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Abstract— We introduce a novel “importance weight” method y(X)
(IW) to speed up gradient based learning. The method is //
particularly useful for “difficult” data sets including fea tures like f(Xl) v\ 2

unbalanced data, highly non-linear relationships betweervari- y

ables, or long-term dependencies in sequences. An importe@

weight is assigned to every data point of the training set. Té .I:
weight controls the contribution of the data point to the total (X)
training error according to its informativeness for learning a good (///
predictor. It can also be interpreted as an individual learning __________..-—-4

step size for the local gradient at this particular data poirt.
The importance weights are obtained by solving a quadratic yl
optimization problem which minimizes the absolute value ofthe

change in the parameter vector during a learning step under te /> (Xz)
(soft) constraint, that the total error should be reduced by at

least a given fixed value. For linear classifiers we show, thahe
new method is equivalent to standard support vector learnig. Xl X2

We apply the IW method to feedforward multi-layer perceptrons

and to recurrent neural networks (LSTM). Benchmarks with

QuickProp and standard gradient descent methods are providd Fig. 1. Gradient contributions at! and2? cancel each other.
for toy data as well as for “real world” protein datasets. Reaults

show that the new learning method is usually much faster in

terms of epochs as well as in terms of absolute CPU time, .. : 2 i
and that it provides equal or better prediction results. In the tion's parameters. Since the targefs and y* differ and

“latching benchmark” for sequence prediction, the new appoach ./ (') =~ f(z?) =~ 5(y' +4°), we obtainV, E (z!) ~
was able to extract and exploit dependencies between sitebish  — V., E (z?). The cumulative effect of the individual gradients
are 1,000,000 sequence elements apart — a new record. at ! and =2 almost vanish and’ hardly changes where it
is required to change most. The situation depicted in Fig.
1 is often observed in sequence analysis, when sequences

Various methods have been proposed to improve or spgésk example proteins) which differ only at few positionsyna
up gradient-based methods for supervised learning. Pearhinbelong to different classes. If standard recurrent nets/aile
methods include the natural gradient [1], step-size optition  used, the situation may become even worse, because reicurren
[17], (pseudo) Newton methods [27], [3], [4], or momentumetworks face the vanishing gradient problem for long-term
term methods [14], [20], and usually adapt the directionand correlations [13], hence may not exploit this information.
the step-size of the gradient of the error function - gives th Very large cumulative updates - on the other hand - usu-
local properties of the error surface. For certain data, sefly occur for unbalanced data sets, i.e. for data sets with
however, gradient-based learning becomes unreliableland s unbalanced target values, e.g. if class cardinalitiestanagly
This is due to the fact, that the gradient of the total tragnindifferent or certain output values are dominant. In thisecas
error becomes either very small or very large leading to § vesumulative updates introduce an undesired bias towards the
small or a very large cumulative update. dominant target values. A similar effect appears for urniced

Fig. 1 illustrates the problem of the vanishing gradientnput data, where the input data distribution has high dgnsi
Consider two pointsz’ and x® close to one another inregions from which many training points are chosen. For
input space at a location, where the target functigm) unbalanced input data the cumulative update over-weiglets t
changes rapidly in a nonlinear way. Gradient-based legrnigrror in high density regions, i.e. it does not take into ato
of a model functionf(x) using, for example, the squaredhat a small weight update can improved the error of many data
error Eggr (') = $(y' — f (a:"'))2 may then lead to points. Prominent tasks, for which unbalanced data sets are

2
Vwf (x') = V,f (2%) for the current choice of the func-common, are 3D-protein prediction [2] and text classifiati

I. INTRODUCTION



[31], because the number of training examples of the pesitiat every iteration. Therefore, slack variabfgsare introduced
class is usually small (and costly to obtain). The lack afhich allow for a violation of the constraints but where larg
balance usually leads to a poor performance on either fppacisvalues are penalized by regularization paraméteiVe then
or recall (false positives or negatives) [30] and to a smaibtain the convex optimization problem
area under the receiver operating curve. A common strategy
to tackle this problem is to under-sample the larger clags (c min l||Aw||2 + CZ&. 2)
[2]), but how should one select the examples? Another aspect Aw 2 p
is that unbe_llanced data sets often_slow down learning becaus st (~VeB(@'), Aw) > p — & 0<§& .
the output is attracted to the dominant value.
In order to overcome the abovementioned problems, we pe&nd its dual formulation
pose a novel strategy for improving gradient-based legtnin
Each data point is weighted by an “importance value”, which  ,in 1 Z ey <VwE(:ci), VwE(:cj)> — Z o
determines its influence on the total gradient and which @n b a2 i P
interpreted as an individual learning step. These factepgdd st. 0<a; <C . ()
on the location in input space and on the interaction between
different data points. They are calculated at every iterakiy for the change of the model parameters, whageare the
solving a convex optimization problem as described in thé ne_Lagrange multipliers corresponding to the constraintse Th
section. These weighting factors then lead - for example - ¢mal problem can then be solved using the sequential mini-
an amplification of differences between similar gradiewfs ( mal optimization (SMO) procedure [19]. A fast and efficient
Fig. 1 or a selection of only a few important locations in aimplementation can be obtained, if one takes into accouit th
unbalanced situation. there are no equality constraints and if the SMO is always
initialized with the values of the;; from the previous learning
step [12]. The new learning step can then be calculated using
Consider N training examplesz’ ¢ RM, 1 < i < the Karush-Kuhn-Tucker conditions
N together with their corresponding target valugs The

Il. THE IMPORTANCEWEIGHT METHOD

relationship between the’ and they’ should be described Aw = - ) o; VyE(@') and (4)

by a model functionf(x;w) with parameter vectoiw, for i

example a feedforward multilayer perceptron or a recurrent |Aw|? = p Zo‘i + C Z & .

neural network. For every training data we define an indiaidu i i =C

error measure® (x*) and use it to construct the total error _ o

E = Y ,E (') for the training set. TypicallyF (z%) = Given eq. (4) we can now interpret the Lagrange multipliers
Bogr (2) = 1 (y — f (mz))2 orE(2') = Eus (@) = @ as the importance weights for training vectors and as the

individual step sizes for the standard gradient update fitlie
ef@pportance weights are determined by minimizing the con-

vectorw in order to achieve the following two goals: (a) ThdfPutions of the coupling strength&V, E(x"), Vo E(2)),
learning step should be such, that the individual errorverg ©€d- (3), which relate the gradients of the error function for
data point decreases by at least a valug f possible), and every pair of data points. A good solution is obtained, if

(b) the associated weight changas should be as small as@t 1€@st onen; = 0 for as many pairs of data points with
possible. Consider the Taylor expansion similar gradient information and if the values of the are

large for pairs whose gradients tend to be antiparallel. The
E(x";w+ Aw) = E(z';w) + (VwE(z';w), Aw) number of non-zero importance weights is controlled by the
+0 (HAU’HQ)- (1) yalues of the h_yperparamt_etepsand C, and we will show
in the next section that their number can be very small. Data
up to the first order. We then obtain the optimization problepbints which are never used during learning allow to comstru
1 ) a new bound on the generalization error using leave-one-out
g [ Aw]| estimators in analogy to the construction of bounds for stpp
st <7vwE(mi;w) 7 Aw> > p, vector machines [26]. _ _ .

For perceptronsf(z’;w) = (z‘,w), and binary clas-
where the constraints ensure goal (a) and the minimizatieification tasks using the classification errﬁr(a:i) =
ensures goal (b) in order to be consistent with the Iinearax{o,— Yi f(:c‘)} we obtain the error gradient is
approximation, eq. Ip is a free parameter which correspond¥ ., E(z';w) = — y; &', if y* (', w) < 0, and 0,
to a learning rate. Note, that this optimization does notl leatherwise. Since the constraints of the optimization pobl
to Aw o — V. E, but the constraints ensure a positive dg2) can be written in the forny® <a:Z , Aw> > p we obtain
product:(— V., E , Aw) > N p. the the standard support vector machine learning rule |26].

In general, one cannot guarantee that the error can thés case, gradient-based learning reduces to one iterafio
improved by a value op at every training data positiom’ the update rule eq. (4 for the initial values= 0.

v — [ ()]
We now construct an optimal learning step for the param



' « “Chan and Fallside " [7],
o8 T ] « “Polak-Ribiere + line search” [15],
os | " 1 « “Conjugate gradient + line search” [18],
’ | « “Silva and Almeida” [28],
i o “SuperSAB” [29],
R oo B ® ] « “Delta-Bar-Delta” [14],
oo ; % o w an;; ] o “QuickProp” [10],
02| . L s ° e « “RPROP" [21], and
oul i « “Cascade correlation” [11]
sl T i and concluded in [24]:
sl MR | “In terms of learning speed RPROP and Quickprop
seems to be superior to all other training algorithms
1 08 05 o4 w2 o 02 oa o6 o8 1 using fixed topologies.“
0.3
. v ’ TABLE |
02 + + . R BENCHMARK RESULTS FOR THE TOY DATA SETS LNL1, AND NL2
i LT SHOWN INFIG. 2 AND FOR A MLP (2-10-10-1)WITH SIGMOID UNITS.
01+ o +D+ +++¢ * . ] ALL WEIGHTS WERE INITIALIZED WITH VALUES DRAWN RANDOMLY AND
° o +D . T UNIFORMLY FROM [—0.1,0.1]. A DATA POINT WAS CORRECTLY
ot @ DD DD N " v ' B CLASSIFIED IF THE DIFFERENCE BETWEEN THE OUTPUT VALUE OF THE
o Du DDD s 8’ . +9 . MLP AND THE TARGET VALUES =1 WAS LESS THANO.2. THE COLUMNS
o1 i DD 9 DDD o 4 T 1 SHOW (LEFT TO RIGHT): LEARNING METHOD — QUICKPROP(QP)vs.
: o - B, mee g B IMPORTANCE WEIGHT(IW) METHOD AND DATA SET IN BRACKETS,
02 ¢ s? 8 ” i NUMBER OF TRAINING EXAMPLES N, VALUES OF C AND p, “EP.”
NUMBER OF TRAINING EPOCHS NEEDED UNTIL ALL DATA POINTS ARE
03 I I D‘ . . . CORRECTLY CLASSIFIED(EXCEPT FORNL2, FOR WHICHQUICKPROP WAS

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
TERMINATED AFTER 1,000,00EPOCHY, NUMBER k OF DATA POINTS

Fig. 2. Toy data sets for the binary classification task. PofEaussian linear  ysgp For TRAINING(a; # 0 FOR AT LEAST ONE EPOCH QUICK PROP
separable (L, data points from the central cluster are etblahd drawn again
from the Gaussian which forms the right cluster) and “sihjieGaussian ~ REQUIRES ALL EXAMPLES), NUMBER OF MISCLASSIFICATIONS ON THE
nonlinear (NL1) dataset. Bottom: “difficult” nonlinear (/). dataset. Crosses  TRAINING SET (“M”). T HE 300 TRAINING EXAMPLES FORNL1 ARE

(class +1) and squares (class -1) denote the location of dtee gbints in a OBTAINED BY DRAWING ADDITIONAL 200DATA POINTS FROM THE

two-dimensional feature space.
CORRESPONDING INPUT DISTRIBUTIONS GAUSSIANS).

[ Method [ N | parameters [ EP.] &k [ M ]
[1l. N UMERICAL EXPERIMENTS W (L) [100] C=10"T,p=10=2] 4 | 3 | 0
IW (L) 100 | ¢ =10""1,p=10° 1 7 0
A. Application to Feedforward Networks (MLP) IW(NL1) [ 100 | C=10",p=10"" | 5 | 63 [ O
i L ) IW(NL1) | 100 | C=10',p=10"2 | 37 | 47 | O
1) Toy Data — Binary Classification ProblenWe applied IW(NL1) | 100 | ¢ =102,p=10"2 | 46 | 29 | ©
the new learning method to the three artificial data sets show | IW (NL1) | 100 | C = 10;19 = 10:2 75 | 18 | 0
in Fig. 2: a linear separable data set L (Fig. 2, left, without '(_\‘)"é(('?‘\lLLll)) fgg C=10°%p=10 gg 13510 8
the central cluster), a “simple” nonlinear data set NL1 (Rig W (NL2) | 100 | C =10°,p=10-3 | 91 | 100 | O
left), and a “difficult” nonlinear data set NL2 (Fig. 2, right IW (NL2) | 100 | C =10%p=10"3 63 | 100 | O
A multi-layer perceptron (4 layers, 10 units per hidden taye | QP (NL2) | 100 10° [ 100 ] 11

one output unit, sigmoid transfer functioqm for the

hidden units ang—2 — -1 for the output unit) was trained e resyits are summarized in Table I. For data set L only
to predict the binary class labgjs € {—1,+1} by minimizing 3 to 7 examples were selected by IW during training, all
the standard quadratic error functiéh,,. on the training set. gther data points were not considered & 0) for learning

The IW method was compared with the “QuickProp” [10]ihe network’s weights. For data set NL1 there is a trade-off
We chose “QuickProp” because in [23] and [24] the authofetween speed of convergence and the number of selected data

compared points, depending on the values of the hyperparameters of IW
« “Backprop” [6], If only few examples are considered (18 out of 100) learning
« “Backprop (batch mode)”[6], is slow (75 epochs), while learning becomes faster (5 egochs
« “Backprop (batch mode) + Eaton and Oliver” [9], if more data points are selected (63 out of 100). QuickProp
« “Backprop + Darken and Moody” [8], needs more epochs than IW for convergence on NL1. For data
o “J. Schmidhuber” [25], set NL2 the importance weight method converged within the

« “R. Salomon” [22], first 100 epochs whereas QuickProp did not find a solution



TABLE I
BENCHMARK RESULTS FOR THE FIVE PROTEIN INTERACTION DATA SETS
THE COLUMNS SHOW(LEFT TO RIGHT): NAME OF THE SH3DOMAIN,

with zero misclassification error withih0® epochs.

2) Prediction of Protein Interactionsin this section we

report benchmark results for five data sets describing jprote

- . . NUMBER OF PEPTIDES WITH A TARGET VALUE> -0.8,VALUE OF ag,
protein interactions for yeast proteins taken from the F&pB

. . . .NUMBER k OF DATA POINTS USED FOR TRAINING(VALIDATION EXAMPLES
experiments of [16]. Each data set consists of the bmdmg ,

. . . . . ND THOSE TRAINING EXAMPLES®® WITH «; 7£ 0 FOR AT LEAST ONE
affinities between one out of five SH3 domains (Boil, Boi2, £POCH BP REQUIRES ALL TRAINING EXAMPLES), VALUE OF THE
Rvs167, Yfr024, YhrOl6c). 672 peptides are selected bé/ :

. . EGULARIZATION PARAMETERK, MSE ON THE TRAINING SET, MSEON
scanning with PatMatch the yeast proteome for the relaxed,
. . THE TEST SETNUMBER OF EPOCHS(EP.),AND CPUTIME. THE VALUES
7 amino acids (AAs) long consensus pattéiiR K) xxPxxP
. . L . - FORBP AND IW ARE GIVEN IN THE UPPER AND LOWER PART OF THE
(standard notation, “x” denotes “arbitrary amino acid”her TABLE
selected peptides of length 14 AAs were synthesized at high o
. SH3 > | ag u K train test EP. | CPU
density on cellulose membranes by the SPOT technology] 103 10-5 | 10-2 | 10-2 | 10% | tme
Then _the membranes were probed by the corresponding SH3 Batch backpropagafion method
domain fused to glutathion S-transferase (GST). Bound do{ Boi1 | 73| 5 |500| 0.1 52 | 163 | 46 | 422
mains were detected by an anti-GST antibody and a secp Rvs167 39| 5 |500] 0.1 32 | 121 | 64 | 595
i ; : Boiz |21| 1 |500] 01 | 2.6 | 53 | 67 | 622
ondary anti-immunoglobulin G (IgG) coupled to horseradish
. ) . ; . [ Y024 |32 20 500 0.1 | 26 | 65 | 100 | 920
peroxidase (POD). Finally, spot intensity are given as realvproiec 1321 5 5001 01 | 26 | 86 | 100 | 942
valued, positive Boehringer light units (BLU). For detadf
experiments and data sets see [16]. Boil | 73 363| 50 | 4.2 | 143 ]0.14] 56

5
The BLU values were mapped to the interyall, 1] by Rvs167 | 39| 5 [394| S0 | 22 | 11.6 | 015] 62
2 (a/a0)? Boz | 21| 1 |401] 100 | 1.4 | 51 |04 57
TT (a/ey? 20
5

mportance weight method

T (/a0 — L (see table I, 3rd column). However, the data [vfroza [ 32 5001 1 08 | 57 o028 128
sets are highly unbalanced with most of the transformed BLU[ Yhr0l6c | 34 500 1 1.1 | 79 [043] 202
values (tBLU) being close to zero and only approx. 7% being

of order one (see Table I, 2nd column).

The machine learning task is to predict - for each SHG yhe optimization problem eq. (3) is over compensated by
domain - the tBLU values from the amino acid sequence of tlgﬁe much lower number of epochs. The error on the test set

14 amino acid long peptides. The sequence was coded US@ieved by the IW method is always less than the error
a 1-out-of-20 binary code for every of the 11 variable aming-nieved by the BP procedure.

acids of the peptide and a indicator variable for the presenc Table 11l shows an analysis of the binding affinities pre-

of R vs. K at position 4. We used a multi-layer perceptron Witlioq py the multilayer perceptron which was trained using
221 units in the input layer, one unitin the hidden, and orié Uy, |y method. Peptides with a high predicted binding affinit

in the output layer - more complex networks led to inferiofhigher than a given threshold) were selected from the test
performance. Hidden and output units had sigmoid transgé;t, and their total number, the number of true and false
functions as in previous experiment. The hidden unit eﬁmt%ositives, and the number of true negatives are given for

equivalent to a slope parameter of the output sigmoid in gfkerent threshold values and for the five different datts.se
architecture without a hidden layer. The MLP was tramedhwn-l-he results are very good

IW and with batch backpropagation (BP) using a regularized g '3 ghows the sequence logos for the five different data
(weight decay for the |_nput weights with Laplacian pr'Orgets. Every column corresponds to one position within the
squared error cost-function: peptide of 14 amino acid length. The size of each letter (the
; 1. ; 2 abbreviation for the amino acid) corresponds to the streafjt
Es r—re ! = 3 b - Z; . 5 e . . . .
arreg (') 2 (v f(@hw))” + Kzl:m' ®) positive input weights of the trained MLP to the correspoidi
. . .component of the 20 dimensional input vector at every locati
Note, that IW only uses gradients, therefore it can be agpli except for positions 8 and 11, which were not part of the

\t/f/)asrel?:;?jnzﬁ?e (;I?i iggcucem;deid\?vgfeni!ﬁ diirr%rz:ifiﬁg)l tw ut, see description of MLP architecture). These results
; pep 9 % in agreement with the findings in [16], e.g. with the

following 100 pe_ptlcjes served as a validation s_et to_ SeIesc(trict consensus binding motix FPx PP of the Rvs167 SH3
both the regularization parameter and the stopping time

. . . ' domain and with the class 2 binding moti#xxPxR for

and the remaining 172 peptides were used as a final test %F024C and Ysc84 SH3 domains
All weights were initialized with values drawn randomly and '
uniformly from [—0.1, 0.1]. The BP learning rate wa%.001,
higher values led to instabilities. The IW parameters were
p=0.01 andC = 0.1.

The benchmark results are summarized in Table Il. The IW
method does not only require much less epochs for learning,
but it is also faster in terms of CPU time. The increased

computational costs for every learning step due to the ismlut




TABLE Il boil rvsle7

ANALYSIS OF BINDING AFFINITIES, PREDICTED BY THEIW METHOD FOR
THE FIVE PROTEIN-PROTEIN INTERACTION DATA SETS TABLE Ill SHOwsS

AN ANALYSIS OF THE MLP PREDICTIONS ON THE TEST SET WR.T. THE R
CLASSIFICATION OF THE INPUTS INTO"BINDING” AND “NON-BINDING” W':l’AF: RV RR lBR mNQ“R!I PV éll_ RRE
D
PEPTIDES THE COLUMNS SHOW(LEFT TO RIGHT): THE NAME OF THE EQB,E E,B "ég Hll?lH R W RF BR EEM
SVES\EX] 3| Aks émEcKC 1 B2l =qf

DATA SET (SH3DOMAIN), THE THRESHOLD USED FOR THE BINDING” VS.

“NON-BINDING” DECISION, THE NUMBER OF PREDICTED POSITIVES b0|2 yfr024

(PEPTIDES THAT BIND), THE NUMBER OF TRUE POSITIVESTHE NUMBER
OF FALSE NEGATIVES AND THE NUMBER FALSE POSITIVES FIGURE 2

(RIGHT) SHOWS THE SEQUENCE LOGOS CONSTRUCTED FROM THE INPUT R
WEIGHTS OF THE TRAINEDMLP. FOR DETAILS SEE TEXT gA ﬁF RQ FI{KY WQ W ﬁv R E
Bl 'Rl LPR C Al
[ SH3 [ threshold[ P | TP [ FN [ FP | ] K M =P ehn NEA K =} MQH
s Tl BE¥=s ENaMN\S. =
Bol | 096 |4 4] 0] 43 WGhax we ENawhSH ET
-0.85 4 3 1 18
Rvsi67 | 097 | 7| 7 | 0 | 36 yhrOch
-0.85 7 4 3 5
Boi2 -0.98 2 2 0 16
-0.85 2 1 1 3
Y024 | 0995 | 8| 8 | 0 | 125 T MP A MR
099 |87 | 1| 3 VIV,QJEM PL RSl @
09 8|6 |2 |1 NVSHEY] Pl HEE
09 |8| 5| 3] 6 2=WALVE VI N
YhrO16c -0.99 4 4 0 16
-0.85 41 2 2 1 Fig. 3. Sequence logos of 14 amino acid peptide binding rpafte the five

experiments.

B. Application to Recurrent Networks (LSTM . . .
pplication to Recurrent Networks (LSTM) 2) Sequence Analysis — Protein Classification:this sec-

1) Sequence Analysis — The Latching Benchmalke tion we report benchmark results for three data sets of éabel
latching experiment [5] is one of the best known benchmageqyences of proteins. Protein sequences from the thesesla
for the abl_hty_of a new method to recognize long-termc MHC (360 sequences), UPF (25 sequences), and MYELIN
dependencies in sequences. The data set consists of Se§U§AB) were chosen from the Prosite database and complemented
of real numbers which are drawn randomly and uniformlyy 5 |arge number of randomly selected “negative” examples
from the interval[-0.1,0.1], except for the first and the lastfom unrelated families (IGVHC-dataset: 1959 “negative” se-
element, which are either both 1 or -1. The task is to learn ences, UPF-dataset: 1836 “negative” sequences, MYELIN-
predictor for the last element of the sequence, based on gqaset: 1930 “negative” sequences). For each of the three
other elements. data sets, the machine learning task was to correctly gredic

In [13] it was shown, that a “Long Short-Term Memory’cjass membership based on the sequence of amino acids. By
(LSTM) recurrent network was able to successfully solve thiqnsiryction, the data sets were highly unbalanced andmad a
problem for sequences up to a length of 1000. Here Vigerage sequence length of about 200. Long-term dependen-
generated 200 sequences — 100 for training and 100 for tg@ls result from the fact that class relevant informatiory i@
— of length 1,000,002, i.e. the first element of the sequengRated at the beginning of a sequence but prediction must be

must be stored over one million (!) steps in or(jerto Predﬁettperformed at sequence end. Further, long-term dependencie
value of the last element. An LSTM network with two memory,anveen groups of amino acids at distant location may be

cells of size 1, no hidden units, one input unit and one OUtFﬁ'Mportant features for a given class.

unit (activation function—=— — 1). The LSTM network 10 jassification task was solved using a recurrent LSTM
has stan_dard memory cells as desc_:nbed in [13] and aI_I NAfEtwork. The idea is to learn pattern recognizers for amino
input units have a b|_as weight which leads to 51 We'ghtacid patterns indicative for a given class and use thoseeat th
The network was trained by the IW methods & 0.01, input of a memory cell in order to store the occurrence of a

¢ = 10000.) using the sqqared error cost f‘.”!‘?“o’?s&'r)' ttern until the end of the sequence. The LSTM input gates,
where the first and second input gate had an initial bias of 'mich serve as the pattern recognizers, receive their Yonly

and and -15. We stopped I(_earnmg if the all tralnlng_seqwnqﬁput from a window of 20 adjacent amino acids (1-out-of-20
were processed correctly, i.e. the absolut_e predictioor arf binary coding for every amino acid). The window is shifted
the final element was below 0.2. In 10 trials IW stopped of) ¢ ¢ sequence, and the network’s prediction is evaluate
average after 83 epochs_whereafter all test examples WEHer one full sweep. The initial bias of the input gates is se
processed_ correctly. Th|s Is a new record for recurrentmeU{o -8.0. The LSTM architecture consisted of only one memory
networks in the detection of long term dependencies. cell and no hidden units. The LSTM network was trained using
gradient descent method (LSTM learning) from [13] as well as



with the new IW methody = 0.01). The size of the training
and validation sets were (“positives/all”): 338/2072 ai3d’468
for IGLIMHC, 22/1638 and 3/223 for UPF, and 15/1625 and
3/323 for MYELIN. [9]

[10]

(8]

TABLE IV
BENCHMARK RESULTS FOR THE PROTEIN CLASSIFICATION DATA SETS
THE TABLE ON THE TOP SHOWS THE RESULTS FORSTM AND GRADIENT
DESCENT(CF. [13]), THE TABLE ON THE BOTTOM THEIW RESULTS
COLUMNS SHOW (LEFT TO RIGHT): THE DATA SET, THE LEARNING
PARAMETERS(LEARNING RATE FOR GRADIENT DESCENT ANDC' FOR
IW), MSE ON THE TRAINING SET, BALANCED ERROR(MEAN OF FALSE
POSITIVE AND FALSE NEGATIVE RATE ON THE TRAINING SETMSEON
THE TEST SETBALANCED ERROR ON THE TEST SEJNUMBER OF EPOCHS

[11]

(12]

(23]

AND CPU-TIME. [14]
Prot. par. train train test test | ep. | CPU
class MSE | BE | MSE | BE min | [19]
gradient descent
IG_LMHC 0.1 0.050 33.8 0.047 4.3 | 3177 | 150
IG.IMHC | 0.2 0.050 | 33.8 0.048 | 4.3 | 3188 | 150 [16]
IG_LMHC 0.5 0.051 33.8 0.048 4.3 | 3183 | 150
UPF 0.2 10e-6 0 10e-6 0 1360 | 32
MYELIN 0.2 10e-6 0 10e-6 0 440 10.1 [17]
importance weight method
IG_LMHC 10 0.001 6.9 0.006 2.6 64 74
UPF 1 6x10e-4 0 2x10e-4 | O 61 3.4
MYELIN | 10 | 10e-6 0 10e-6 | 0 | 100 | 75 [18]

Table IV summarizes the results. The IW methods wa’!
always faster than gradient descent learning, in termsadiep
as well as in terms of CPU time. The validation mean squared
error was better or equal for LBIHC and MYELIN, and a [20
bit worse for the UPF dataset. However, the average balanged
classification error of the IW method (calculated as theayer
between the false positive and false negative rates) wesy/alw

better or equal to error achieved by standard BP. [22]
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