
Optimal Gradient-Based Learning
Using Importance Weights

Sepp Hochreiter and Klaus Obermayer
Bernstein Center for Computational Neuroscience

and
Technische Universität Berlin

10587 Berlin, Germany
{hochreit,oby}@cs.tu-berlin.de

Abstract— We introduce a novel “importance weight” method
(IW) to speed up gradient based learning. The method is
particularly useful for “difficult” data sets including fea tures like
unbalanced data, highly non-linear relationships betweenvari-
ables, or long-term dependencies in sequences. An importance
weight is assigned to every data point of the training set. The
weight controls the contribution of the data point to the total
training error according to its informativeness for learni ng a good
predictor. It can also be interpreted as an individual learning
step size for the local gradient at this particular data point.
The importance weights are obtained by solving a quadratic
optimization problem which minimizes the absolute value ofthe
change in the parameter vector during a learning step under the
(soft) constraint, that the total error should be reduced by at
least a given fixed value. For linear classifiers we show, thatthe
new method is equivalent to standard support vector learning.
We apply the IW method to feedforward multi-layer perceptrons
and to recurrent neural networks (LSTM). Benchmarks with
QuickProp and standard gradient descent methods are provided
for toy data as well as for “real world” protein datasets. Results
show that the new learning method is usually much faster in
terms of epochs as well as in terms of absolute CPU time,
and that it provides equal or better prediction results. In the
“latching benchmark” for sequence prediction, the new approach
was able to extract and exploit dependencies between sites which
are 1,000,000 sequence elements apart – a new record.

I. I NTRODUCTION

Various methods have been proposed to improve or speed
up gradient-based methods for supervised learning. Prominent
methods include the natural gradient [1], step-size optimization
[17], (pseudo) Newton methods [27], [3], [4], or momentum
term methods [14], [20], and usually adapt the direction and/or
the step-size of the gradient of the error function - given the
local properties of the error surface. For certain data sets,
however, gradient-based learning becomes unreliable and slow.
This is due to the fact, that the gradient of the total training
error becomes either very small or very large leading to a very
small or a very large cumulative update.

Fig. 1 illustrates the problem of the vanishing gradient.
Consider two pointsx1 and x

2 close to one another in
input space at a location, where the target functiony(x)
changes rapidly in a nonlinear way. Gradient-based learning
of a model functionf(x) using, for example, the squared
error Esqr

(

x
i
)

= 1
2

(

yi − f
(

x
i
))2

may then lead to
∇wf

(

x
1
)

≈ ∇wf
(

x2
)

for the current choice of the func-

x x

f(x)

f(x)

1 2

2

1

f(x)

y(x)

y1

y2

Fig. 1. Gradient contributions atx1 andx2 cancel each other.

tion’s parameters. Since the targetsy1 and y2 differ and
f

(

x
1
)

≈ f
(

x
2
)

≈ 1
2

(

y1 + y2
)

, we obtain∇wE
(

x
1
)

≈
−∇wE

(

x
2
)

. The cumulative effect of the individual gradients
at x

1 and x
2 almost vanish andf hardly changes where it

is required to change most. The situation depicted in Fig.
1 is often observed in sequence analysis, when sequences
(for example proteins) which differ only at few positions may
belong to different classes. If standard recurrent networks are
used, the situation may become even worse, because recurrent
networks face the vanishing gradient problem for long-term
correlations [13], hence may not exploit this information.

Very large cumulative updates - on the other hand - usu-
ally occur for unbalanced data sets, i.e. for data sets with
unbalanced target values, e.g. if class cardinalities are strongly
different or certain output values are dominant. In this case
cumulative updates introduce an undesired bias towards the
dominant target values. A similar effect appears for unbalanced
input data, where the input data distribution has high density
regions from which many training points are chosen. For
unbalanced input data the cumulative update over-weights the
error in high density regions, i.e. it does not take into account
that a small weight update can improved the error of many data
points. Prominent tasks, for which unbalanced data sets are
common, are 3D-protein prediction [2] and text classification

[31], because the number of training examples of the positive
class is usually small (and costly to obtain). The lack of
balance usually leads to a poor performance on either precision
or recall (false positives or negatives) [30] and to a small
area under the receiver operating curve. A common strategy
to tackle this problem is to under-sample the larger class (cf.
[2]), but how should one select the examples? Another aspect
is that unbalanced data sets often slow down learning because
the output is attracted to the dominant value.

In order to overcome the abovementioned problems, we pro-
pose a novel strategy for improving gradient-based learning.
Each data point is weighted by an “importance value”, which
determines its influence on the total gradient and which can be
interpreted as an individual learning step. These factors depend
on the location in input space and on the interaction between
different data points. They are calculated at every iteration by
solving a convex optimization problem as described in the next
section. These weighting factors then lead - for example - to
an amplification of differences between similar gradients (cf.
Fig. 1 or a selection of only a few important locations in an
unbalanced situation.

II. T HE IMPORTANCE WEIGHT METHOD

Consider N training examplesxi ∈ R
M , 1 ≤ i ≤

N together with their corresponding target valuesyi. The
relationship between thexi and theyi should be described
by a model functionf(x; w) with parameter vectorw, for
example a feedforward multilayer perceptron or a recurrent
neural network. For every training data we define an individual
error measureE

(

x
i
)

and use it to construct the total error
E =

∑

i E
(

x
i
)

for the training set. Typically,E
(

x
i
)

=

Esqr

(

x
i
)

= 1
2

(

yi − f
(

x
i
))2

or E
(

x
i
)

= Eabs

(

x
i
)

=
∣

∣yi − f
(

x
i
)∣

∣.
We now construct an optimal learning step for the parameter

vectorw in order to achieve the following two goals: (a) The
learning step should be such, that the individual error for every
data point decreases by at least a value ofp (if possible), and
(b) the associated weight change∆w should be as small as
possible. Consider the Taylor expansion

E(xi; w + ∆w) = E(xi; w) +
〈

∇wE(xi; w), ∆w

〉

+ O
(

‖∆w‖2
)

. (1)

up to the first order. We then obtain the optimization problem

min
∆w

1

2
‖∆w‖2

s.t.
〈

−∇wE(xi; w) , ∆w

〉

≥ p ,

where the constraints ensure goal (a) and the minimization
ensures goal (b) in order to be consistent with the linear
approximation, eq. 1.p is a free parameter which corresponds
to a learning rate. Note, that this optimization does not lead
to ∆w ∝ − ∇wE, but the constraints ensure a positive dot
product:〈− ∇wE , ∆w〉 ≥ N p.

In general, one cannot guarantee that the error can be
improved by a value ofp at every training data positionxi

at every iteration. Therefore, slack variablesξi are introduced
which allow for a violation of the constraints but where large
values are penalized by regularization parameterC. We then
obtain the convex optimization problem

min
∆w

1

2
‖∆w‖2 + C

∑

i

ξi (2)

s.t.
〈

−∇wE(xi) , ∆w

〉

≥ p − ξi, 0 ≤ ξi .

and its dual formulation

min
α

1

2

∑

i,j

αiαj

〈

∇wE(xi),∇wE(xj)
〉

− p
∑

i

αi

s.t. 0 ≤ αi ≤ C . (3)

for the change of the model parameters, whereαi are the
Lagrange multipliers corresponding to the constraints. The
dual problem can then be solved using the sequential mini-
mal optimization (SMO) procedure [19]. A fast and efficient
implementation can be obtained, if one takes into account that
there are no equality constraints and if the SMO is always
initialized with the values of theαi from the previous learning
step [12]. The new learning step can then be calculated using
the Karush-Kuhn-Tucker conditions

∆w = −
∑

i

αi ∇wE(xi) and (4)

‖∆w‖2 = p
∑

i

αi + C
∑

i:αi=C

ξi .

Given eq. (4) we can now interpret the Lagrange multipliers
αi as the importance weights for training vectors and as the
individual step sizes for the standard gradient update rule. The
importance weights are determined by minimizing the con-
tributions of the coupling strengths

〈

∇wE(xi),∇wE(xj)
〉

,
eq. (3), which relate the gradients of the error function for
every pair of data points. A good solution is obtained, if
at least oneαi = 0 for as many pairs of data points with
similar gradient information and if the values of theαi are
large for pairs whose gradients tend to be antiparallel. The
number of non-zero importance weights is controlled by the
values of the hyperparametersp and C, and we will show
in the next section that their number can be very small. Data
points which are never used during learning allow to construct
a new bound on the generalization error using leave-one-out
estimators in analogy to the construction of bounds for support
vector machines [26].

For perceptrons,f(xi; w) =
〈

x
i, w

〉

, and binary clas-
sification tasks using the classification errorE

(

xi
)

=
max

{

0,− yi f
(

x
i
)}

, we obtain the error gradient is
∇wE(xi; w) = − yi x

i, if yi
〈

x
i , w

〉

≤ 0, and 0,
otherwise. Since the constraints of the optimization problem
(2) can be written in the formyi

〈

x
i , ∆w

〉

≥ p we obtain
the the standard support vector machine learning rule [26].In
this case, gradient-based learning reduces to one iteration of
the update rule eq. (4 for the initial valuesw = 0.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Fig. 2. Toy data sets for the binary classification task. Top:4-Gaussian linear
separable (L, data points from the central cluster are deleted and drawn again
from the Gaussian which forms the right cluster) and “simple” 5-Gaussian
nonlinear (NL1) dataset. Bottom: “difficult” nonlinear (NL2) dataset. Crosses
(class +1) and squares (class -1) denote the location of the data points in a
two-dimensional feature space.

III. N UMERICAL EXPERIMENTS

A. Application to Feedforward Networks (MLP)

1) Toy Data – Binary Classification Problem:We applied
the new learning method to the three artificial data sets shown
in Fig. 2: a linear separable data set L (Fig. 2, left, without
the central cluster), a “simple” nonlinear data set NL1 (Fig. 2,
left), and a “difficult” nonlinear data set NL2 (Fig. 2, right).
A multi-layer perceptron (4 layers, 10 units per hidden layer,
one output unit, sigmoid transfer functions 1

1+exp(−x) for the
hidden units and 2

1+exp(−x)−1 for the output unit) was trained
to predict the binary class labelsyi ∈ {−1, +1} by minimizing
the standard quadratic error functionEsqr on the training set.
The IW method was compared with the “QuickProp” [10].
We chose “QuickProp” because in [23] and [24] the authors
compared

• “Backprop” [6],
• “Backprop (batch mode)”[6],
• “Backprop (batch mode) + Eaton and Oliver” [9],
• “Backprop + Darken and Moody” [8],
• “J. Schmidhuber” [25],
• “R. Salomon” [22],

• “Chan and Fallside ” [7],
• “Polak-Ribiere + line search” [15],
• “Conjugate gradient + line search” [18],
• “Silva and Almeida” [28],
• “SuperSAB” [29],
• “Delta-Bar-Delta” [14],
• “QuickProp” [10],
• “RPROP” [21], and
• “Cascade correlation” [11]

and concluded in [24]:

“In terms of learning speed RPROP and Quickprop
seems to be superior to all other training algorithms
using fixed topologies.”

TABLE I

BENCHMARK RESULTS FOR THE TOY DATA SETS L, NL1, AND NL2

SHOWN IN FIG. 2 AND FOR A MLP (2-10-10-1)WITH SIGMOID UNITS.

ALL WEIGHTS WERE INITIALIZED WITH VALUES DRAWN RANDOMLY AND

UNIFORMLY FROM [−0.1, 0.1]. A DATA POINT WAS CORRECTLY

CLASSIFIED IF THE DIFFERENCE BETWEEN THE OUTPUT VALUE OF THE

MLP AND THE TARGET VALUES±1 WAS LESS THAN0.2. THE COLUMNS

SHOW (LEFT TO RIGHT): LEARNING METHOD – QUICKPROP(QP)VS.

IMPORTANCE WEIGHT(IW) METHOD AND DATA SET IN BRACKETS,

NUMBER OF TRAINING EXAMPLESN , VALUES OF C AND p, “EP.”

NUMBER OF TRAINING EPOCHS NEEDED UNTIL ALL DATA POINTS ARE

CORRECTLY CLASSIFIED(EXCEPT FORNL2, FOR WHICH QUICKPROP WAS

TERMINATED AFTER 1,000,000EPOCHS), NUMBER k OF DATA POINTS

USED FOR TRAINING(αi 6= 0 FOR AT LEAST ONE EPOCH, QUICKPROP

REQUIRES ALL EXAMPLES), NUMBER OF MISCLASSIFICATIONS ON THE

TRAINING SET (“M”). T HE 300TRAINING EXAMPLES FORNL1 ARE

OBTAINED BY DRAWING ADDITIONAL 200DATA POINTS FROM THE

CORRESPONDING INPUT DISTRIBUTION(5 GAUSSIANS).

Method N parameters EP. k M

IW (L) 100 C = 10−1, p = 10−2 4 3 0
IW (L) 100 C = 10−1, p = 100 1 7 0

IW (NL1) 100 C = 101, p = 10−1 5 63 0
IW (NL1) 100 C = 101, p = 10−2 37 47 0
IW (NL1) 100 C = 102, p = 10−2 46 29 0
IW (NL1) 100 C = 103, p = 10−2 75 18 0
IW (NL1) 300 C = 103, p = 10−2 86 34 0
QP (NL1) 100 95 100 0
IW (NL2) 100 C = 103, p = 10−3 91 100 0
IW (NL2) 100 C = 104, p = 10−3 63 100 0
QP (NL2) 100 106 100 11

The results are summarized in Table I. For data set L only
3 to 7 examples were selected by IW during training, all
other data points were not considered (αi = 0) for learning
the network’s weights. For data set NL1 there is a trade-off
between speed of convergence and the number of selected data
points, depending on the values of the hyperparameters of IW.
If only few examples are considered (18 out of 100) learning
is slow (75 epochs), while learning becomes faster (5 epochs)
if more data points are selected (63 out of 100). QuickProp
needs more epochs than IW for convergence on NL1. For data
set NL2 the importance weight method converged within the
first 100 epochs whereas QuickProp did not find a solution

with zero misclassification error within106 epochs.
2) Prediction of Protein Interactions:In this section we

report benchmark results for five data sets describing protein-
protein interactions for yeast proteins taken from the PepSPOT
experiments of [16]. Each data set consists of the binding
affinities between one out of five SH3 domains (Boi1, Boi2,
Rvs167, Yfr024, Yhr016c). 672 peptides are selected by
scanning with PatMatch the yeast proteome for the relaxed,
7 amino acids (AAs) long consensus pattern(R/K)xxPxxP
(standard notation, “x” denotes “arbitrary amino acid”). The
selected peptides of length 14 AAs were synthesized at high
density on cellulose membranes by the SPOT technology.
Then the membranes were probed by the corresponding SH3
domain fused to glutathion S-transferase (GST). Bound do-
mains were detected by an anti-GST antibody and a sec-
ondary anti-immunoglobulin G (IgG) coupled to horseradish
peroxidase (POD). Finally, spot intensity are given as real
valued, positive Boehringer light units (BLU). For detailsof
experiments and data sets see [16].

The BLU values were mapped to the interval[−1, 1] by
2 (a/a0)2

1 + (a/a0)2
− 1 (see table II, 3rd column). However, the data

sets are highly unbalanced with most of the transformed BLU
values (tBLU) being close to zero and only approx. 7% being
of order one (see Table II, 2nd column).

The machine learning task is to predict - for each SH3
domain - the tBLU values from the amino acid sequence of the
14 amino acid long peptides. The sequence was coded using
a 1-out-of-20 binary code for every of the 11 variable amino
acids of the peptide and a indicator variable for the presence
of R vs. K at position 4. We used a multi-layer perceptron with
221 units in the input layer, one unit in the hidden, and one unit
in the output layer - more complex networks led to inferior
performance. Hidden and output units had sigmoid transfer
functions as in previous experiment. The hidden unit effectis
equivalent to a slope parameter of the output sigmoid in an
architecture without a hidden layer. The MLP was trained with
IW and with batch backpropagation (BP) using a regularized
(weight decay for the input weights with Laplacian prior)
squared error cost-function:

Esqr−reg

(

x
i
)

=
1

2

(

yi − f
(

x
i; w

))2
+ κ

∑

l

|wl| . (5)

Note, that IW only uses gradients, therefore it can be applied
to regularized cost functions. Additionally, early stopping
was used. The first 400 peptides were used for training, the
following 100 peptides served as a validation set to select
both the regularization parameterκ and the stopping time,
and the remaining 172 peptides were used as a final test set.
All weights were initialized with values drawn randomly and
uniformly from [−0.1, 0.1]. The BP learning rate was0.001,
higher values led to instabilities. The IW parameters were
p = 0.01 andC = 0.1.

The benchmark results are summarized in Table II. The IW
method does not only require much less epochs for learning,
but it is also faster in terms of CPU time. The increased
computational costs for every learning step due to the solution

TABLE II

BENCHMARK RESULTS FOR THE FIVE PROTEIN INTERACTION DATA SETS.

THE COLUMNS SHOW(LEFT TO RIGHT): NAME OF THE SH3DOMAIN ,

NUMBER OF PEPTIDES WITH A TARGET VALUE≥ -0.8,VALUE OF a0 ,

NUMBER k OF DATA POINTS USED FOR TRAINING(VALIDATION EXAMPLES

AND THOSE TRAINING EXAMPLESx
i WITH αi 6= 0 FOR AT LEAST ONE

EPOCH, BP REQUIRES ALL TRAINING EXAMPLES), VALUE OF THE

REGULARIZATION PARAMETERκ, MSE ON THE TRAINING SET, MSE ON

THE TEST SET, NUMBER OF EPOCHS(EP.),AND CPUTIME . THE VALUES

FOR BP AND IW ARE GIVEN IN THE UPPER AND LOWER PART OF THE

TABLE .

SH3 ≥ a0 u κ train test EP. CPU
103 10−5 10−2 10−2 103 time

batch backpropagation method
Boi1 73 5 500 0.1 5.2 16.3 46 422

Rvs167 39 5 500 0.1 3.2 12.1 64 595
Boi2 21 1 500 0.1 2.6 5.3 67 622

Yfr024 32 20 500 0.1 2.6 6.5 100 920
Yhr016c 34 5 500 0.1 2.6 8.6 100 944

importance weight method
Boi1 73 5 363 50 4.2 14.3 0.14 56

Rvs167 39 5 394 50 2.2 11.6 0.15 62
Boi2 21 1 401 100 1.4 5.1 0.14 57

Yfr024 32 20 500 1 0.8 5.7 0.28 128
Yhr016c 34 5 500 1 1.1 7.9 0.43 202

of the optimization problem eq. (3) is over compensated by
the much lower number of epochs. The error on the test set
achieved by the IW method is always less than the error
achieved by the BP procedure.

Table III shows an analysis of the binding affinities pre-
dicted by the multilayer perceptron which was trained using
the IW method. Peptides with a high predicted binding affinity
(higher than a given threshold) were selected from the test
set, and their total number, the number of true and false
positives, and the number of true negatives are given for
different threshold values and for the five different data sets.
The results are very good

Fig. 3 shows the sequence logos for the five different data
sets. Every column corresponds to one position within the
peptide of 14 amino acid length. The size of each letter (the
abbreviation for the amino acid) corresponds to the strength of
positive input weights of the trained MLP to the corresponding
component of the 20 dimensional input vector at every location
(except for positions 8 and 11, which were not part of the
input, see description of MLP architecture). These results
are in agreement with the findings in [16], e.g. with the
strict consensus binding motifRxFPxPP of the Rvs167 SH3
domain and with the class 2 binding motifPxxPxR for
Yfr024c and Ysc84 SH3 domains.

TABLE III

ANALYSIS OF BINDING AFFINITIES, PREDICTED BY THEIW METHOD FOR

THE FIVE PROTEIN-PROTEIN INTERACTION DATA SETS. TABLE III SHOWS

AN ANALYSIS OF THE MLP PREDICTIONS ON THE TEST SET W.R.T. THE

CLASSIFICATION OF THE INPUTS INTO“ BINDING” AND “ NON-BINDING”

PEPTIDES. THE COLUMNS SHOW(LEFT TO RIGHT): THE NAME OF THE

DATA SET (SH3DOMAIN), THE THRESHOLD USED FOR THE“ BINDING” VS.

“ NON-BINDING” DECISION, THE NUMBER OF PREDICTED POSITIVES

(PEPTIDES THAT BIND), THE NUMBER OF TRUE POSITIVES, THE NUMBER

OF FALSE NEGATIVES, AND THE NUMBER FALSE POSITIVES. FIGURE 2

(RIGHT) SHOWS THE SEQUENCE LOGOS CONSTRUCTED FROM THE INPUT

WEIGHTS OF THE TRAINEDMLP. FOR DETAILS SEE TEXT.

SH3 threshold P TP FN FP

Boi1 -0.96 4 4 0 43
-0.85 4 3 1 18

Rvs167 -0.97 7 7 0 36
-0.85 7 4 3 5

Boi2 -0.98 2 2 0 16
-0.85 2 1 1 3

Yfr024 -0.995 8 8 0 125
-0.99 8 7 1 34
-0.98 8 6 2 11
-0.96 8 5 3 6

Yhr016c -0.99 4 4 0 16
-0.85 4 2 2 1

B. Application to Recurrent Networks (LSTM)

1) Sequence Analysis – The Latching Benchmark:The
latching experiment [5] is one of the best known benchmark
for the ability of a new method to recognize long-term
dependencies in sequences. The data set consists of sequences
of real numbers which are drawn randomly and uniformly
from the interval[−0.1, 0.1], except for the first and the last
element, which are either both 1 or -1. The task is to learn a
predictor for the last element of the sequence, based on the
other elements.

In [13] it was shown, that a “Long Short-Term Memory”
(LSTM) recurrent network was able to successfully solve this
problem for sequences up to a length of 1000. Here we
generated 200 sequences – 100 for training and 100 for test
– of length 1,000,002, i.e. the first element of the sequence
must be stored over one million (!) steps in order to predict the
value of the last element. An LSTM network with two memory
cells of size 1, no hidden units, one input unit and one output
unit (activation function 2

1+exp(−x) − 1). The LSTM network
has standard memory cells as described in [13] and all non-
input units have a bias weight which leads to 51 weights.
The network was trained by the IW methods (p = 0.01,
C = 10000) using the squared error cost function (Esqr),
where the first and second input gate had an initial bias of -10
and and -15. We stopped learning if the all training sequences
were processed correctly, i.e. the absolute prediction error of
the final element was below 0.2. In 10 trials IW stopped on
average after 83 epochs whereafter all test examples were
processed correctly. This is a new record for recurrent neural
networks in the detection of long term dependencies.

S
I

R
N
W

M
K

I
Q
D
N

K

T
R
A
L
F
Q

C
W
R
M

K
R

C
R
P

I
F
VPT

P
R
E
A

T
Q
R
L

I PK
P
Q
H
R

I

Q
G
M
R

F
A
M
E
H

S

D
P
N
W

N
E
Q

Q
A
L

T

M
C
W

K
R

S
M
P

P
I
V
RPG

P
A
R

T
RPM

H
Q
R

A
H
E
S

rvs167

yfr024

E

R
N
D
F
W

Y
M
K
Q
I

D

N

V

Y
P
Q
R
A

E

W

C
P
H
F
R

K
R

G

L

S
N

I
D
R

A
Y
F
R
VPF

Q

I
T
E
W
R

P
Q
C
G
RP I

A
H
P
R

Y

T
F
H
D
R

S
H
R

WK
N
D
Q
F

W
A
R

G
M

K
R

Q
M
R

K
N
Y
R
FPV

Y
F
E

I
R

S
L
F
R
QPH

P
G
I

R

F
M
L
D
K

E
S
H
R
Y

S

D
N

I
W

E
I

M
N
Q

F
T
Q
E
L

W
M
T

K
R
L
S
P
M

V
L
PPK

P
R
A

I
M
L
T
RPN

H
Q
M

Q
E
R

E
A

boi2

boi1

yhr016c

Fig. 3. Sequence logos of 14 amino acid peptide binding pattern for the five
experiments.

2) Sequence Analysis – Protein Classification:In this sec-
tion we report benchmark results for three data sets of labeled
sequences of proteins. Protein sequences from the three classes
IG MHC (360 sequences), UPF (25 sequences), and MYELIN
(18) were chosen from the Prosite database and complemented
by a large number of randomly selected “negative” examples
from unrelated families (IGMHC-dataset: 1959 “negative” se-
quences, UPF-dataset: 1836 “negative” sequences, MYELIN-
dataset: 1930 “negative” sequences). For each of the three
data sets, the machine learning task was to correctly predict
class membership based on the sequence of amino acids. By
construction, the data sets were highly unbalanced and had an
average sequence length of about 200. Long-term dependen-
cies result from the fact that class relevant information may be
located at the beginning of a sequence but prediction must be
performed at sequence end. Further, long-term dependencies
between groups of amino acids at distant location may be
important features for a given class.

The classification task was solved using a recurrent LSTM
network. The idea is to learn pattern recognizers for amino
acid patterns indicative for a given class and use those at the
input of a memory cell in order to store the occurrence of a
pattern until the end of the sequence. The LSTM input gates,
which serve as the pattern recognizers, receive their (only)
input from a window of 20 adjacent amino acids (1-out-of-20
binary coding for every amino acid). The window is shifted
over the sequence, and the network’s prediction is evaluated
after one full sweep. The initial bias of the input gates is set
to -8.0. The LSTM architecture consisted of only one memory
cell and no hidden units. The LSTM network was trained using
gradient descent method (LSTM learning) from [13] as well as

with the new IW method (p = 0.01). The size of the training
and validation sets were (“positives/all”): 338/2072 and 43/268
for IG MHC, 22/1638 and 3/223 for UPF, and 15/1625 and
3/323 for MYELIN.

TABLE IV

BENCHMARK RESULTS FOR THE PROTEIN CLASSIFICATION DATA SETS.

THE TABLE ON THE TOP SHOWS THE RESULTS FORLSTM AND GRADIENT

DESCENT(CF. [13]), THE TABLE ON THE BOTTOM THE IW RESULTS.

COLUMNS SHOW (LEFT TO RIGHT): THE DATA SET, THE LEARNING

PARAMETERS(LEARNING RATE FOR GRADIENT DESCENT ANDC FOR

IW), MSE ON THE TRAINING SET, BALANCED ERROR (MEAN OF FALSE

POSITIVE AND FALSE NEGATIVE RATE ON THE TRAINING SET, MSE ON

THE TEST SET, BALANCED ERROR ON THE TEST SET, NUMBER OF EPOCHS,

AND CPU-TIME .

Prot. par. train train test test ep. CPU
class MSE BE MSE BE min

gradient descent
IG MHC 0.1 0.050 33.8 0.047 4.3 3177 150
IG MHC 0.2 0.050 33.8 0.048 4.3 3188 150
IG MHC 0.5 0.051 33.8 0.048 4.3 3183 150

UPF 0.2 10e-6 0 10e-6 0 1360 32
MYELIN 0.2 10e-6 0 10e-6 0 440 10.1

importance weight method
IG MHC 10 0.001 6.9 0.006 2.6 64 74

UPF 1 6x10e-4 0 2x10e-4 0 61 3.4
MYELIN 10 10e-6 0 10e-6 0 100 7.5

Table IV summarizes the results. The IW methods was
always faster than gradient descent learning, in terms of epochs
as well as in terms of CPU time. The validation mean squared
error was better or equal for IGMHC and MYELIN, and a
bit worse for the UPF dataset. However, the average balanced
classification error of the IW method (calculated as the average
between the false positive and false negative rates) was always
better or equal to error achieved by standard BP.

ACKNOWLEDGMENTS

We thank Martin Heusel and Rene Pfeifer for their help
with the experiments. This work was funded in part by BMBF
project no. 10025304. and by the DFG (SFB 618).

REFERENCES

[1] S.-I. Amari. Natural gradient works efficiently in learning. Neural
Computation, 10(2):251–276, 1998.

[2] P. Baldi, G. Pollastri, C. A. Andersen, and S. Brunak. Matching protein
beta-sheet partners by feedforward and recurrent neural networks. In
Proc. Int. Conf. Int. Systems for Molecular Biology 8, pages 25–36,
2000.

[3] R. Battiti. First- and second-order methods for learning: between
steepest descent and Newton’s method.Neural Computation, 4:141–
166, 1992.

[4] H. S. M. Beigi and C. J. Li. Learning algorithms for neuralnetworks
based on quasi-Newton with self-scaling.Intelligent Control Systems,
23:23–28, 1990.

[5] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult.IEEE Trans. on Neur. Net., 5(2):157–
166, 1994.

[6] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

[7] L. W. Chan and F. Fallside. An adaptive training algorithm for
backpropagation networks.Computer Speech and Language, 2:205–218,
1987.

[8] C. Darken and J. Moody. Note on learning rate schedules for stochastic
optimization. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors,
Advances in Neural Information Processing Systems 4, pages 832–838.
Morgan Kauffmann, 1992.

[9] H. A. C. Eaton and T. L. Oliver. Learning coefficient dependence on
training set size.Neural Networks, 5:283–288, 1992.

[10] S. E. Fahlman. Faster-learning variations on back-propagation: an
empirical study. InProc. of the 1988 Conn. Models Summer School,
pages 38–51, 1989.

[11] S. E. Fahlman and C. Lebiere. The cascade-correlation learning
algorithm. In D. S. Touretzky, editor,Advances in Neural Informa-
tion Processing Systems 2, pages 525–532. San Mateo, CA: Morgan
Kaufmann, 1990.

[12] S. Hochreiter and K. Obermayer. Classification, regression, and feature
selection on matrix data. Technical Report 2004/2, Technische Univer-
sität Berlin, Fakultät für Elektrotechnik und Informatik, 2004.

[13] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[14] R. A. Jacobs. Increased rates of convergence through learning rate
adaptation.Neural Networks, 1:295–307, 1988.

[15] A. H. Kramer and A. Sangiovanni-Vincentelli. Efficientparallel learning
algorithms for neural networks. In D. S. Touretzky, editor,Advances in
Neural Information Processing Systems 1, pages 40–48. San Mateo, CA:
Morgan Kaufmann, 1989.

[16] C. Landgraf, S. Panni, L. Montecchi-Palazzi, L. Castagnoli, J. Schneider-
Mergener, R. Volkmer-Engert, and G. Cesareni. Protein interaction
networks by proteome peptide scanning.PLoS Biol., 2(1):94–103, 2004.

[17] Y. LeCun, P. Simard, and B. Pearlmutter. Automatic learning rate
maximization by on-line estimation of the Hessian’s eigenvectors”. In
Advances in Neural Information Processing Systems 5, pages 156–163,
1993.

[18] J. Leonard and M. A. Kramer. Improvement of the backpropagation al-
gorithm for training neural networks.Computers Chemical Engineering,
14(3):337–341, 1990.

[19] J. Platt. Fast training of support vector machines using sequential
minimal optimization. In B. Schölkopf, C. J. C. Burges, andA. J. Smola,
editors,Advances in Kernel Methods — Support Vector Learning, pages
185–208, 1999.

[20] N. Qian. On the momentum term in gradient descent learning algorithms.
Neural Networks, 12(1):145–151, 1999.

[21] M. Riedmiller and H. Braun. A direct adaptive method forfaster
backpropagation learning: The RPROP algorithm. InProc. of the
IEEE International Conference on Neural Networks, pages 586–591,
San Francisco, CA, 1993.

[22] R. Salomon. Improved convergence rate of back-propagation with
dynamic adaption of the learning rate. InParallel Problem Solving From
Nature (Dortmund, 1990), volume 496 ofLecture Notes in Computer
Science, pages 269–273, 1991.

[23] W. Schiffmann, M. Joost, and R. Werner. Comparison of optimized
backpropagation algorithms. InProc. of the European Symposium on
Artificial Neural Networks, ESANN 93, pages 97–104, 1993.

[24] W. Schiffmann, M. Joost, and R. Werner. Optimization ofthe backprop-
agation algorithm for training multilayer perceptrons. Technical report,
Institute of Physics, University of Koblenz, Koblenz, Germany, 1994.

[25] J. Schmidhuber. Accelerated learning in back-propagation nets. In
R. Pfeifer, Z. Schreter, Z. Fogelman, and L. Steels, editors, Connection-
ism in Perspective, pages 429–438. Amsterdam: Elsevier, North-Holland,
1989.

[26] B. Schölkopf and A. J. Smola.Learning with Kernels — Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[27] R. Setiono and L. Hui. Use of a quasi-Newton method in a feedforward
neural network construction algorithm. IEEE Trans. Neural Net.,
6(1):273–277, 1995.

[28] F. M. Silva and L. B. Almeida. Speeding up back-propagation. In
R. Eckmiller, editor, Advanced Neural Computers, pages 151–158,
Amsterdam, 1990. Elsevier.

[29] T. Tollenaere. SuperSAB: fast adaptive back propagation with good
scaling properties.Neural Networks, 3:561–573, 1990.

[30] G. M. Weiss and F. Provost. Learning when training data are costly:
The effect of class distribution on tree induction.J. Artifi. Int. Res.,
19:315–354, 2003.

[31] T. Zhang and V. S. Iyengar. Recommender systems using linear
classifiers.Journal of Machine Learning Research, 2:313–334, 2002.

