from replacing the

d integrals
∫ 0.5

−0.5
by 2

∫ 0.5

0
. The factor d stems from the fact that only one of

the d components of c is the maximum, therefore, we only considered the case
where c1 is the maximum and multiplied this case by d.

The function δn allows us to construct

ρ̃(b) :=







δn(a − b) for b ∈ Bn(a)

−

(

∇
2
a
(− k(a,a))

R

T\Bn(a)
(∇2

a
(− k(a,b)))2 db

+ ε

)

(

∇
2
a
(− k(a, b))

)

otherwise
.

(I): for large enough n the following holds:

argmaxb∈T |ρ̃(b)| = a
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and
maxb∈T |ρ̃(b)| = n > 0 .

a is the global maximum of |ρ̃|.
(II):

∇ · (E(a)) =
∫

T

∇
2
a
(− k(a, b)) ρ̃(b) db =

∫

Bn(a)

∇
2
a
(− k(a, b)) δn(a − b) db −

(

∇
2
a
(− k(a,a))

∫

T\Bn(a)
(∇2

a
(− k(a, b)))

2
db

+ ε

)(

∫

T\Bn(a)

(

∇
2
a
(− k(a, b))

)2
db

)

=

∫

Bn(a)

∇
2
a
(− k(a, b)) δn(a − b) db − ∇

2
a
(− k(a,a)) −

ε

∫

T\Bn(a)

(

∇
2
a
(− k(a, b))

)2
db

For

ε > qn =

∫

Bn(a)
∇

2
a
(− k(a, b)) δn(a − b) db − ∇

2
a
(− k(a,a))

∫

T\Bn(a)
(∇2

a
(− k(a, b)))

2

we get

∇ · (E(a)) =

∫

T

∇
2
a
(− k(a, b)) ρ̃(b) db < 0 .

The later inequality can be ensured for large enough n because limn→∞ qn = 0.
In order to prove thsi limit we show two facts. Firstly, we need that (a) the
denominator is bounded from below. Secondly, we show that (b) the numerator
goes to zero with increasing n.
Ad (a): we deduce from step 2 that even if we subtract a small enough neigh-
borhood Bn(a) of a from T we obtain

0 < mn ≤

∫

T\Bn(a)

(

∇
2
a
(− k(a, b))

)2
db .

With increasing n the neighborhood Bn(a) contracts around a and mn increases,
i.e. there exists a mn0

so that n > n0 implies mn > mn0
.

Ad (b): the following limit holds:

lim
n→∞

∫

Bn(a)

∇
2
a
(− k(a, b)) δn(a − b) db = ∇

2
a
(− k(a,a)) .
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This limit follows from
∣

∣

∣

∣

∣

∫

Bn(a)

∇
2
a
(− k(a, b)) δn(a − b) db − ∇

2
a
(− k(a,a))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Bn(a)

(

∇
2
a
(− k(a, b)) − ∇

2
a
(− k(a,a))

)

δn(a − b) db

∣

∣

∣

∣

∣

≤

∫

Bn(a)

∣

∣∇
2
a
(− k(a, b)) − ∇

2
a
(− k(a,a))

∣

∣ δn(a − b) db ≤

∫

Bn(a)

τn(a) ‖a − b‖ δn(a − b) db ≤

τn(a)

∫

Bn(a)

(

d + 1

n

)
1
d

δn(a − b) db = τn(a)

(

d + 1

n

)
1
d

.

The factor τn(a) exists because ∇
2
a
(− k(a, b)) is continuous (see step 1). Both

factors τn(a) and
(

d+1
n

)
1
d vanish with increasing n.

Therefore (I) and (II) contradict the Lemma “Maximum point requirement”.
The assumption in step 2 must be false which leads to following conclusion.

STEP 4 – Conclusion.

We conclude that λi 6= λj implies ∀a∈T : ei(a) ej(a) = 0.
We define for λl > 0

U(λl) := {a | ∃ ei : λi = λl 6= 0 ∧ ei(a) 6= 0}

and for λl = 0

U(0) := {a | ei(a) 6= 0 ⇒ λi = 0} .

The U(λl) are equivalence classes which partition T .
We will prove the last statement. If a ∈ U(λl) ∩ U(λk) for λl 6= λk and

λl, λk 6= 0 then ei(a) 6= 0 and ej(a) 6= 0 exist. The beginning of step 4 states
that λl = λi = λj = λk in contradiction to λl 6= λk. We treat U(0) next.
If a ∈ U(0) then ∀i : ei(a) 6= 0 ⇒ λi = 0 which implies a 6∈ U(λi) with
λi 6= 0. Hence U(λl) ∩ U(λk) = ∅.

The constant functions around a with finit support are from L2(T ) and,
therefore, have representations through the orthonormal system ei. This implies
that at least for one i inequality ei(a) 6= 0 holds, so that a ∈ U(λi). Therefore
⋃

l U(λl) = T . This finishes the proof that the U(λl) are a partition of T .
Next we show that k is zero for arguments from different U(λl). If k(a, b) 6=

0 then an ei exists with ei(a) 6= 0 and ei(b) 6= 0, thus, an l exists with a, b ∈
U(λl). Let be ∂U(λl) the frontier of U(λl). We see that ∂U(λl) ∩ ∂U(λk) ⊂
U(0).
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We found that the kernel k is a composition of kernels on the U(λl). This
composition also applies to all other functions from L2(T ) (beginning of step 4:
λi 6= λj implies ∀a∈T : ei(a) ej(a) = 0).

We deduce that L2(U(λl)) = span{ei | λi = λl}. Let kU(λl) be k restricted
to U(λl) then we obtain for every b ∈ U(λl):

∇
2
a
(− kU(λl)(a, b)) = λl

∑

n:λn=λl

en(a) en(b) = λl δU(λl)(a − b) ,

where δU(λl) is the delta function on U(λl).
¥
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